na a operação não-rentável: uma verdadeira sinuca. As indústrias que querem substituir a energia elétrica da rede pela co-geração, duas vezes mais barata, não terão liberdade de escolha, porque deverão continuar a pagar de acordo com a demanda histórica (baseada sobre os últimos 12 meses), ou seja, com uma redução mensal tolerada de até 10% mesmo sem consumo. Em período de risco de racionalmento, parece que se quer apagar o fogo com gasolina!

Isto posto, a única solução no caso de um novo empreendimento, é instalar uma central de co-geração sem nenhuma ligação com a rede elétrica, ou seja, mudar de mesa para não se confrontar com uma sinuca. Isso é lamentável porque o interesse real das duas partes seria otimizar as disponibilidades de cada um, aproveitando a defasagem dos picos ou das demandas regionais.

*Engenheiro, consultor e diretor da Sinde Ltda.
1 Se não usa os variadores de frequência.
2 Para um uso definido.
3 Case da corrente alternativa.
4 Utilização dos materiais composites e cerâmicas, pila a combustível, atuação ionica da combustão.
5 As tarifas integram dois termos: consumo, que se refere a energia efetivamente consumida, e demanda, relacionada à capacidade, a potência que o cliente acha que irá precisar (energy charge e capacity charge).

Especial

A energia e o futuro do álcool

Luiz Carlos Correa Carvalho*

"ESTÃO PRIVATIZANDO O PASSADO E NÃO O FUTURO."

Guilherme Camargo (Nuclebrás)

Praticamente superada, a inflação ainda faz sofrer todos aqueles que querem um desenvolvimento mais rápido e harmonioso em nosso país. Há que se investir muito em produção de energia, a essência do desenvolvimento e do bem-estar social. E como fazer isso sem investimentos macios, sabendo-se de antemão que o Estado não tem condições de suportar os recursos necessários?

Por um lado, parte da resposta é a privatização das hidrelétricas (38% da demanda de energia) e, como forma de obter isso, proporcionar um mercado desregulamentado. Outra parte da resposta é a quebra do monopólio do petróleo e a criação de mecanismos tributários inteligentes que permitam o investimento privado no petróleo e nas fontes energéticas renováveis.

Caberia, pois, ao Estado, a coordenação efetiva de políticas que tornem possível o desenvolvimento sustentado que se pretende para o Brasil.

Pontos-chave

De 1979 a 1995, muito evoluiu a matriz energética brasileira. A oferta de energia não-renovável caiu, percentualmente, de 46% para 39,8%, significando que na prática o país caminhou no sentido de maior consumo da energia renovável (60,2% em 1995). Quando se analisa o quadro dessa evolução, percebem-se pontos extremamente interessantes:

A oferta relativa de energia elétrica cresceu exatamente à medida da queda proporcional da lenha. Assim, o resultado final (54% para 60,2%) foi função do crescimento relativo da cana-de-açúcar (5,9% para 10,4%), o que proporcionou o crescimento da energia renovável, com impacto ambiental positivo.

No campo do não-renovável, apesar do crescimento relativo do gás natural (0,7% para 2,4%) e do carvão (3,9% para 5,4%), a queda do petróleo e seus derivados foi substancial (equivalente a queda no uso da...
lenha), o que também realça outro efeito ambiental positivo.

Esse padrão de matriz energética faz do Brasil um exemplo positivo para os países desenvolvidos, para cuja media de consumo de energia não se vê sequer participar do renovável.

Ao se analisar a primeira tabela, verifica-se, no entanto, uma dúvida sobre o porque de 1995 ter leve queda na participação do renovável em relação a 1988. O que seria responsável por isso e como se poderia imaginar o futuro?

Alguns especialistas citam como responsável a política de controle da inflação, com sua política monetária restritiva (juros escorchantes), constantes crises na balança comercial com uso das estaias para captar recursos no exterior, além das consequências ainda dos dois principais choques do petróleo (1973 e 1981). Essa política levou a tarifas de energia contínuas, que favoreceram sobremaneira uma positiva velocidade no processo de industrialização e urbanização, e portanto uma demanda para a qual não houve a devida atenção do lado da oferta.

Em 1996/97 o Brasil está rezando pelas chuvas, para que não haja racionamento de energia elétrica. De fato, foi mais fácil importar petróleo barato até 1995. De repente, seus preços internacionais voltam a subir de forma consistente, mesmo após o retorno do óleo iraquiano ao mercado internacional.

