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ABSTRACT 

 Multicollinearity may be possible cause in case of study with two or more 

explanatory variables. In the presence of multicollinearity, the design matrix becomes 

nearly singular and hence X and the corresponding XX ′ are not of full rank. In this 

situation the ordinary least square (OLS) estimate cannot be obtained. Thus, adequate 

attention is required to give on the presence of multicollinearity in the data.  

 In this survey ridge regression only is discussed to solve the problem of 

multicollinearity. Hoerl and Kennard (HK) proposed first the technique of ridge regression 

that has become a popular tool for data analysis faced with a high degree of 

multicollinearity in their data. They have suggested adding a small positive quantity in the 

diagonal elements of the design matrix, XX ′  before inverting it. In other words, they 

propose Rβ̂ = ( XX ′  + k I) 1−  YX ′  in place of β̂  = ( XX ′ ) 1−  YX ′ , where Rβ̂  and β̂  are a 

ridge and an OLS estimates of the parameter vector, β respectively. Though ridge estimate 

(RE) is biased but it has smaller mean squared error than OLS estimator. A critical 

appraisal is also discussed on the choice of biasing parameter in addition to its properties, 

its relation with other estimators and Bayesian and non-Bayesian interpretations.  
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1. 0  Introduction  

  When X is not of full rank, the determinant of XX ′ is zero and one or more of its 

eigenvalues are zeros. In this situation ordinary least square (OLS) estimate of β and its 

variance, theoretically, explode. On the contrary, when all columns of X are orthogonal, 

then XX ′ = I and the determinant of XX ′ is unity. The situation of perfect multicollinearity 

is almost as rare as that of perfect orthogonality. The values between the two extremes are 

most frequent case, i.e., 0 < XX ′  < 1 (Cooley and Lohnes, 1971). The departure of 

XX ′  form unity is called non-orthogonality while its proximity to zero gives rise to 

multicollinearity. But this distinction has not been maintained in the literature. For 

convenience, ridge regression literature often ignores the distinction among 

multicollinearity, non-orthogonality and ill-conditioning.          

  Multicollinearity occurs when variables are highly correlated (0.90 and above but 

less then 1), and singularity occurs when the variables are perfectly correlated. In presence 

of near multicollinearity or multicollinearity, the design matrix becomes nearly singular 

and hence X is not of full rank. In this situation λ p →0 and MSE ( β̂ ) → ∞, where λ p  is 

the smallest eigenvalue and MSE is the mean squared error. This is the case of 

multicollinearity and in this situation the OLS estimate cannot be obtained. Farrar and 

Glauber (1967) suggest first looking at the values of r ii  to diagnose multicollinearity, 

where r ij  is the (i, j)
th

 element of inverse of ( XX ′ ) 1− . Marquardt (1970) suggests a rule of 

thumb that VIF (i) = r ii  > 5 indicate harmful multicollinearity, where VIF is variance 

inflation factors. In case of ill conditioned of XX ′ some of its eigenvlues are close to zero 

and their reciprocals are very large. The expected squared length of OLS estimators vector 

is greater than that of true parameter vector. One could refer (Brook and Moore, 1980) for 

a detailed discussion of this point.  



  Collecting more data or dropping one or more variables is the traditional solution. 

But collecting more data may often be expensive or not practicable in numerous situations. 

Dropping one or more variables from the model to alleviate the problem of multicollinea- 

rity may lead to the specification bias and hence the solution may be worse than the 

disease in certain situations. Our interest will be to squeeze out maximum information 

from whatever data at ours disposal and this has motivated the researchers to the 

development of some very ingenious statistical methods, for example, ridge regression, 

principal component regression and generalized inverse regression. Application of these 

statistical methods solves the problem of multicollinearity successfully.   

  In this survey ridge regression only is discussed to solve the problem of 

multicollinearity. Hoerl and Kennard (HK, 1970) have suggested adding a small positive 

quantity in the diagonal elements of the design matrix, XX ′ before inverting it. In other 

words, they propose Rβ̂ = ( XX ′  + k I) 1−  YX ′ , where Rβ̂ is a ridge estimate of the 

parameter vector, β. Though RE is biased but it has smaller MSE than OLS estimator.    

