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Abstract Accurately modeling the implied volatility surface is of great importance to
option pricing, trading and hedging. In this paper, we investigate the use of a Bayesian
nonparametric approach to fit and forecast the implied volatility surface with observed
market data. More specifically, we explore Gaussian Processes with different kernel
functions characterizing general covariance functions. We also obtain posterior distri-
butions of the implied volatility and build confidence intervals for the predictions to
assess potential model uncertainty. We apply our approach to market data on the S&P
500 index option market in 2018, analyzing 322,983 options. Our results suggest that
the Bayesian approach is a powerful alternative to existing parametric pricing models.
Keywords: Machine Learning, Gaussian processes, Bayesian nonparametrics, Options,
Kernels.
JEL Code: C13, C11.

1. Introduction

Implied volatility is a measure of the future expected risk of the underly-
ing price. Accurately modeling and forecasting implied volatility is of great
importance in both finance theory and practical decision making. In this
project, we propose a method to approach the option pricing problem in a
Bayesian framework.

Implied volatility tends to increase for in-the-money (ITM) and out-of-
the-money (OTM) options. This pattern is usually described as the “volatility
smile” as the implied volatility plotted against strike or moneyness looks like
the shape of a smile. Dupire (1994) extends the Black-Scholes model by
allowing the volatility to be a deterministic function of the spot price and
time. Heston (1993) develops a mean-reverting stochastic volatility model,
with closed-form solution for the implied volatility surface up to solving an
inverse Fourier transform. Other stochastic volatility models include Hull-
White (Hull and White; 1987), SABR (Hagan et al.; 2003), etc. Despite their
popularity in the industry, these models are very complicated and sometimes
without closed-form solution. Among others, Dumas et al. (1998) show that
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most local volatility models are not stable over time and that the model over-
fits the current data. In addition, the one-week-ahead pricing error is usually
very large.

With recent developments in machine learning, data-driven methods of
fitting the implied volatility surface have become a heated area of research,
with promising results. Most machine learning attempts involve the use of
deep learning in option pricing. For example, Buehler et al. (2019) use
neural networks and reinforcement learning to hedge options with a model-
independent algorithm. Fan and Mancini (2009) use a model-guided nonpara-
metric method to learn and correct systematic bias of pricing errors. Although
these models are able to incorporate multiple sources of information available
in the market and achieve good accuracy, they are usually very computation-
ally intensive. Also, since most work is done with synthetic data, sometimes
the advantage of adopting such methods in real markets is unclear.

In addition to getting the point estimates as accurate as possible, some in-
formation on the variance and distribution of the predicted price would also be
useful. Model-implied prices always differ from the true price, so it matters
to investors to have accurate price confidence intervals. Usually, incorporat-
ing model uncertainty significantly increases hedging performance (Branger
and Schlag; 2004; Gupta and Reisinger; 2011). That said, it is important
to emphasize that Bayesian models are well-equipped for this task. In fact,
Bayesian probabilistic modeling allows us to obtain posterior distributions
and confidence intervals for the predicted implied volatility, and consequently
for the predicted prices as well.

In this paper, building on the idea of integrating machine learning and
finance theory, we propose a Bayesian nonparametric approach to model im-
plied volatility surfaces with the goal of pricing options. We aim at improving
accuracy and stability of pricing with less demand for data. To that end, we
adopt Gaussian Processes (GP) to model the implied volatility as a function
of moneyness and time to maturity.

GP models assume a flexible infinite-dimensional Gaussian distribution
over the functional space determined by the features selected to compose the
model. GP models are general, yet simple to understand, since they are com-
pletely characterized by a mean function and a covariance kernel function. By
varying the kernel function, one can obtain a rich class of stochastic processes
that can fit the dynamics of financial variables well.

Based on a fixed subset of options, we estimate the mean and covariance
kernel functions of different GP models to test their ability to price out-of-
sample options. Using market data on S&P 500 index options, we compare
the performance of four GP models with different kernel functions to the suc-
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cessful parametric model proposed by Dumas et al. (1998) that provides very
stable implied volatility surfaces over time. We show that the GP models not
only outperform the parametric model in terms of out-of-sample pricing er-
rors, but they also provide posterior distributions for option prices that, when
translated into confidence intervals, are informative about the accuracy of the
estimated prices.

Our method may be seen as a good alternative to traditional parametric
option pricing models, offering a novel probabilistic and data-driven approach
when the underlying price dynamics are unknown but can be approximated
by a GP model. Moreover, the available inference results, which appear as a
byproduct of our method, can help decision-making in realistic tasks such as
portfolio hedging and risk management, since they allow us to evaluate the
uncertainty embedded in all option price predictions.

The paper is organized as follows. In Section 2 we review the most rel-
evant background and references on option pricing and Bayesian modeling
literature. Section 3 discusses the formulation of our model. Section 4 re-
ports the result from the empirical analysis we conduct with the S&P 500
index option prices. Finally, we discuss our results and conclusions, as well
as potential ideas for further development in Section 5.

2. Background and literature review

Options are contracts between the buyer and seller that give the purchaser
the right to buy (call options) or sell (put options) an underlying asset at a
predetermined time and price. Option contracts are important financial instru-
ments for risk hedging and are actively traded in the market. In this section,
we review widely used models and some previous work on option pricing
with machine learning methods.

2.1 Black-Scholes model and implied volatility

The Black-Scholes (BS) model (Black and Scholes; 1973) is the funda-
mental framework in option pricing. The BS model assumes the underlying
stock price S follows a geometric Brownian motion. Formally,

dSt = µStdt +σStdBt ,

where Bt is a standard Brownian motion. The payoff of a European call op-
tion is (ST −K)+, whereas the payoff of a put option is (K− ST )

+, with ST
denoting the underlying price at maturity T and K the strike price. Solving the
corresponding partial differential equation with appropriate boundary condi-
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tions, we can obtain a closed-form solution of the price of a non-dividend-
paying European call option under the Black-Scholes model:

C(S0,K,r,σ ,T ) = N(d1)S0−N(d2)Ke−rT

d1 =
1

σ
√

T

[
ln
(

S
K

)
+T

(
r+

σ2

2

)]
d2 = d1−σ

√
T ,

where
N(x) =

1√
2π

∫ x

−∞

e−
1
2 z2

dz

is the cumulative distribution of the standard normal distribution, and r is the
interest rate in the market. A similar closed-form formula is available for put
options.

