FGV Digital Repository
    • português (Brasil)
    • English
    • español
      Visit:
    • FGV Digital Library
    • FGV Scientific Journals
  • English 
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   DSpace Home
  • Produção Intelectual em Bases Externas
  • Documentos Indexados pela Scielo
  • View Item
  •   DSpace Home
  • Produção Intelectual em Bases Externas
  • Documentos Indexados pela Scielo
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DSpaceFGV Communities & CollectionsAuthorsAdvisorControlled vocabularyTitlesBy Issue DateKeywordsThis CollectionAuthorsAdvisorControlled vocabularyTitlesBy Issue DateKeywords

My Account

LoginRegister

Statistics

View Usage Statistics

Development of an indicator of propensity to energy commercial losses using geospatial statistical techniques and socio-economic data: the case of AES Eletropaulo

Thumbnail
View/Open
S1678-69712010000400008.pdf (1.792Mb)
Date
2010-08-01
Author
Francisco, Eduardo de Rezende
Fagundes, Eduardo Bortotti
Ponchio, Mateus Canniatti
Zambaldi, Felipe
Metadata
Show full item record
Abstract
Given the growing importance of integrating marketing and operations indicators to enhance business performance, and the availability of sophisticated geospatial statistical techniques, this paper draws on these concepts to develop an indicator of propensity to energy commercial losses. Loss management is a strategic topic among energy distribution companies, in particular for AES Eletropaulo. In such context, this work's objectives are: (i) to appropriate spatial auto-regressive models and geographically weighted regression (GWR) in measuring the cultural influence of neighborhood in customer behavior in the energy fraud act; (ii) to replace slum coverage areas by a regional social vulnerability index; and (iii) to associate energy loss with customer satisfaction indicators, in a spatial-temporal approach. Spatial regression techniques are revised, followed by a discussion on social vulnerability and customer satisfaction indicators. Operational data obtained from AES Eletropaulo's geographical information systems were combined with secondary data in order to generate predictive regression models, having energy loss as the response variable. Results show that the incorporation of market and social oriented data about customers substantially contribute to explicate energy loss - the coefficient of determination in the regression models rose from 17.76% to 63.29% when the simpler model was compared to the more complex one. Suggestions are made for future work and opportunities for the replication of the methodology in comparable contexts are discussed.
 
Dada a crescente importância da integração de indicadores de marketing e operações para melhorar o desempenho empresarial e a disponibilidade de sofisticadas técnicas de estatística espacial, este trabalho desenvolve um indicador de propensão a perdas comerciais de energia. Gestão de perdas é um tema estratégico para as empresas de distribuição de energia, em particular para a AES Eletropaulo. Nesse contexto, os objetivos deste trabalho são: (i) apropriar modelos espaciais autorregressivos e a geographically weighted regression (GWR - regressão ponderada geograficamente) para medir a influência cultural da vizinhança no comportamento do cliente no ato da fraude de energia; (ii) substituir as áreas de cobertura de favela por um índice regional de vulnerabilidade social; e (iii) associar a perda de energia com indicadores de satisfação de clientes, em uma abordagem espaço-temporal. Técnicas de regressão espacial são revisadas, seguidas por uma discussão sobre a vulnerabilidade social e os indicadores de satisfação do cliente. Os dados operacionais obtidos por meio de sistemas de informação geográfica da AES Eletropaulo foram combinados com dados secundários, a fim de gerar modelos preditivos de regressão, com a perda de energia como variável resposta. Os resultados mostram que a incorporação de dados sociais e de mercado sobre os clientes contribuem substancialmente para explicar a perda de energia - o coeficiente de determinação dos modelos de regressão aumentou de 17,76% para 63,29%, quando comparados o modelo mais simples e o mais complexo. São apresentadas sugestões para trabalhos futuros e discutidas oportunidades para a replicação da metodologia em contextos comparáveis.
 
URI
https://hdl.handle.net/10438/21798
Collections
  • Documentos Indexados pela Scielo
Knowledge Areas
Administração de empresas
Subject
Operations indicators
Energy distribution
Loss management
Geographically weighted regression
Social vulnerability
Indicadores de operações
Distribuição de energia
Gestão de perdas
Vulnerabilidade social
Administração de empresas
Energia elétrica - Distribuição
Administração de risco

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Import Metadata