1. 1  Some Elementary Results  

Consider the multiple linear regression model as  

 Y = Xβ + U  . . .  (1)  

where Y is n x 1 vector of observations on the regressand, X is a full rank n x p matrix of 

observations on the p regressors, β is a p x 1 vector of coefficients associated with them 

and U is a n x 1 vector of unobservable disturbances such that  

 E (U) = 0 and E ( UU ′ ) = σ 2 I.  

The OLS estimate of β, denoted by β̂ , is given by  

  β̂  = ( XX ′ ) 1−  YX ′   . . .  (2)  

and the dispersion matrix  



 V ( β̂ ) =σ 2 ( XX ′ ) 1−   . . .   (3)   

 Without any loss of generality in the paper it is assumed, unless otherwise stated, 

the design matrix XX ′  in the form of correlation matrix by suitable standardized. The 

matrix being square symmetric there exists an orthonormal matrix P such that  

 P′ ( XX ′ ) P = Λ  . . .  (4)   

and  ( XX ′ ) 1−  = P′ Λ P  . . .  (5)  

where Λ  is a diagonal matrix of eigenvalues of XX ′ .  

 An obvious choice of P is the p x p matrix with its columns the orthonormal 

eigenvectors of XX ′ and arranging suitably its column the matrix Λ can be made to display 

the eigenvalues in the order λ1  ≥ λ 2  ≥  … ≥ λ p .  

Since P is orthogonal, the model (1) becomes  

 Y = Zγ + U   . . .  (6)  

where Z = XP and γ = P′β. Consequently the columns of Z are orthogonal and Z′Z = Λ .  

Using the Gauss-Markoff theorem and relations (2) and (3) the OLS estimate of γ, denoted 

by γ̂ , is written as  

 γ̂  = P′ β̂    . . .  (7)  

with dispersion matrix  

 V ( γ̂ ) = σ 2
Λ

−1    . . .  (8)  

 The elements of γ̂  vector are observed to be uncorrelated.  

The results from (2) to (8) are also obtained by the use of the singular value decomposition 

(SVD) as discussed in Rao (1991) and Belsley and Klema (1974). In SVD it is always 

possible to write an n x p matrix X as  

  X = H Λ 2
1

 P′   . . .  (9)  



where columns of n x p matrix H are coordinates of the observations along the principal 

axes of X standardized in the sense that H′H = I, the matrix Λ 2
1

has the square-roots of 

eigenvalues of XX ′ along its case Z = H Λ 2
1

and γ = P′β. The OLS estimate of β is now as  

        β̂  = PΛ 2
1

H′Y   . . .  (10)  

and OLS estimate of γ as  

 γ̂  = P′β = Λ 2
1

H′Y   . . .  (11)  

The dispersion matrix of γ̂  is given by (8). The OLS estimate of β will be now as  

   β̂  = P γ̂     . . .  (12)  

 The above OLS estimators are best linear unbiased estimators (BLUE). But Gauss 

in 1809 suggested MSE as the most relevant criterion for choice of among estimators 

(Vinod, 1981). The MSE matrix for an estimator β̂ of β is defined by  

  MtxMSE ( β̂ ) = E ( β̂ - β)′ ( β̂ - β).  

The closeness of β̂  to β is measured in terms of squared Euclidian distance L 2 given by 

the trace of MtxMSE ( β̂ ) and given by  

 MSE ( β̂ ) = E (L 2 ) = E ( β̂ - β)′ ( β̂ - β)  

                             = tr cov ( β̂ ) + bias ( β̂ )′ bias ( β̂ ),       where tr denotes the trace.  

1. 2  The Ridge Regression   

 For ill conditioned XX ′  the OLS estimators β̂  is, on the average, longer than the 

true parameter vector, β. Hoerl (1962) advocated adding, a positive small increment, k to 

the diagonal elements of XX ′ before inverting the matrix. This increment is called the 



biasing parameter or the charactersing scalar. Thus, this estimate of β is called the ridge 

estimate (RE) and is given by  

 Rβ̂ = ( XX ′  + k I) 1− YX ′   . . .  (13)  

 The procedure of ridge regression (RR) actually defines a family of estimators of 

which OLS estimator is a member for k = 0.  

HK (1970) introduce the generalized ridge regression estimator (GRE) as                                                                         

GRβ̂ = [ XX ′  + PDP′] 1− YX ′   . . . (14)         

where P is the matrix whose columns are orthonormal characteristic vectors of XX ′  and D 

is a diagonal matrix of constants d i  ≥ 0.  

