FGV Digital Repository
    • português (Brasil)
    • English
    • español
      Visit:
    • FGV Digital Library
    • FGV Scientific Journals
  • English 
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • FGV EMAp - Escola de Matemática Aplicada
  • FGV EMAp - Artigos
  • View Item
  •   DSpace Home
  • FGV EMAp - Escola de Matemática Aplicada
  • FGV EMAp - Artigos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceFGV Communities & CollectionsAuthorsAdvisorSubjectTitlesBy Issue DateKeywordsThis CollectionAuthorsAdvisorSubjectTitlesBy Issue DateKeywords

My Account

LoginRegister

Statistics

View Usage Statistics

A cooperative conjugate gradient method for linear systems permitting efficient multi-thread implementation

Thumbnail
View/Open
Bhaya2018_Article_ACooperativeConjugateGradientM.pdf (1.084Mb)
Date
2018
Author
Bhaya, Amit
Bliman, Pierre-Alexandre
Niedu, Guilherme
Pazos, Fernando
Metadata
Show full item record
Abstract
This paper revisits, in a multi-thread context, the so-called multi-parameter or block conjugate gradient (B-CG)methods, first proposed as sequential algorithms by O’Leary and Brezinski, for the solution of the linear system Ax = b, for an n-dimensional symmetric positive definite matrix A. Instead of the scalar parameters of the classical CG algorithm, which minimizes a scalar functional at each iteration, multiple descent and conjugate directions are updated simultaneously. Implementation involves the use of multiple threads and the algorithm is referred to as cooperative CG (CCG) to emphasize that each thread now uses information that comes from the other threads. It is shown that for a sufficiently large matrix dimension n, the use of an optimal number of threads results in a worst case flop count of O(n7/3) in exact arithmetic. Numerical experiments on a multi-core, multi-thread computer, for synthetic and real matrices, illustrate the theoretical results
URI
https://hdl.handle.net/10438/28064
Collections
  • FGV EMAp - Artigos [18]
Knowledge Areas
Matemática
Subject
Sistemas lineares
Métodos iterativos (Matemática)
Métodos de gradiente conjugado
Keyword
Discrete linear systems
Iterative methods
Conjugate gradient methods
Cooperative algorithms

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Import Metadata