In this case, the parametric assumption on the dynamic of the underly-
ing asset price is such that there is a closed-form solution. The parameters
S0,K,r, and T are either available in the market or specified in the option
contract, with the exception of the volatility σ . The option price C is a mono-
tonically increasing function in σ . Given the market value of the option, we
can invert the function to get the corresponding volatility, which we refer to
as “implied volatility.” Although the Black-Scholes model assumes constant
volatility, the implied volatility is not constant with respect to strike price and
maturity in the market. Most studies either interpolate or forecast the implied
volatility as a function of strike price, maturity, or other available information
in the market.

2.2 Local volatility and stochastic volatility models

There have been substantial improvements to the Black-Scholes model
since their original work, for example local volatility and stochastic volatility
models.

Dupire (1994) proposed the local volatility models, where σ is assumed
to be a deterministic function of the underlying price. Specifically,

dSt = µ(t)Stdt +σ(t,St)dt.

Although simple closed-form solutions are not always available, it is pos-
sible to calibrate the model with binomial-tree-based approaches or through
Monte Carlo simulations. Dumas et al. (1998) assume a polynomial function
σ(t,St) on St as a way to avoid the potential overfitting. In Dumas’ work, the
authors identify an important phenomenon: that the local volatility models
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are not always better than the original Black-Scholes in terms of hedging and
predictive performance.

Heston (1993) introduces a diffusion process for the volatility itself:

dSt = µStdt +σtStdB1
t

dσt = a(b−σt)dt +ξ
√

σtdB2
t ,

where B1
t and B2

t are independent Brownian motions and a, b and ξ are param-
eters to be estimated. Numerical integration methods and complex-number
computation must be employed to get the solution. For some other stochastic
volatility models such as the SABR model (Hagan et al.; 2003), we can only
approximate the solution.

The local and stochastic volatility models are the most widely used in the
industry because of their good performance. However, they are sometimes
unstable and rely on complicated calibration methods.

2.3 Machine Learning and data-driven methods

In addition to the parametric models based on solving SDEs, there are a
number of data-driven machine learning studies on option pricing.

Hutchinson et al. (1994) propose learning-network-based pricing and hedg-
ing methods. They compare the pricing performance of radial-basis-function
networks, multilayer perceptron networks, and projection pursuit,1 with ordi-
nary least squares as a baseline comparison. They find that the learning net-
works could produce less hedging error compared to the Black-Scholes model
when applied to S&P 500 data. Buehler et al. (2019) present a reinforcement
learning approach to price and hedge a portfolio of derivatives under market
frictions such as trading costs and liquidity. They train Feedforward Neural
Network (FFN) and Long Short-Term Memory (LSTM)2 models to find the
optimal hedge ratio in simulated market data.

There are also previous attempts to approach the option pricing problem
in a Bayesian framework. Tegnér and Roberts (2019) use a Gaussian Process
prior with a squared exponential kernel on the implied volatility and then a
Markov Chain Monte Carlo algorithm to fit market prices. The prediction of
the VIX index is also studied employing the same set-up.

1A multilayer perceptron network is one of the most popular and simplest types of neural net-
works, composed of multiple layers of perceptrons. It has activation functions in each neuron
mapping weighted inputs to outputs. Radial basis function networks are neural networks with
radial basis functions as activation functions. The projection pursuit is used to reveal structure in
the original multi-dimensional data by offering orthogonal projections in lower dimension.

2FFN is the type of artificial neural network where the connections between the nodes do not
form a cycle, whereas LSTM is a recurrent neural network with feedback connections which can
process an entire sequence of data.
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Deep learning methods only give point price estimates and are very data
intensive. We hope to build on the previous Bayesian approach to option pric-
ing and explore different model and kernel specifications to better exploit the
underlying structure of the implied volatility functions. We hope to add to the
rich literature on option pricing by proposing a relatively simple and intuitive
method to nonparametrically calibrate the implied volatility function, while
also accounting for model uncertainty.

3. A Bayesian nonparametric approach

3.1 Model

We use a Gaussian Process (GP) model, assuming an infinite-dimensional
Gaussian distribution over the function space. The process we would like to
model can be viewed as a collection of random variables, and any finite num-
ber of elements have a joint Gaussian distribution (Rasmussen and Williams;
2006). Denote the process by f (x), the GP prior is fully characterized by the
mean function m(x) and covariance (kernel) function k(x,x′):

m(x) = E( f (x))
k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))].

And then we can write the Gaussian Process as

f (x)∼ G P(m(x),k(x,x′)).

In our specific task of modeling the implied volatility function, the input
is defined as xi := [Mi Ti]∈X , i= 1 . . .n. Ti is the time to maturity (in days)
for option i in the dataset. Mi is the forward moneyness Fi/Ki, where Fi is the
forward price of the underlying at maturity, and Ki is the strike price specified
in the option contract. The volatility is a degree of variation and should be a
positive function. Therefore, we model the logarithm of the implied volatility,
instead of the implied volatility itself. Under the assumption that σ(x) : X →
R is a continuous positive function, we model the log transform of implied
volatility, lnσ with a Gaussian process:

lnσ(x) = f (x) f (x)∼ G P(0,k(x,x′)).

The mean function is assumed to be zero for simplicity, since we standardize
the data.

We further assume that market prices for the ith option yi are noisy obser-
vations of the true underlying value:

yi = f (xi)+ εi εi ∼N (0,σ2
ε ),
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where ε is assumed to be independent of f (x) and each εi is independent and
identically distributed.