 If the constants d i  are all equal and take the value d i = k, the GRE reduces to the 

ordinary ridge estimator (ORE or RE) Rβ̂ = ( XX ′  + k I) 1− YX ′ . The procedure of ORE or 

RE actually defines a family of estimators of which OLS estimate is a member for k = 0, 

i.e., with k = 0 the ORE reduces to OLS estimate. The relation between OLS estimate and 

ORE or RE estimators is as                                          

   [I + k ( XX ′ ) 1− ] Rβ̂  = β̂   . . .  (15)   

 Dealing with optimum solution of many variable equations from response surface 

methods introduced by Box and Wilson in 1951, a paper by Hoerl in 1959 traced as the 

genesis of RR. In a subsequent paper Hoerl (1962) applied his method of ‘ridge analysis’ 

to multiple regression analysis involving ‘poorly-conditioned’ data. Perhaps, the next step 

in the development of RR was a paper by Draper in 1963 that furnished the mathematical 

proofs lacking in Hoerl’s original paper. However, HK (1970 a, b) provided a rigorous 

statistical basis of RR. The gospel of biased estimation spread in a more practical context 

through these papers of HK (Bibby and Toutenburg, 1977, p. 1).  



 HK (1970 a) obtained the RE vector β̂  by minimizing the squared length of the 

coefficient vector subject to a fixed residual sum of squares and also, alternatively, by 

minimizing the residual sum of squares for a fixed squared length of the coefficient vector 

through the procedures of constrained minimization. Hemmerle in 1975 discussed HK 

(1970 a)’s GRE procedure as  

   Rβ̂ = ( XX ′  + K) 1− YX ′    . . .  (16) 

where K is a diagonal matrix with non-negative diagonal elements k1 , k 2 , . . ., k p .  

1. 3  Some Properties of Ridge Regression   

 The RE is biased and the amount of bias is as  

  Bias ( Rβ̂ ) = – k ( XX ′  + k I) 1− β = (P∆P′– I) β   . . .  (17)  

where ∆ = diag (δ i ) and being square symmetric W = P∆P′.    

      The RE vector with k ≠ 0 is shorter than the OLS estimate vector and shrinks to 

zero as k approaches infinity. The RE is a linear transformation of the OLS estimate since  

 Rβ̂  = Wb = P∆P′b  . . .  (18)    

where W = [I + k ( XX ′ ) 1− ] 1− .  

The shrinkage factors, δ i  = λ i  (λ i  + k) 1− for i = 1, 2, …, p are the eigenvalues of W. 

Vinod (1974, 1976 b) discussed ‘declining deltas’ for strictly positive k and declining 

λ i ’s. The same result is obtained for GRR given in (16) forδ i  = λ i  (λ i  + k i ) 1− and RE 

becomes a special case of it when all k i  are equal. The derivations are greatly simplified 

with the use of SVD and using canonical reduction model (6), which is equivalent to the 

original model (1). It can easily be seen that Rβ̂  = p γ̂ R
 just as in OLS estimate case given 

in (12). Using (18) relation for the shrinkage of γ̂ R
 is as  



  γ̂ R
 = ∆ γ̂    . . .  (19)   

  where γ̂  is the OLS estimate of γ.  

   HK (1970 a) showed that over ‘the improvement region’  

 0 < k < 
γ

σ
2

0

2

    . . .  (20)  

where γ 0  is the largest element of vector γ.  

RE is superior to OLS estimate in the sense that on an average RE is closer to the 

parameter than OLS estimate, i.e.,  

 E [ )(2 kL ] < E [ )(02L ] = σ 2
∑
=

−
p

i
i

1

1λ   . . .  (21)   

Though OLS estimate is BLUE, which RE is not, but linearity and unbiasedness are 

irrelevant for the ‘closeness’. Setting k at a value greater than zero HK (1970 a) introduced 

a biased RE but substantially reduced variance. Stein in 1956 discussed the benefits of 

requirement of unbiasedness and its mathematical rationale are questionable. Theil (1971, 

p. 91) wrote that it is not good to give too much importance to this indispensable criterion. 

Marquardt and Snee (1975) discussed through examples how a high variance unbiased 

estimator is inferior to a low variance biased estimator.  

