FGV Digital Repository
    • português (Brasil)
    • English
    • español
      Visit:
    • FGV Digital Library
    • FGV Scientific Journals
  • English 
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • FGV EMAp - Escola de Matemática Aplicada
  • FGV EMAp - Dissertações, Mestrado em Modelagem Matemática
  • View Item
  •   DSpace Home
  • FGV EMAp - Escola de Matemática Aplicada
  • FGV EMAp - Dissertações, Mestrado em Modelagem Matemática
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceFGV Communities & CollectionsAuthorsAdvisorSubjectTitlesBy Issue DateKeywordsThis CollectionAuthorsAdvisorSubjectTitlesBy Issue DateKeywords

My Account

LoginRegister

Statistics

View Usage Statistics

Optimal transport for machine learning: theory and applications

Thumbnail
View/Open
Dissertação (4.293Mb)
Date
2021-03-25
Author
Barreira, Davi Sales
Advisor
Mendes, Eduardo Fonseca
Metadata
Show full item record
Abstract
O que os operadores de produção de petróleo valorizam ao comprar produtos químicos?: uma análise sobre a percepção de valor na decisão de compra ou contratação de um provedor de especialidades químicas no mercado de óleo e gásIn recent years, advances in Optimal Transport have led to a surge of applications in fields such as Economics, Quantitative Finance and Signal Processing, among others. One area in which it has been found particularly successful is Machine Learning. The development of computationally efficient methods for solving Optimal Transport problems opened doors for creating Machine Learning algorithms using concepts from Optimal Transport. These new algorithms encompass many different sub-areas such as Transfer Learning, Clustering, Dimensionality Reduction, Generative Models, just to name some. This work provides an overview of the different ways in which Optimal Transport has been used in Machine Learning, thus helping Machine Learning researchers to better understand its impact in the field and how to use it. This thesis first introduces the main theoretical and computational aspects of Optimal Transport theory in an accessible way to Machine Learning researchers, followed by a semi-systematic literature review focusing on the main uses of Optimal Transport in Machine Learning.
URI
https://hdl.handle.net/10438/30407
Collections
  • FGV EMAp - Dissertações, Mestrado em Modelagem Matemática [90]
Knowledge Areas
Matemática
Subject
Problemas de transporte (Programação)
Aprendizado do computador
Otimização matemática
Análise combinatória
Keyword
Optimal transport
Wasserstein distance
Machine learning
Literature review
Distância de Wasserstein

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Import Metadata