3.2 Kernel functions

In GP models, the covariance is characterized by a kernel function k(x,x′).
The kernel function is a way to evaluate the similarity across data points and
is usually a symmetric function based on a distance metric. We compare the
performance of four formulations of the kernel functions in order to explore
which best capture the structure in implied volatility functions. The kernel
functions are: Squared Exponential (SE), Rational Quadratic (RQ), Matérn
3/2, and Matérn 5/2 (Rasmussen and Williams; 2006). Let

r =

√
(M−M′)2

2l2
M

+
(T −T ′)2

2l2
T

.

The formulations of the kernels are

Squared Exponential Kernel:

kSE(x,x′) = exp
(
− r2

2

)
Rational Quadratic Kernel:

kRQ(x,x′) =
(

1+
r2

2α

)−α

Matérn 3/2 Kernel:

kMatern32(x,x′) =
(

1+
√

3r
)

exp
(
−
√

3r
)

Matérn 5/2 Kernel:

kMatern52(x,x′) =
(

1+
√

5r+
5
3

r2
)

exp
(
−
√

5r
)

Here we use the automatic relevance determination (ARD) version of all
the kernels. The ARD version allows different length-scale l’s for the two
dimensions. ARD kernels adjust the magnitude of lT and lM to automatically
determine the relative importance of the two features. If a feature is less
important, its length-scale will be adjusted to be larger to make the data points
seems “farther” in the dimension and contribute less to the posterior.
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3.2.1 Properties of the kernel functions

The SE kernel is one of the most widely used kernels, which is continuous
and infinitely differentiable. The GP function process f (x) with this kernel
has mean square derivatives of all orders and is very smooth. The RQ kernel
can be seen as an infinite sum of the squared exponential kernels with differ-
ent length-scales. The parameter α is assumed to be greater than 0. The RQ
kernel with parameters α and l converges to an SE kernel with length-scale l
when α → ∞. The process characterized by the rational quadratic kernels is
also infinitely mean square differentiable and very smooth, but it offers more
flexibility than the SE kernel.

However, the strong smoothness assumption is sometimes unrealistic in
the applications. Therefore, we also consider the Matérn kernels. The Matérn
family of kernels is also widely used to model less smooth functions, with ν

generally equal to 3/2 or 5/2. The process will be k times differentiable if
and only if ν > k. When ν → ∞, the kernel again converges to the squared
exponential kernel.

With the comparison among different kernel functions, we hope to exploit
the structure in the implied volatility functions and gain accuracy.

3.2.2 Hyperparameters

Each kernel function above is parametrized by a few hyperparameter θs.
For example, in the RQ kernel, θ = [α lM lT ]. These hyperparameters are
chosen by maximizing the marginal likelihood function:

θ
∗ = argmaxθ log p(y|X,θ)

=−1
2

y>(KXX(θ)+σ
2
ε In)

−1y− 1
2

log
∣∣KXX(θ)+σ

2
ε In
∣∣− n

2
log2π,

where y is the vector of training output, with the ith element being yi, the
training output for the ith option in the training set; KXX is the covariance
matrix with (KXX)i j = k(xi,x j), and n is the number of training data. Due
to the matrix inversion operation, the training process is of O(n3). This cost
dominates the difference caused by the number of hyperparameters for dif-
ferent kernel specifications, so the four kernels have similar efficiency in the
estimation. If n is large, the model can take some time to run. Therefore, the
GP models might not be suitable candidates in high-frequency settings.

3.3 Posterior distribution and inference

Given the GP prior, we can use the Bayes rule to get the posterior distri-
bution.
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Let X,y be the input and output in the training set. The ith row of X is
xi = [Mi Ti], the input for the ith option. X̃ is the matrix of testing input,
with the ith row of X̃ equal to x̃i. f̃ represents the function values at the
testing location. In order to make predictions at the testing locations, we are
concerned with the posterior distribution of the testing outputs given the data
and testing input, f̃|X̃,X,y. According to Bayes’ rule,

p(̃f|X̃,X,y) =
p(̃f,y|X̃,X)

p(y|X̃,X)
.

The marginal distribution y|X̃,X follows from the prior assumption. The
joint distribution of the training output values and the function values at the
test locations f̃,y under the prior is[

y
f̃

]
∼N

(
0,
[

KXX +σ2
ε I KXX̃

KX̃X KX̃X̃

])
.

Using conditional probability on multivariate Gaussian distributions, we
can arrive at the following posterior distribution (Rasmussen and Williams;
2006):

f̃|X̃,X,y∼N
(

ũ,cov(̃f)
)

ũ = KX̃X
(
KXX +σ

2
ε I
)−1 y

cov(̃f) = KX̃X̃−KX̃X
(
KXX +σ

2
ε IN
)−1 KXX̃.

We will use the ũi, the ith element in the vector ũ and the expected value
of the function value, as the prediction for the test input x̃i. Variance at the
testing locations is given by the ith diagonal element of cov(̃f), ṽ2

i .
Under the formulation that the log implied volatility follows a normal

distribution, the implied volatility σ̃ follows a lognormal distribution. We
then use the formula for the mean and variance of the lognormal distribution
to recover the model prediction for the implied volatility:

σ̃(x̃i) = exp
(

ũi +
ṽ2

i
2

)
Var(σ̃(x̃i)) = [exp(v2

i )−1]exp(2ũi + ṽ2
i ).

We can then give the prediction and a confidence region with the model.
Both ũ and cov(̃f) will change with kernel specifications, and we will com-
pare the performance in the following section.
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4. The implied volatility surface of the S&P 500 index options

4.1 Data

The S&P 500 index (SPX) option is one of the most liquid and most
studied option markets. We apply our Bayesian nonparametric models to
the S&P 500 index European options in 2018 to assess whether it produces
accurate results with real market data.

We obtain the data from the WRDS OptionMetrics database,3 which con-
tains the date of the contract, the strike price, maturity date, implied volatility,
best ask and best bid of each option, as well as the forward price of the SPX
index. We also retrieve the SPX spot prices and expected dividends. Ac-
cording to the OptionMetric reference manual, the forward price is calculated
based on last closing security price, plus interest, less projected dividends.