1. 4  Bayesian and Non-Bayesian Interpretation of Ridge Regression 

1. 4. 1  Bayesian Interpretation of Ridge Regression   

 In model (1) if Y is multivariate normal distribution and the prior distribution of β 

is assumed as multivariate normal distribution with mean β o  and the dispersion matrix 

σ β
2  =σ 2  PK 1− P′ then the mean of posterior distribution of β would also follow the same 

distribution: 



 β*= ( XX ′  + PKP′) 1−  ( YX ′  + PKP′ β o )  . . .  (22)   

  Now, when β o = 0, (22) becomes equivalent to GRR and when β o = 0 and K = kI, k 

being a scalar, (22) becomes identical to ORE or RE. Some Bayesians feel that this prior is 

unrealistic, and a prior mean other than the null vector should be used. Such prior 

knowledge about β o  is available only in rare cases.   

 Chipman (1964) suggested a method based on the minimum mean square error 

(MMSE) in face of multicollinearity. Using Bayesian approach Lindley and Smith (1972) 

discussed in details about RR and GRR. Becon and Hausman (1974) showed that 

Chipman’s MMSE coincides with RE with the biasing parameter k = t
22σ , i.e., the ratio 

of error variance to common prior variance. Lindley and Smith worked independent of 

Chipman’s work and within entirely the Bayesian framework and they found a similar 

result. Both results may be considered superior to HK’s. Haitovsky and Wax (1974) 

suggested a generalization of GRR making shrinkage towards some known β o instead of 

null vector. Marquardt and Snee in 1975 state that “In this scaling it is exceedingly rare for 

the population value of any regression coefficient to be larger than three in a real 

problem”. Lawless and Wang (1976) used the Bayesian framework to reinterpret the 

biasing parameter suggested by Hoerl, Kennard and Baldwin (1975). The Bayesian 

technique could provide an important research tool as implicit priors may help avoiding 

misapplications and over optimism with RR methods (Vinod, 1978). Reviewing the 

controversy of standardization Draper and Van Nostrand in 1979 conclude that 

standardization is generally desirable in practical cases. Smith and Campbell clarified the 

issues involved in 1980.    

 

 



1. 4. 2  Non-Bayesian Interpretation of Ridge Regression  

 Marquardt (1970) discussed a class of biased linear estimators employing 

Generalized inverse (GI) and some theoretical properties shared by GI estimators and RE. 

He suggests a rule of thumb to ascertain the allowable amount of bias in the two 

estimators in case of ill-conditioned data. Mayer and Wilke (1973) viewed by examining 

different classes of biased estimators that RE was as a subclass of the class of linear 

transformations of the OLS estimator. Allen (1974) showed RE as a special case of data 

augmentation and developed a procedure to choose predictors for any specific criterion of 

good prediction. In their elegant paper Goldstein and Smith (1974) used normal regression 

theory to a suitably transformed linear model and discussed a broad class of shrinkage 

estimators, which achieve a smaller MSE than OLS estimator for every component of β.  

 Goldstein and Smith (1974) suggested a further generalization of the shrinkage 

factor as  

 f ( λ i , k) = λ m
i ( λ m

i + k) 1−   . . .  (23)  

where m is an integer.  

The relevant estimator in terms of original parametric space is of the form  

 β̂ (m, k) = [( XX ′ ) m + kI] 1−  ( XX ′ ) 1−m YX ′   . . .  (24)  

This becomes RE for m = 1. HK (1975) regarded this generalized estimator as Sommers’ 

1975 and showed it as identical to their GRR as in (14). Lowerre (1974) suggested another 

family of estimators as  

 β̂
∗

= ( XX ′  + C) + YX ′   . . .  (25)  

where C is any symmetric matrix of proper order and ( XX ′  + C) + is the Moore-Penrose 

inverse of ( XX ′  + C).  



  Obenchain (1975) presented another family of RE using SVD and shrinkage 

factors as  

 δ i  = λ i  (λ i  + k λ q
i ) 1−   . . .  (26)  i  = 1, 2, …, p.    

where k and q are parameters. When q = 0, it becomes the ORE and when q = 1, it is 

equivalent to Mayer and Wilke (1973) type shrunken estimators.  