Outros especialistas agregam à discussão a questão do “custo-Brasil”, e definem sobre a necessidade de elevar a tarifa ao consumidor e privatizar. Afinal, não se pode imaginar tarifas que viabilizem investimentos com base em hidrelétricas antigas já pagas e depreciadas...

Tab. 1 – Oferta interna de energia

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Renovável</td>
<td>54,0</td>
<td>61,7</td>
<td>62,3</td>
<td>60,2</td>
</tr>
<tr>
<td>Elétricidade</td>
<td>25,1</td>
<td>10,4</td>
<td>33,8</td>
<td>37,9</td>
</tr>
<tr>
<td>Lenha/Derivado</td>
<td>22,3</td>
<td>20,7</td>
<td>17,3</td>
<td>10,5</td>
</tr>
<tr>
<td>Cana-de-açúcar</td>
<td>5,9</td>
<td>9,8</td>
<td>10,2</td>
<td>10,4</td>
</tr>
<tr>
<td>Outros</td>
<td>0,6</td>
<td>0,8</td>
<td>1,1</td>
<td>1,4</td>
</tr>
<tr>
<td>Óleo/Derivados</td>
<td>41,3</td>
<td>12,4</td>
<td>29,7</td>
<td>31,7</td>
</tr>
<tr>
<td>Gás natural</td>
<td>0,7</td>
<td>1,3</td>
<td>2,1</td>
<td>2,4</td>
</tr>
<tr>
<td>Carvão/Derivados</td>
<td>3,9</td>
<td>4,7</td>
<td>5,7</td>
<td>5,3</td>
</tr>
<tr>
<td>Nuclear</td>
<td>0,0</td>
<td>0,0</td>
<td>0,1</td>
<td>0,4</td>
</tr>
<tr>
<td>Total</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Fonte: IBN, Ministério das Minas e Energia.

Fig 1: Perfil atual da matriz energética

De qualquer forma, há que se vender estatais vislumbrando um futuro onde haja equilíbrio no desenvolvimento do país, cuja posição atual em termos de qualidade de sua matriz energética é ponto altamente relevante.

A relevância, no caso, está no desenho internacional da adoção pelos países de uma taxa de CO₂ para

Tab. 2 – Qualidade de CO₂

<table>
<thead>
<tr>
<th>Fatores determinantes da emissão energética per capita na emissão do CO₂ (1989)</th>
<th>Brasil</th>
<th>Alemanha</th>
<th>França</th>
<th>Itália</th>
<th>Inglaterra</th>
<th>Japão</th>
<th>EUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissão per capita (t. de CO₂/mil hab.) de CO₂</td>
<td>530,00</td>
<td>3,288,00</td>
<td>2,043,00</td>
<td>2,056,00</td>
<td>2,584,00</td>
<td>2,400,00</td>
<td>6,369,00</td>
</tr>
<tr>
<td>Emissão de CO₂ per energia consumida (t. de CO₂ mil tep*)</td>
<td>399,35</td>
<td>746,18</td>
<td>523,36</td>
<td>773,66</td>
<td>808,08</td>
<td>730,50</td>
<td>818,98</td>
</tr>
<tr>
<td>Intensidade da energia (tep/mil $)</td>
<td>0,64</td>
<td>0,20</td>
<td>0,21</td>
<td>0,16</td>
<td>0,26</td>
<td>0,15</td>
<td>0,37</td>
</tr>
<tr>
<td>Renda per capita (mil $/mil hab.)</td>
<td>2,07</td>
<td>21,00</td>
<td>18,78</td>
<td>16,26</td>
<td>14,21</td>
<td>22,15</td>
<td>20,80</td>
</tr>
</tbody>
</table>

*Fonte: Workshop: "Seminário branco-americano sobre emissão de gases de efeito de estufa do setor de energia e seus impactos", realizado de 5 a 7/07/95 (RJ).
*Mostra a qualidade ambiental da matriz energética.
*tep – tonelada equivalente a petróleo.
Tab. 3 - Consumo e oferta interna de petróleo no Brasil

<table>
<thead>
<tr>
<th>Ano</th>
<th>Produção</th>
<th>Consumo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984</td>
<td>683</td>
<td>1350</td>
</tr>
<tr>
<td>1995</td>
<td>715</td>
<td>1450</td>
</tr>
<tr>
<td>1996</td>
<td>833</td>
<td>1520</td>
</tr>
<tr>
<td>2000</td>
<td>1590</td>
<td>2000</td>
</tr>
</tbody>
</table>

Fonte: Petróleo
*Previsão.

Fig. 2: Previsão de crescimento mundial no consumo de petróleo

Demanda mundial por petróleo

Fig. 3: Previsão de crescimento da frota de veículos no mundo

Fonte: IEA, extraído pela Fortune.