The bid price is the maximum price a buyer is willing to pay for the op-
tion, and the best bid is the highest among all the bids. Similarly, the ask is
the lowest the seller is willing to accept for the same option, and the best ask
is the lowest among all. The mid point between the best bid and best ask, or
the mid price, is a widely used reference price in the market. The option price
and the implied volatility calculations are both based on this mid price.

We select the options with trading volume greater than 0 to eliminate
options that were not actually traded. We also eliminate options with im-
plied volatility smaller than or equal to 0 or greater than 1, to avoid the
outliers distorting the results. For the purpose of this study, we define at-
the-money (ATM) options as those with moneyness between 0.95 and 1.05.
In-the-money (ITM) options have moneyness between 1.05 and 1.3 for call
options, and between 0.7 and 0.95 for put options. Conversely, out-of-the-
money (OTM) is defined as moneyness between 0.7 and 0.95 for calls, and
1.05 and 1.3 for puts. We limit our study to options with moneyness between
0.7 and 1.3. We do not concern ourselves with deep in-the-money or out-
of-the-money options, as they are relatively illiquid and do not contain much
information about the overall structure of the implied volatility function.

The study is mainly concerned with options between 20 and 365 days
to expiration, although short-term options with maturity of 1-20 days, and
longer-term options with maturity of 365-1095 days, were also included for
comparison. There are both A.M. settled and P.M. settled options in the
dataset. The difference is that the A.M. settled ones expire at the market open
of the expiring trading day, and P.M. settled ones at the market close. The
maturity is calculated as the number of days between the date of the contract

3https://wrds-www.wharton.upenn.edu/
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and the option maturity date for P.M. settled options. If the option is A.M.
settled, the maturity date is one less than the P.M. settled options.

Table 1 contains a summary of the data. The numbers are an aggregation
of the 251 recorded trading days in 2018. The volatility smile phenomenon
is apparent, as the implied volatility is higher for ITM and OTM options than
for ATM ones. OTM options are on average cheaper in dollar terms, while the
options with longer maturity are more expensive because of their time value.
There are more puts in the dataset than calls, which might also influence the
accuracy of the models.

Table 1
Data summary

total ATM ITM OTM

total 322983 223954 19355 79674
1-20 days 102761 79985 4090 18686

20-365 days 206457 137011 12895 56551count

365-1095 days 9204 3298 2223 3683

total 14.46% 13.32% 23.50% 15.46%
1-20 days 16.63% 14.47% 36.11% 21.58%

20-365 days 13.38% 12.62% 20.51% 13.59%mean implied volatility

365-1095 days 14.79% 15.19% 17.68% 12.69%

total 45.22 39.56 270.97 6.28
1-20 days 29.24 25.84 227.07 0.49

20-365 days 48.01 44.67 268.54 5.81

call

mean price

365-1095 days 169.13 173.42 370.26 43.89

total 501699 222914 12590 266195
1-20 days 170789 83490 3540 83759

20-365 days 322493 137036 8182 177275count

365-1095 days 8417 2388 868 5161

total 21.73% 15.37% 21.11% 27.08%
1-20 days 25.90% 16.66% 32.40% 34.83%

20-365 days 19.62% 14.58% 16.98% 23.64%mean implied volatility

365-1095 days 17.83% 15.94% 14.13% 19.32%

total 34.53 47.05 262.29 13.28
1-20 days 18.85 27.63 212.01 1.93

20-365 days 38.63 55.61 261.53 15.21

put

mean price

365-1095 days 195.94 234.35 474.44 131.34

4.2 Setup

For each trading day in 2018, we repeat the model estimation. The data
are split into a training set and testing sets for each trading day. The training
set is composed of the option with strike prices divisible by 10, and the rest
is reserved for testing. With this method, about 60% of all the options on a
particular day are used for training. This choice of training data made the
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training points more evenly spread out across the curve and made most pre-
dictions take the form of interpolation. We think that this setting resembles
the situation faced in applications where we always have the data for some
very liquid options spread across maturities and we want to use the informa-
tion to price the other options.

The performance is evaluated by three metrics: root mean squared er-
ror (RMSE), mean valuation error (VE) and mean outside error (MOE). The
RMSE is calculated by the square root of the squared distance between model-
predicted implied volatility σ̃ and the real implied volatility σ in the dataset
squared. The RMSE computes the error after the model fit is exponentiated
back to get the implied volatility. We then calculate the option price with the
predicted implied volatility using the Black-Scholes model and compute the
absolute value of the difference between this model-predicted price and the
mid-price given by the market data. To put the VE in relative terms, we also
calculate the error to price ratio VE/P = VE

Mid Price . The mean outside error is
the average valuation error outside the bid-ask spread. As defined by Dumas
et al. (1998), the MOE is the predicted price minus the ask price if the price
is above the ask price, and the predicted price minus the bid price if below. If
the theoretical value is between bid and ask prices, the value is set to 0. This
measure is used to detect if there is bias in the models in one direction.

4.3 Baseline

We also compare our Bayesian models with a relatively simple baseline,
the best performing “ad-hoc” (AH) model used in Dumas’ paper in 1998 (Du-
mas et al.; 1998). The model is a truncated quadratic function. The specific
formulation is

σ̃Baseline = max(0.01,min(a0 +a1M+a2T +a3M2 +a4T 2 +a5MT,0.5)).

Although simple, this model achieves quite accurate results. For each
trading day in the dataset, we fit this baseline model together with our Bayesian
models with the same training set and record the same metrics for the same
testing set.

4.4 Cross-sectional interpolation

As mentioned above, we fit the GP model with the four kernels for each
trading day in 2018, and compare the result together with the baseline model.
Call options and put options are fitted separately. Table 2 reports the average
of the performance metrics on the test set across the 251 days. The models are
fitted with all the options with moneyness between 0.7 and 1.3 and maturity
between 20-365 days.
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4.4.1 Performance comparison of different kernel functions

GP models outperform the baseline uniformly, across kernel choices and
performance metrics. The RMSE is at least 3 times smaller (SE kernel), and
the best performing Matérn 3/2 kernel is almost 10 times better than the base-
line. The valuation error is quite small for the GP models, with errors around
10 cents and about 1% of the option price. The models have better perfor-
mance for puts than calls, probably because the put options are more liquid
and there is more put data in the dataset. The best performing GP mod-
els have MOE around or less than 1 cent, which indicates that the models
produce fairly accurate results with very small deviation outside the bid-ask
spread. The GP models tend to undervalue calls and overvalue puts, while the
baseline overvalues both.