1. 5  Relation of Ridge Estimator with Other Estimators  

 Hawkins (1975) used a technique of eigenanalysis as estimator, which is identical 

with RE. He outlined this technique in 1973. The data matrix D = (Y : X) could be used to 

form another matrix T = D′D which could be diagonalized through an orthogonal matrix A 

such that ATA′ = diag (λ i ), where λ i ’s are eigenvalues of T. It was shown that the 

regression coefficient of the linear model (1) could be estimated as a linear combination of 

eigenvectors in A. Now, if by suitably augmenting the data matrix with dummy 

observations, a matrix T (k) = T + kI is obtained then, a direct application of the result of 

Hawkins’ 1973 would lead to estimators which are identical with RE.  

 Farebrother (1975) discussing MMSE of β, as given in Theil (1871, p. 125), 

derived a method of computing it through an estimator,  

 β̂ F
 = (X′X + 

ββ

σ

′

2

I) X′Y   . . .  (27)   

This estimator has close affinity with RE. However, he used the operational value of 

biasing parameter, k = 
ββ ′ˆ

2s
. He showed analyzing the data used by HK (1970 b) that 

optimum value of k through his method is much less than HK’s and also less than that of 

Mallows’ 1973 who used a weighted MSE criterion for obtaining the optimal value.   



 Goldstein and Smith (1974) suggested the relevant estimator (23) and it becomes 

RE when m = 1. Obenchain (1975) presented another family of RE using SVD (25) and it 

becomes the ORE when q = 0. Stein in 1960 and James and Stein (1961) demonstrated 

that MSE ( β̂ ) > MSE (δ s β̂ ), whereδ s is a shrinkage factor based on coefficient of 

multiple determination. Later Baranchik in 1970 showed that a positive partδ +s = max [0, 

δ s ] dominatesδ s . The corresponding positive part of Stein-rule estimators of β is a 

special case of GRE where all iδ  are equal to the uniform shrinkage fraction δ +s .  

 RR is closely related to Bayesian estimation. Many authors like Leamer in 1978, 

Zellner in 1971, etc discuss the use of Bayesian method in regression. But two major 

drawbacks of this method are the data analyst must make an explicit statement about the 

form of the prior distribution and the statistical theory in this connection is not yet widely 

understood.    

 Vinod (1978) explored the relationship between the GRR due to HK (1970 a, b) 

and the Bhattacharya (BH) estimator of 1966 based on results by Stein and James’ 1956 

and 1961. Both the GRR and BH estimators are motivated by potential reductions in their 

MSE ( β̂ 0
) compared to the MSE for OLS denoted by MSE ( β̂ ), where β̂ 0

 denotes any 

estimator of β.   

 Paris in 2001 introduced the maximum entropy leuven (MEL) estimator to combat 

the multicollinearity problem in regression analysis. MEL estimator makes the use of the 

information available in the data more efficiently than the OLS does, and it does not need 

any additional information to be supplied by the users. Wan (2002) considers the balanced 

loss function as a basis of measuring the performance of feasible generalized ridge and 

almost unbiased feasible generalized ridge estimators and obtained that both of these 



estimators continue to improve over the OLS estimator in the case of ill-conditioned data, 

even if a relatively heavy weight is given to goodness of fit in the balanced loss function.   

 Mishra (2004) improves the MEL estimator to the modular MEL (MMEL) 

estimator and develops by Monte Carlo experiments that MMEL estimators performs 

significantly better than OLS and MEL estimators. Vago and Kemeny in 2006 compared 

the effectiveness of logistic RR and Maximum likelihood (ML) regression using clinical 

data of kidney-transplanted patients. They concluded that the use of RR proved to be more 

effective than the ML estimation for small samples but the use of RR is not recommended 

for the large samples.  

1. 6  Choice of biasing Parameter   

 A value of parameter, k is needed for the ridge estimate and this is determined by 

the data in practice. Suggestion to choose the value of k is the smallest where components 

of Rβ̂ tend to stabilize in some subjective sense. Lin and Kmenta in 1982 discussed about 

prior information enabling to determine k, which is always uncertain. In most cases, 

however, the value of k is not known a priori but is determined on the basis of available 

sample observations. Under these circumstances the ORR estimator is no longer linear in 

observations and its properties are unknown. It incorporates no prior information but 

provides a convenient way for trading bias for a reduction in variance. The ridge trace has 

been proposed for the selection of the biasing parameter, k that is based on many 

mechanical rules and a graphical method. Much controversy is arising on the choice of k. 

In the literatures several authors have discussed for the selection of k. No firm 

recommendation for the choice of k seems to emerge. Some of the methods are as.  