Fig. 4: Contribuição da energia de biomassa

Produção total anual de biomassa - 126.000 MTEP (1987)

aplicação em locais onde o padrão de emissões é mais baixo, como é o caso do Brasil.

Alguns passos importantes recentes foram dados pelo país, como a definição de “produtor independente” e de “autoprodução”. Neste segundo caso estão, por exemplo, as indústrias sucroalcooleiras, com excelentes perspectivas na co-geração de energia elétrica. O gás natural externo também ajudará, mas o potencial da biomassa energética é, realmente, excepcional.

O mundo desenvolvido investe pesado em pesquisa, objetivando a viabilização da energia de biomassa, de olho não apenas na questão ambiental mas, também, no potencial de geração de empregos no meio rural e na realidade dura das análises, que mostram a produção mundial do petróleo bem abaixo do seu consumo e a projeção uranômica de vida do petróleo entre 30 a 50 anos, antes as reservas existentes e o crescimento acelerado do consumo mundial.

A visão oficial do país, aos olhos da Petrobras, está tanto (ano 2000). Deve-se lembrar que esse ano está logo ali, na esquina.

Os gráficos procuram mostrar a pressão do consumo de combustível líquido e, ao mesmo tempo, o terrível impacto disso na poluição atmosférica e na constante re-alimentação da demanda, com a vida do petróleo já definitivamente.

Esses breves comentários levam à questão inicial do futuro. Não há como não incentivar a fonte renovável; por outro lado, o Estado tem que se conscientizar e ajudar a fazer a cabeça da sociedade brasileira: o caminho do investimento no renovável é absolutamente necessário, com tarifas e políticas que viabilizem a convivência do fósil com o renovável, en-
quanto os custos dos primeiros sobem e os dos segundos caem. É esse o raciocínio dos países da União Europeia, quando caracterizam o seu objetivo para o consumo de energia.

As crises do setor de energia, no Brasil e no mundo, não foram, até então, limitações físicas. Foram decorrências das distorções resultantes de estratégias erradas ou, internamente, de regulamentação equivocada. Para a próxima década, no entanto, viver-se-á, perigosamente, a limitação física de novas hidrelétricas ou a saudade das descobertas de largos campos de petróleo, como também, certamente, limitações impostas pela busca do equilíbrio ambiental.

A questão tecnológica, no campo energético, será a divisora das águas. O que o Brasil fez em tecnologia com as políticas energéticas empregadas ou não implantadas? Ganhou prêmio internacional o Brasil implantou um programa renovável em grande escala.

Desde a viabilidade da vida, é a fotossíntese o fenômeno único da preservação das espécies, com o verde captando a energia e capturando parte dela na matéria-prima para a qual os cientistas dos países desen-

Tab. 4 – Evolução do consumo total de fontes primárias – São Paulo

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energia não-renovável</td>
<td>67,0</td>
<td>60,5</td>
<td>58,1</td>
<td>60,6</td>
</tr>
<tr>
<td>Petróleo</td>
<td>63,7</td>
<td>56,8</td>
<td>54,0</td>
<td>56,2</td>
</tr>
<tr>
<td>Gás natural</td>
<td>0,0</td>
<td>0,0</td>
<td>0,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Energia renovável</td>
<td>33,0</td>
<td>39,5</td>
<td>41,9</td>
<td>39,4</td>
</tr>
<tr>
<td>Hidrelétrica</td>
<td>11,5</td>
<td>10,9</td>
<td>11,4</td>
<td>9,9</td>
</tr>
<tr>
<td>Cana-de-açúcar</td>
<td>17,5</td>
<td>22,7</td>
<td>26,6</td>
<td>26,2</td>
</tr>
</tbody>
</table>

(Petrobras) de obtenção do petróleo em águas profundas e pelo motor a álcool (veículos leves). Países desenvolvidos estão a investir pesadamente no futuro, em produção e uso de fontes alternativas ao petróleo, seja com tecnologias químicas ou com a biotecnologia, sempre através da biomassa. A diferença é que volvidos estudam a melhor forma de sua transformação em energia, seja como combustível líquido, aditivo ao combustível fóssil ou energia elétrica.

Voltando à matriz energética brasileira, algumas medidas essenciais precisam ser tomadas para não permitir a volta ao passado.

Como exemplo efetivo da questão, vale comentar no campo da energia renovável a definição do papel dos derivados da cana-de-açúcar.