In Table 2, the smallest errors are marked with bold font. Among all the
GP models, the Matérn 3/2 kernel has the best performance. As described
in Section 3.2.1, the Matérn 3/2 kernel is the least-smooth kernel among all
the kernels tested. Although they generally look very smooth, there must
be some non-smooth regions in the volatility surface that prevents us from
getting the most accurate results with the SE kernel. The RQ kernel has a
better result than the SE kernel, and better than the Matérn 5/2 kernel as well
for calls. Although the RQ kernel is also very smooth, it has more flexibility
than the SE kernel. The failure of the smoothness assumption might also
be the reason why the baseline model performs worse than the GP models,
because the baseline is a very smooth quadratic function.

Therefore, the implied volatility functions may not be very smooth, and
we need to use less smooth kernels to try to model them.

Table 2
Performance comparison for different kernels

SE RQ Matérn32 Matérn52 Baseline

call

RMSE 0.0037 0.0016 0.0013 0.0021 0.0124
VE $ 0.27 $ 0.13 $ 0.08 $ 0.14 $ 2.61
VE/P 1.57% 1.04% 0.74% 0.99% 20.58%
MOE $(0.0746) $(0.0162) $(0.0120) $ (0.0283) $ 0.2692
SD 0.0014 0.0011 0.0007 0.0010 -

put

RMSE 0.0020 0.0012 0.0008 0.0011 0.0116
VE $ 0.20 $ 0.15 $ 0.06 $ 0.09 $ 2.09
VE/P 1.04% 0.92% 0.33% 0.55% 11.16%
MOE $(0.0055) $ 0.0013 $ 0.0026 $ 0.0018 $ 0.2781
SD 0.0018 0.0022 0.0009 0.0012 -

*Models fitted with options with moneyness 0.7-1.3 and maturity 20-365 days.
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4.4.2 Performance comparison across moneyness

To discover how the models perform for options with different money-
ness, we compute the same set of performance evaluation metrics for ATM,
ITM and OTM options separately. Again, we use options with maturities
from 20-365 days as examples. The results are presented in Table 3.

The estimation errors evaluated by the RMSE are lowest for ATM options
across kernel specifications and models. This might be a result of more data
points concentrated in the ATM region, as also demonstrated in Figure 1,
panels (a) (calls) and (b) (puts). The OTM and ITM regions both have more
spread-out training data.

Furthermore, we also need to take into account the fact that implied volatil-
ity is lowest for ATM options. ITM options have the highest RMSE and VE,
but the lowest VE/P ratio because the ITM options are inherently more ex-
pensive, due to their intrinsic value. Evaluated by the VE/P ratio, the OTM
options performed the worst for both calls and puts, and for both kernels. The
Matérn 3/2 kernel is still the best-performing kernel across moneyness.

In addition, the GP models with all the kernels tend to undervalue ATM
and ITM calls and overvalue OTM calls, with the reverse true for puts. This
phenomenon might be caused by the assumption that the mean function in
the GP prior is 0 for standardized data. In an implied volatility function, the
ends of the curve are usually higher than the mean implied volatility. The
prior has more weights on the prediction at the ends of the curve because less
information is available from the data. As demonstrated in the visualization
Figure 1, the ITM region is usually higher than the OTM region, but the model
prediction might be pulled towards the center by the prior mean function. This
suggests a potential improvement of the results by adjusting the prior mean
function that can be explored in future studies.

In general, the GP models have relatively accurate performances across
moneyness, with best performance in ATM and ITM options.

4.4.3 Results with shorter or longer maturities

Many studies find unstable behavior in their models when adjusting the
maturities of the options, especially on the short end (Tegnér and Roberts;
2019). From previous results in this paper, the GP processes with the Matérn
3/2 kernel have the best results. Therefore, we test whether our GP models
with this kernel are more stable for shorter (1-20 days) and longer (365-1095
days) maturity options. We also compare the results to the baseline model
using the same training and testing set. Tables 4 and 5 display the results for
short and long term options, respectively.

128 Brazilian Review of Finance (Online) 18(4), 2020

http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index


A Bayesian nonparametric approach to option pricing

Table 3
Performance comparison across moneyness

total ATM OTM ITM

SE

call

RMSE 0.0037 0.0011 0.0011 0.0161
VE $ 0.27 $ 0.22 $ 0.05 $ 2.45
VE/P 1.57% 1.14% 3.44% 0.81%
MOE $(0.0746) $(0.0065) $ 0.0018 $(1.7998)
SD 0.0014 0.0011 0.0011 0.0074

put

RMSE 0.0020 0.0014 0.0018 0.0061
VE $ 0.20 $ 0.27 $ 0.13 $ 1.09
VE/P 1.04% 0.76% 1.30% 0.44%
MOE $(0.0055) $ 0.0062 $(0.0194) $ 0.4626
SD 0.0018 0.0013 0.0023 0.0033

RQ

call

RMSE 0.0016 0.0007 0.0009 0.0058
VE $ 0.13 $ 0.12 $ 0.04 $ 0.79
VE/P 1.04% 0.68% 2.56% 0.26%
MOE $(0.0162) $(0.0035) $ 0.0058 $(0.4131)
SD 0.0011 0.0009 0.0009 0.0057

put

RMSE 0.0012 0.0011 0.0009 0.0042
VE $ 0.15 $ 0.22 $ 0.08 $ 0.53
VE/P 0.92% 0.75% 1.08% 0.23%
MOE $ 0.0013 $ 0.0045 $(0.0026) $ 0.0933
SD 0.0022 0.0015 0.0028 0.0025