  HK (1970 a, b) suggested the ridge trace (RT), which is a two-dimensional plot 

of β̂ R
 against k in the interval [0, 1]. Theil in 1963 seems to have independently suggested 



a similar plot. The biasing parameter in the Bayesian interpretation is k = 
σ

σ

β
2

2

, which is 

the ratio of error variance to the prior variance of β. During discussion HK (1970 a) 

proved superiority of RE over OLS estimator of a positive k whose range is given by (20). 

HK (1970 b) recommended standardizing the data before plotting on a RT, so as to retain 

numerical comparability of regression coefficients. The main theoretical justification for 

RR given in HK (1970) is their theorem that a strictly positive k exists for which the trace 

of the MSE matrix satisfies MSE ( β̂ R
) < MSE ( β̂ ).  

 Minimizing the mean squared error of Rα̂  with respect to k Wermuth (1972) 

suggested the value of k as    

  k = 

∑

∑

=

−

=

−

+

+

p

i
iii

p

i
ii

k

k

1

32

1

32

)(ˆ

)(ˆ

λαλ

λλσ

  . . .  (28)  

where α̂ = P′ β̂  and Rα̂  = P′
Rβ̂ .  

 Dempster (1973) developed an empirical Bayes estimator for a prior distribution of 

α given as α ∼ N (0, ω 2 I). He then suggested replacing 2σ by 2σ̂  and using the fact of             

E ( χ 2 ) = p. The suggested value of k is estimated by solving the following equation.  

  p = 

)
11

(ˆ

ˆ

2

1

2

i

p

i
i

k λ
σ

α

+

∑
=

   . . .  (29)  

 Sclove (1973) proposed another empirical Bayesian estimator and suggests 

calculating k by solving the following equation  

 ∑
= +

p

i

i

i

k
1

2

11

ˆ

λ

α
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2

)(ˆ 2

−−

−

pn

pnpσ
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 Swindel and Chapman in 1973 suggested that a necessary and sufficient condition 

for MtxMSE ( β̂ ) > MtxMSE ( β̂ R
) is  

 0 < k < 
),(min

2

0 ζ−
   . . .  (31)  

where ζ is the minimum eigenvalue of 
σ

ββ
2

1
)(

′
−′ −

XX . In case of positive and minimum 

eigenvalue (31) suggests that any stochastic k in the open interval (0, +∞) will reduce the 

MSE of OLS.  

 Becon and Hausman in 1974 showed that Chipman’s MMSE coincides with RE 

with the biasing parameter k = 
t

2

2σ
, i.e., the ratio of error variance to common prior 

variance. While generalizing the result for weighted Mtx MSE Theobald (1974) showed 

the difference of the MSE for β̂  and for Rβ̂ is a positive definite matrix if k is less than 

ββ

σ

ˆˆ

2
2

′
. The recommended value of k by Farebrother (1975) was k = 

ββ

σ
ˆˆ

ˆ 2

′
, which is 

empirically lesser optimal value of k than that of HK (1970 b) and Mallows (1973). Hoerl, 

Kennard and Baldwin (1975) suggested an appropriate choice for k for a better estimate of 

β as.  

  k HKB  = 
ββ

σ
ˆˆ

ˆ 2

′

p
   . . .  (32)     

where β̂  is OLS estimate of β, 2σ̂ = 
pn −

1
 (Y – X β̂ )′ (Y – X β̂ ) and p is the number of 

explanatory variables.  

 Guilkey and Murphy (1975) suggested method of directed ridge estimator (DRE), 

which in fact is an improvement of the HK’s iterative procedure. The increments k i  are 



made only to those diagonal elements of X′X whose λ i  are small. A rule of thumb given 

by the authors is applied to judge the minimum of λ i . The main advantages of DRE 

method are relatively precise original OLS estimators and retaining unbiasedness. It is 

entirely possible that DRE method would have a smaller MSE than RE although Re 

method would be MSE optimal if true k i  were known.  

 Marquardt and Snee (1975) define an admissible range of k wherein MSE ( β̂ R
) < 

MSE ( β̂ ).  The term acceptable is used here to avoid confusion with decision theoretic 

admissibility concepts.  

 Suggested value of k by Schmidt (1976) was 
)(max

2

iγ

σ
, which unfortunately gives 

a negative value of k. The Monte Carlo results by HKB (1975) as well as by Lawless and 

Wang (1976) showed superiority of RE over OLS estimates in this case, it was later shown 

that this estimator is minimum minimax under some very restrictive conditions and hence 

of little practical use (Thisted in 1977).  