Pragmaticamente, ao saborear das análises imediatistas (grande defeito de vários setores privados e governamentais do país), o álcool

Tab. 5 – Demanda de álcool em diferentes cenários

<table>
<thead>
<tr>
<th>Ano</th>
<th>Cenário I</th>
<th>Cenário II</th>
<th>Cenário III</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>13,7</td>
<td>14,5</td>
<td>+2,7</td>
</tr>
<tr>
<td>2005</td>
<td>14,6</td>
<td>17,1</td>
<td>+3,5</td>
</tr>
</tbody>
</table>

I – 22% e 5% vendas de camis à álcool.
II – 22% e 15% vendas de camis à álcool.
III – Cenário I ou II com 9% de álcool no diesel (soma-se à demanda do Cenário I ou II).
anidro adicionado à gasolina deve crescer rapidamen-
te, na medida em que se venderão mais carros a gaso-
linha. No entanto, o desenvolvimento de tecnologia pode
deve questionar isso, além do fato de que sendo esse
combustível fósil o menos importante dos derivados
do petróleo, com a curta vida do óleo negro, essa li-
nhula de raciocínio pode ficar prejudicada; o álcool
hidratado, hoje tão contestado, teria um futuro fantásti-
como o que tem espaço em ônibus e caminhões
que rodam no ciclo diesel (vide exemplo sueco), além
ele bom desempenho nos carros a álcool ou em mistu-
ra com outros combustíveis.

No mundo tropical, o potencial de descoberta
DE PETRÓLEO É PEQUENO, MAS O DE PRODUIR
BIOMASSA EM LARGA ESCALA É FANTÁSTICO

Imaginar, no entanto, que essas conjecturas têm sen-
tido sem o empenho de uma política de governo é
insano.
O futuro do consumo de combustíveis está, pois,
esperando as ações de governo, tanto no nível federal
como estadual e mesmo municipal. O estado de São
Paulo inicia trabalhos nesse campo, o que alimenta es-
peranças. No caso da cana, esse estado responde por
60% da produção nacional e tem 40% do emprego ru-
ral dependente da agroindústria canavieira. Sua ma-
tografia energética é também interessante. É surpreende-
te, para muitos, o uso da biomassa nos diversos setores
do estado de São Paulo.

Comentários finais
O petróleo, na virada do século, inicia nova e defini-
va fase, quando sua extração corresponderá a 1/3 do
consumo mundial, segundo várias fontes internacio-
nais. Como decorrência desse fato pouco comentado
no Brasil, haverá corrida tecnológica por outras fontes
onde provavelmente a biomassa terá papel relevante.

No mundo tropical, o potencial de descoberta de
petróleo é pequeno, mas o de produzir biomassa em
larga escala é fantástico, há vista al álcool no Brasil
com todas as dificuldades conhecidas.

Haverá, seguramente, necessidade de política
ergética. Se isso é consenso, questiona-se a habilida-
de de, na estrutura atual que apresenta dificuldade
até a definição de uma política agrícola, ser facilível um
grupo de Estado lidar com a questão da biomassa com
a mesma presteza que cuida da questão do petróleo
ou das hidrelétricas; sem dúvida alguma, a política
tributária deve ser utilizada para o encorajamento que
se desejasse no consumo dos diferentes combustíveis. O
álcool terá importante espaço na substituição, além da
gasolina em carros, nos transportes coletivos no lugar
do diesel, em associação com o gás natural.

O álcool, o bagaço e restos da cultura da cana-de-
azarúcar, assim como outras culturas agrícolas, terão um
papel extremamente relevante na matriz energética
brasileira. O volume de produção e o seu uso depen-
derão de política. Haverá espaço para produtos vári-
os, ressaltando-se que o país possui, no mundo, o do-
mínio do sistema de uso de infra-estrutura para com-
bustíveis líquidos, gasas ao trabalho da Petrobras.

Dependendo da política adotada, serão possíveis
vários caminhos para o consumo de álcool.

É importante ressaltar que é a continuidade do ál-
cool que levará ao crescimento do bagaço e da co-go-
neração de energia elétrica, com tecnologia e maior
competitividade.

*Diretor da Canplan & Consultor da AIAA.

Bibliografia consultada
1 AIAA. Documentos internos.
2 Balanço Energético do Estado de São Paulo, Secretaria de
 Energia, 1993
4 CEE. Biomass for Energy and Environment, Agriculture and
 Industry in Europe, Brussels, 1992, p. 3
 Sept. 1996
6 Fonseca, M. ABDE, Rumin do Desenvolvimento, dez. 1996.
7 IEA, Fortune, 1996.