Matérn32

call

RMSE 0.0013 0.0004 0.0009 0.0048
VE $ 0.08 $ 0.07 $ 0.03 $ 0.61
VE/P 0.74% 0.34% 2.48% 0.20%
MOE $(0.0120) $(0.0045) $ 0.0028 $(0.2622)
SD 0.0007 0.0005 0.0006 0.0054

put

RMSE 0.0008 0.0006 0.0005 0.0042
VE $ 0.06 $ 0.07 $ 0.04 $ 0.47
VE/P 0.33% 0.15% 0.49% 0.21%
MOE $ 0.0026 $ 0.0058 $(0.0011) $ 0.1019
SD 0.0009 0.0005 0.0012 0.0017

Matérn52

call

RMSE 0.0021 0.0006 0.0009 0.0088
VE $ 0.14 $ 0.11 $ 0.04 $ 1.17
VE/P 0.99% 0.60% 2.66% 0.37%
MOE $(0.0283) $(0.0047) $ 0.0033 $(0.7053)
SD 0.0010 0.0007 0.0008 0.0061

put

RMSE 0.0011 0.0008 0.0009 0.0044
VE $ 0.09 $ 0.12 $ 0.06 $ 0.56
VE/P 0.55% 0.36% 0.72% 0.24%
MOE $ 0.0018 $ 0.0104 $(0.0077) $0.1435
SD 0.0012 0.0007 0.0016 0.0022
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For short term options, the GP models still significantly outperform the
baseline. The RMSE increases slightly for options across moneyness. Al-
though valuation error is still relatively low and no more than a few cents,
the VE/P is larger because short term options are cheaper. The GP model
with the Matérn kernel performs well in terms of the MOE metrics. The
small MOE number means that the valuation is generally not far from the
bid-ask spread. For the ITM put options, all the predictions are within the
bid-ask spread, although the predicted option price is not exactly the mid-
price. Since it is common for shorter term options to exhibit some anomalies,
many researchers eliminate the shortest maturity. We think the results from
our GP model can be a candidate model in estimating option prices with short
maturities.

Table 4
Performance for short term (1-20 days maturity) options

total ATM OTM ITM

Matérn32

call

RMSE 0.0041 0.0018 0.0052 0.0166
VE $ 0.04 $ 0.04 $ 0.01 $ 0.20
VE/P 3.54% 1.93% 17.87% 0.10%
MOE $ 0.0001 $ 0.0000 $ 0.0003 $(0.0014)
SD 0.0021 0.0016 0.0038 0.0174

put

RMSE 0.0041 0.0019 0.0048 0.0123
VE $ 0.04 $ 0.05 $ 0.02 $ 0.25
VE/P 2.30% 0.54% 4.37% 0.14%
MOE $ 0.0000 $(0.0000) $ 0.0001 $ -
SD 0.0031 0.0016 0.0049 0.0053

Baseline

call

RMSE 0.0237 0.0187 0.0269 0.0761
VE $ 1.21 $ 1.42 $ 0.14 $ 2.03
VE/P 41.81% 38.52% 82.20% 1.03%
MOE $ 0.2252 $ 0.2016 $ 0.0672 $ 0.2729

put

RMSE 0.0372 0.0243 0.0446 0.1101
VE $ 1.30 $ 2.06 $ 0.44 $ 2.23
VE/P 28.33% 25.02% 33.38% 1.20%
MOE $ 0.3523 $ 0.7947 $(0.1807) $(0.2067)

Similarly, the RMSE increases for long term options. While GP models
still significantly outperform the baseline, both the RMSE and VE increase.
However, due to the fact that options are inherently more expensive in dollar
terms, the VE/P ratio is still low, generally less than 1%, with the exception
of the OTM calls.

Thus, we can conclude that the GP models are relatively stable when we
extend them to fit both shorter and longer term options.
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Figure 1
Cross-sectional interpolation result with the Matérn 3/2 kernel.

The plots show the fitting result for implied volatility function on Jan 2, 2018 for four different ma-
turities. The upper panels are for calls and the lower for puts. The models are fit on options with
moneyness 0.7-1.3 and maturity 20-365 days. The red error bar shows the 95% confidence interval for
the test output at the given point. Confidence intervals are wider where less training data are available
or beyond the last training point.

(a) Implied volatility fit for call options

(b) Implied volatility fit for put options

4.4.4 Results with less training data

Moreover, we also test our GP models in the situation where less training
data is available. In this case, instead of divisible by 10, we select options
with strike prices divisible by 100 in the training set. The training set is still
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Table 5
Performance for long term (365-1095 day maturity) options

total ATM OTM ITM

Matérn32

call

RMSE 0.0018 0.0009 0.0007 0.0027
VE $ 1.16 $ 0.82 $ 0.58 $ 2.28
VE/P 0.65% 0.46% 1.49% 0.61%
MOE $(0.2811) $(0.1337) $ 0.1120 $(0.7657)
SD 0.0017 0.0011 0.0007 0.0034

put

RMSE 0.0014 0.0013 0.0012 0.0012
VE $ 0.98 $ 1.26 $ 0.86 $ 0.99
VE/P 0.72% 0.61% 0.83% 0.26%
MOE $ 0.0460 $ 0.3284 $(0.0863) $ 0.0484
SD 0.0013 0.0011 0.0014 0.0010

Baseline

call

RMSE 0.0038 0.0023 0.0032 0.0063
VE $ 3.24 $ 2.54 $ 2.76 $ 5.24
VE/P 2.22% 1.59% 6.39% 1.42%
MOE $ 0.1353 $(0.6358) $ 1.2736 $ 0.9713

put

RMSE 0.0016 0.0014 0.0014 0.0025
VE $ 1.38 $ 1.51 $ 1.21 $ 2.44
VE/P 0.91% 0.68% 1.03% 0.68%
MOE $ 0.0189 $ 0.3011 $(0.1853) $ 0.4724

evenly spread out across the input domain, but now composed of about only
15% of the entire dataset. The results are presented in Table 6.