 Thisted (1976) modified the HKB estimator due to over shrinking towards zero 

and proposed k T  as an estimate.                                            

  k T  = 
ββ

σ
ˆˆ

ˆ)( 2
2

′

−p
   . . .  (33)  

 In a subsequent paper HK (1976) suggested the sequence of estimates of β and k, 

which is based on k HKB  and an iterative estimation procedure till the achievement of 

convergence.   
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   Vinod (1976 b) advocated a modification of HK’s ridge trace (RT) method to 

make the optimal choice of biasing parameter more objective and meaningful. One 

suggestion of Vinod was to plot the regression estimates against m instead of k.  

  m = p – ∑
=

−+
p

i
iii k

1

1)(λλ               . . .  (35)   

 This has three main advantages: (i) it can be used for GRR too, (ii) it narrows 

down the range of choice of k since 0 ≤  k  ≤ ∞ corresponds to 1 ≤  m ≤  p, and (iii) it does 

not have the unfortunate property of HK’s RT where even for completely orthogonal data 

the RT may appear more stable for larger value of k.  

 Another suggestion of Vinod is to quantify the concept of stable region of RT 

through an index of stability of relative magnitude (ISRM) defined as  

 ISRM = ∑
=

−
p

i i

i

S

p
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2
2

)1(
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δ
              . . .  (36)   

where S  = 
dk

dm
 = ∑

=

−+
p

i
ii k

1

2)(λλ  

  In practice, one may choose certain k values as 0.0001, 0.001, 0.01, 0.02, . . . etc. 

Each of these implies p values ofδ i  = 1)( −+ kii λλ . The ISRM is zero for completely 

orthogonal system and largest for k = 0 (i.e., in case of OLS). The value of m from this 



type of RT may be chosen corresponding to smallest ISRM, which would yield a 

considerable narrow range of desirable value of m. In addition ISRM is not stochastic 

where as in HK’s RT the estimates being stochastic and consequently their visual 

inspection leads to a stochastic determination of k. Vinod (1978) corrected the suggested 

value of k by Schmidt that is inefficient compared to Theobald’s estimate.   

   Ullah et al. (1981) suggested a family of double h-class ridge estimators, of which 

many earlier methods are special cases. They showed on the basis of MSE criterion the 

GRR would dominate over OLS estimate for  

  k i  = 112
2

22
1 )( −−− ii hh r λσσ               . . .  (37)    

They further obtained single value k as.  

  k = p 112
2

2
1 )ˆ(ˆ −−

∑−′
ihh CC λσσ    where C is the OLSE of vector Υ.  

This value of k coincides with those suggested by Hoerl, Kennard & Baldwin (1975) and 

Farebrother (1975) for (h1  = 1, h 2  = 0) and (h1  = 
p
1 and h 2  = 0) respectively. The 

performance of a RR estimator is based on a given value of k and it depends on (i) the 

number and the values of the regression coefficients, (ii) the degree of multicollinearity, 

and (iii) the value of the variance of the disturbances, σ 2  (Lin and Kmenta, 1982).  

 Mardikyan and Cetin (2008) developed a goal-programming model by which 

efficient value of the biasing parameter k is determined based on the minimization of the 

VIF and the maximization of the determination coefficient R 2 of the model to yield an 

efficient biasing parameter for RR. They further clarify that it gives the efficient value of k 

much closer to the values discussed in the literature, by just one attempt.  

1. 7  Some Criticisms on Ridge Regression   

 In RR controversy concentrates on the choice of biasing parameter, k. Method of 

RR could not produce a single solution to the estimation problem, if a ridge trace is 



considered. A number of criticisms of RR method are available in the literature. Some of 

them are directed towards HK’s approach while others are of a general nature.  

 (i) The restriction imposed on k to lie in [0, 1] is arbitrarily and tantamount to an 

assumption, in a Bayesian framework, that error variance is less than the variance of the 

priors (Smith and Campbell, 1980).  

  (ii) The guidelines to choose the value of k are very vague. There is no sound logic 

for the stability of correct choice of k.. Vinod (1976) discussed for quantification of the 

concept of stability.   