Again, the RMSE and VE both increase, and the VE/P ratio also increases.
The GP models still outperform the baseline model with the same training
set. The VE/P ratio is relatively low (around 2%) for the best-performing RQ
and Matérn 3/2 kernel. The GP models generally undervalue both call and
put options, which differs from the previous results with more training data.
We think that this is possibly because the prior mean function has greater
influence on the model outputs.

The RQ kernel has better performance on average than the Matérn 3/2
kernel for pricing call options. The performance of RQ kernel is also very
close to the Matérn kernels for put options. It is possible that a smoother
function would be better for interpolation in regions where less training data
are available.

In contrast to some data-intensive machine learning methods, the GP
models are able to get a relatively accurate result even with significantly less
training data. This means that one could even think of employing GP mod-
els with illiquid markets or situations where market data are more difficult to
obtain.
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Table 6
Performance with less training data

SE RQ Matérn32 Matérn52 Baseline

call

RMSE 0.0048 0.0029 0.0027 0.0032 0.0166
VE $ 0.41 $ 0.27 $ 0.28 $ 0.31 $ 3.56
VE/P 3.17% 2.45% 2.63% 2.75% 37.48%
MOE $(0.0518) $(0.0070) $(0.0002) $(0.0143) $ 1.3371
SD 0.0022 0.0017 0.0023 0.0021 -

put

RMSE 0.0036 0.0025 0.0023 0.0024 0.0154
VE $ 0.39 $ 0.31 $ 0.28 $ 0.31 $ 2.85
VE/P 2.62% 2.00% 1.70% 1.83% 15.51%
MOE $(0.0225) $(0.0116) $(0.0116) $(0.0159) $ 1.0524
SD 0.0030 0.0032 0.0033 0.0029 -

*Models fitted with options with moneyness 0.7-1.3 and maturity 20-365 days.

4.4.5 Inference and confidence interval

The advantage of the Bayesian framework is the ability to provide statis-
tical inference in addition to point estimates with the posterior distribution.
The inference result could help with practical applications to quantify the un-
certainty for a given testing input. The SD rows of Tables 2 - 6 present the
standard deviations from the model fit.

In general, less accurate fitting results in larger RMSEs and have larger
average SDs. The posterior uncertainty evaluation is built into the GP mod-
els because covariance kernels are based on the Euclidean distance metric. If
there are fewer points adjacent to a given testing input, the model will nat-
urally use less training points and a larger confidence interval ensues as a
result. This phenomenon is also shown in Figure 1. Confidence intervals are
very tight in the ATM region where training points are concentrated, and be-
come wider in the ITM and OTM regions where the training data are more
spaced out. When the testing point is outside the grid covered by training in-
puts and the prediction takes the form of extrapolation, the estimated variance
also increases. For short-term options where the option price fluctuates more
with the implied volatility, the confidence band differs more with the change
in moneyness, compared to the longer term options, where the misspecifica-
tion of the implied volatility has smaller impact on the price (Tables 4 and
5).

The inference results from the Bayesian framework provide a method
to quantify uncertainty when calibrating implied volatility models, which is
a rather unique advantage. The posterior uncertainty should be considered
when pricing options with less known quotes. This can be implemented by
taking into account information from more liquid options similar to them in
moneyness and maturity, and with shorter maturities where the price changes
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more with the implied volatility.
To summarize, GP models entail good performance for implied volatility

interpolation. Across kernel specifications, the Matérn 3/2 kernel performs
best. The models also have relatively accurate performance for shorter- and
longer- term options, as well as with less training data. The inference results
can also help quantify uncertainty in the estimation.

4.5 One-Day Forecast

In addition to interpolating the implied volatility surface on a given day,
we also test if the model can be stable to forecast the implied volatility of the
next day. We calibrate a GP model to predict implied volatility with a one-day
lag.

4.5.1 Setup

The model setup is similar to the cross-sectional interpolation task, except
that the training set is composed of all the options on a particular date t, and
the testing set is all the options on date t +1. The samples are still limited to
have maturity from 20-365 days, and moneyness 0.7-1.3. The GP model is
calibrated with the Matérn 3/2 kernel, as it is the best-performing kernel in the
cross-sectional interpolation. The results are also compared to the baseline
truncated quadratic model on the same training and testing set. We repeat the
calibration and testing procedure in a rolling fashion for all the trading days in
2018. Table 7 presents the average results across the 250 rolling estimations.

4.5.2 Discussion

The testing error increases significantly compared to the cross-sectional
interpolation. The RMSEs are about 10 times larger, whereas the VEs are
about 2 dollars for both call and put options. The VEs are more than 10%
of the mid-price of the options. The VE is still less than 1.5% of the price
for ITM options, which is much better than ATM and OTM options. The GP
model performs better for calls than for puts, contrary to the cross-sectional
case, even though we still have more put quotes in the dataset. The posterior
standard deviation also increases, especially for puts, indicating a high level
of uncertainty in the forecast. The GP models are still better than baseline
models, but not to a significant degree.

The results indicate that the structure of implied volatility functions is not
stable even through a short time horizon. As prediction errors are larger for
put options, it is possible that the structure for puts fluctuates more. The insta-
bility and the difficulty it poses on local volatility models have been discussed
in several previous works, such as Dumas et al. (1998). However, there are
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Table 7
One-day-ahead prediction results

total ATM OTM ITM

Matérn32

call

RMSE 0.0108 0.0099 0.0064 0.0224
VE $ 2.21 $ 2.93 $ 0.72 $ 3.29
VE/P 13.15% 10.33% 21.13% 1.36%
MOE $ 0.0056 $ (0.1200) $ 0.0488 $ (0.2308)
SD 0.0015 0.0010 0.0017 0.0079

put

RMSE 0.0126 0.0113 0.0103 0.0345
VE $ 2.44 $ 3.36 $ 1.70 $ 3.01
VE/P 10.62% 7.67% 13.48% 1.23%
MOE $(0.1581) $ (0.1274) $ (0.1748) $ 0.4241
SD 0.1951 0.0758 0.2765 0.0122

Baseline

call

RMSE 0.0199 0.0147 0.0214 0.0420
VE $ 3.58 $ 4.32 $ 1.42 $ 8.28
VE/P 30.23% 20.40% 62.65% 2.87%
MOE $ 0.1732 $ (0.3328) $ 0.7009 $ 0.8081

put

RMSE 0.0196 0.0157 0.0173 0.0682
VE $ 3.52 $ 4.82 $ 2.48 $ 7.64
VE/P 16.59% 10.54% 21.63% 2.82%
MOE $ 0.1670 $ 0.9333 $ (0.4510) $ 3.8143

*Models fitted with options with moneyness 0.7-1.3 and maturity 20-365 days.

some potential ways to improve the prediction with GP models. For exam-
ple, it is possible to include time as another input dimension to the GP model
and use several past days as training data, in order to learn how the implied
volatility functions evolve with time.

5. Conclusion

Bayesian Gaussian Process models are powerful alternatives to existing
models for interpolating implied volatility surface and pricing options. In a
cross-sectional interpolation setting, GP models yield rather accurate results.
By changing the covariance kernel, we are able to exploit the structure of
the implied volatility function and find the best calibration. From our results,
the Matérn 3/2 kernel best fits the implied volatility function for the S&P
500 option in 2018. The models are also good candidates in fitting options
with very short or relatively long time to maturity, or in a situation with less
training data. However, the forecasting models still need some improvement.
As a unique advantage of Bayesian models, we get posterior variance for the
testing inputs, which would serve as a valuable reference for evaluating the
uncertainty in model prediction and real-world decision making.

There are multiple interesting directions to conduct more in-depth studies
for option pricing in a Bayesian framework. First of all, we could explore
some time-series formulations to get a better forecast result, as forecasting
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could also be important in application. We can also explore some other ker-
nel specifications in an attempt to better exploit the smoothness and structure
of the implied volatility surface. In addition, there are other more compli-
cated variants of the GP model, such as GP latent variable models. It would
be interesting to check if the more complicated models produce a more accu-
rate fit. We could also apply Bayesian models in portfolio hedging with the
inference results characterizing the risk measures, and study their effects on
the portfolio. We leave these for future work.

References

Black, F. and Scholes, M. (1973). The pricing of options and corporate lia-
bilities. Journal of Political Economy 81(3): 637–654.

Branger, N. and Schlag, C. (2004). Model risk: A conceptual framework for
risk measurement and hedging. Working Paper, EFMA Basel Meetings.

Buehler, H., Gonon L., Teichmann J. and Wood, B. (2019). Deep hedging.
Quantitative Finance 19(8): 1271–1291.

Cohen, S. N. and Tegnér, M. (2018). European option pricing with stochastic
volatility models under parameter uncertainty. Preprint. URL: https:
//arxiv.org/abs/1807.03882.

Dumas, B., Fleming, J. and Whaley, R. E. (1998). Implied volatility func-
tions: Empirical tests. Journal of Finance 53: 2059-2106, 1998.

Dupire., B. (1994). Pricing with a smile. Risk 7(1): 18–20.

Fan, J. and Mancini, L. (2009). Option pricing with model-guided non-
parametric methods. Journal of the American Statistical Association,
104(488): 1351–1372.

Gupta, A. and Reisinger, C. (2011). Optimal Bayesian hedging strategies in
the context of model uncertainty. Preprint. URL: http://citeseer
x.ist.psu.edu/viewdoc/summary?doi=10.1.1.258.8863.

Hagan, P. Kumar, D., Lesniewski A. S. and Woodward, D. E. (2003). Man-
aging smile risk. WILMOTT magazine.

Heston, S. L. (1993). A closed-form solution for options with stochastic
volatility with applications to bond and currency options. Review of Finan-
cial Studies 6(2): 327–343.

136 Brazilian Review of Finance (Online) 18(4), 2020

https://arxiv.org/abs/1807.03882
https://arxiv.org/abs/1807.03882
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.258.8863
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.258.8863
http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index


A Bayesian nonparametric approach to option pricing

Hutchinson, J. M., Lo, A. W. and Poggio, T. (1994). A nonparametric ap-
proach to pricing and hedging derivative securities via learning networks.
Journal of Finance 49(3): 851–889.

Hull, J. and White, A. (1987). The pricing of options on assets with stochastic
volatilities. Journal of Finance 42(2): 281–300.

Jung, K. H., Kim, H. C., Lee, J. (2006). A novel learning network for option
pricing with confidence interval information. In: Wang J., Yi Z., Zurada
J.M., Lu BL., Yin H. (eds) Advances in Neural Networks: 491–497.

Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Eco-
nomics and Management Science, 4(1): 141–183.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Ma-
chine Learning. MIT Press: Cambridge(2006).

Tegnér, M. and Roberts, S. (2019). A probabilistic approach to nonparametric
local volatility. Preprint. URL: https://arxiv.org/pdf/1901.0
6021.pdf.

Brazilian Review of Finance (Online) 18(4), 2020 137

https://arxiv.org/pdf/1901.06021.pdf
https://arxiv.org/pdf/1901.06021.pdf
http://bibliotecadigital.fgv.br/ojs/index.php/rbfin/index

	1 Introduction
	2 Background and literature review
	2.1 Black-Scholes model and implied volatility
	2.2 Local volatility and stochastic volatility models
	2.3 Machine Learning and data-driven methods

	3 A Bayesian nonparametric approach
	3.1 Model
	3.2 Kernel functions
	3.2.1 Properties of the kernel functions
	3.2.2 Hyperparameters

	3.3 Posterior distribution and inference

	4 The implied volatility surface of the S&P 500 index options
	4.1 Data
	4.2 Setup
	4.3 Baseline
	4.4 Cross-sectional interpolation
	4.4.1 Performance comparison of different kernel functions
	4.4.2 Performance comparison across moneyness
	4.4.3 Results with shorter or longer maturities
	4.4.4 Results with less training data
	4.4.5 Inference and confidence interval

	4.5 One-Day Forecast
	4.5.1 Setup
	4.5.2 Discussion


	5 Conclusion