 (iii) The RR method ignores the fundamental fact that a linear transformation of a 

model does not change the estimates of the model (Smith and Campbell, 1980).   

 (iv) Proof given by HK that MSE of β̂ R
is less than that of β̂ is valid only when k is 

known but this is hardly the case in practical situations. However, Vinod (1976 c) 

attempted to show that MSE of HK’s GRR is less than that of OLS for positive and 

stochastic k i .  

 (v) In case of ill-conditioned XX ′ and large MSE some components of vector β̂  

will be too large and others too small. But unless we know which components are too 

large and which too small, there seems little justification for reducing their absolute values 

and no reason to believe why a particular component of Rβ̂ should be closer to the true 

value than corresponding component of β̂ . Nelder in 1972 suggested in this context that 

arguments based on average MSE of all coefficient estimates are not very convincing. 

However the DRE method of Guilkey and Murphy (1975) may, perhaps, be less exposed 

to such criticisms.   

 (vi) According to Coniffe and Stone (1973) the ill conditioned XX ′ actually 

indicates the inadequacy of data or the misspecification of the model as remedial 



measures. But the questions arise that in many areas of applied research collection of 

further data may be impracticable and, secondly, it is not clear how one would decide 

whether the inadequacies rest with model or with the data. He further pointed out that 

MSE is not only the criterion for determining a particular estimator but the estimator 

would also have a tractable distribution for hypothesis testing and the construction of 

confidence intervals.  

 (vii) The MSE of RE should not only be compared to that of OLS estimator, but 

should be compared to those of other biased estimation procedures (McDonald and 

Galarneau, 1975).   

 (viii) According to Schmidt (1976) RR could not be useful to econometricians due 

to an undeveloped theory of hypothesis testing with RR. Many econometricians such as 

Goldberger, Houthakker and Taylor, and others are interested in numerical values of 

regression coefficients.  

 (ix) McDonald and Schwing (1973) used the ridge regression procedure for 

analyzing mortality rates by various socio-economic (weather and pollution) variables. 

Vinod (1974) modified the canonical correlation analysis in the light of RR and used for 

estimating a joint production function.  

 (x) When the value of k is not given a priori and has to be determined from sample 

observations, the resulting ORR estimators are no longer linear and can compete with OLS 

on equal terms of the same prior information (Lin and Kmenta, 1982).   

1. 8  Concluding Remarks   

 Multicollinearity is frequent for both a theoretical problem and problem with a 

particular sample of data. In case of its presence in the data the design matrix becomes 

close to singular and hence X as well as XX ′ is not of full rank. OLS estimate cannot be 

obtained in this case. Dropping some of the highly correlated variables is one simple 



solution to this problem and this strategy usually works well. However, there are situations 

when the variables are too important to be excluded from the analysis. Dropping one or 

more variables from the model to alleviate the problem of multicollinearity may lead to 

the specification bias and hence the solution may be worse than the disease in certain 

situations. To collect more data is another solution but this may often be expensive or not 

practicable in numerous situations. One may be interested to squeeze out maximum 

information from whatever data one has at one’s disposal.   

  At first detection of multicollinearity is required in the data. RR is an alternative 

estimation method when there is an extremely high degree of multicollinearity present in 

the data set (Darlington in 1978). RR is more advanced solution of multicollinearity but 

generally greatly reduces the MSE giving more reliable estimates of β.  

 The ridge estimator (RE) is a small positive increment made to the diagonal 

element of the design matrix before inverting it. However, RE is biased, it has smaller 

mean square error than OLSE and it is compared with other biased estimators.   

  Ridge regression was originally developed to prevail over the singularity. Anders 

(2001) suggests that RR is an application of Tikhonov regularization (TR), a method that 

has been explored in the approximation theory literature for about as long as RR has been 

used in Statistics. A large number of choices for k ∈ (0, 1) are possible. Each choice gives 

a new ridge estimator and this is the reason to denote it with subscript k.   

 In applied research RR technique must be used with caution. Though various 

methods for choosing k have been suggested but no firm recommendation for optimal k 

seems to emerge. Obtaining the value of k for a specific problem remains something an 

art. Further, underdeveloped theory of hypothesis testing with RR also limits its utility 

(Schmidt, 1976), though Vinod (1977) suggested development of non-spherical 



confidence intervals centred at RE using Stein’s (1974) unbiased estimator of MSE of 

biased estimators. But these still remain problems of further research.  
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