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Abstract

To verify whether an empirical distribution has a specific theoretical distribution, several
tests have been used like the Kolmogorov-Smirnov and the Kuiper tests. These tests try to
analyze if all parts of the empirical distribution has a specific theoretical shape. But, in a
Risk Management framework, the focus of analysis should be on the tails of the distribu-
tions, since we are interested on the extreme returns of financial assets. This paper proposes
a new goodness-of-fit hypothesis test with focus on the tailsof the distribution. The new
test is based on the Conditional Value at Risk measure. Then we use Monte Carlo Simula-
tions to assess the power of the new test with different sample sizes, and then compare with
the Crnkovic and Drachman, Kolmogorov-Smirnov and the Kuiper tests. Results showed
that the new distance has a better performance than the otherdistances on small samples.
We also performed hypothesis tests using financial data. We have tested the hypothesis that
the empirical distribution has a Normal, Scaled Student-t,Generalized Hyperbolic, Normal
Inverse Gaussian and Hyperbolic distributions, based on the new distance proposed on this
paper.
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Resumo

Para verificar quando uma distribuição empı́rica tem uma determinada distribuição teórica,
vários testes têm sido usados, como os testes de Kolmogorov-Smirnov e Kuiper. Estes
testes tentam analisar se todas as partes da distribuiçãoempı́rica têm uma determinada
forma teórica. Porém, no contexto de Administração do Risco, o foco da análise deve-
ria ser nas caudas das distribuições, já que estamos interessados nos retornos extremos dos
ativos financeiros. O presente artigo propõe um novo teste de ajuste com foco nas cau-
das da distribuição. O novo teste é baseado na medida de Valor em Risco Condicionado.
Logo, usamos simulação de Monte Carlo para analisar o poder do novo teste com diferentes
tamanhos de amostra, e depois os comparamos com os testes de Crnkovic and Drachman,
Kolmogorov-Smirnov e Kuiper. Os resultados mostram que a nova distância possui um me-
lhor desempenho do que as outras distâncias para pequenas amostras. Também analisamos
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testes de hipóteses usando dados financeiros. Testamos as hipóteses de que a distribuição
empı́rica seja uma Normal, t-Student, Hiperbólica Generalizada, Normal Inversa Gaussiana
e Hiperbólica, usando a nova distância proposta neste artigo.

Palavras-chave: valor em risco condicionado; ajuste; simulação de Monte Carlo.

1. Introduction

Normality of returns is an assumption widely used in risk models, like the
RiskmetricsTM(1995, 1996), considered a benchmark model on measuring market
risk. Nevertheless, the Normality assumption was later refuted by several em-
pirical researches, starting with Mandelbrot (1963) and Fama (1965). The actual
distribution of financial assets has some differences from the normal distribution,
as fat tails (positive excess of kurtosis) and asymmetry (see Rydberg (1997) and
Hull and White (1998)). Then researches tried to find which other distributions
could replace the Normal.

In the 1960’s, Mandelbrot (1963) and Fama (1965) were the pioneers in
proposing alternative distributions to model financial data. They proposed that
the Stable Paretian distribution. In the 1970’s, Praetz (1972) and Blattberg and
Gonedes (1974), proposed the scaled Student-t distribution, and in the 1980’s, Kon
(1984) suggested the mixture of Normals as an alternative tomodel financial as-
sets. In the 1990’s several papers analyzed the use of the Generalized Hyperbolic
distribution to model financial assets, starting with Eberlein and Keller (1995).

When choosing among different distributions to model financial assets, a com-
mon problem that arises is to verify whether an empirical distribution has a spe-
cific distribution or not. Berkowitz (2002) suggests the distributional test as one
of the steps to assess a risk model. Several tests have been used, for example:
Kolmogorov-Smirnov, Likelihood Ratio and Kuiper. These tests try to analyze if
all parts of the empirical distribution has a Normal shape. But, in a Risk Manage-
ment framework, the focus of analysis is on the tails of the distributions, since we
are interested on the extreme returns of financial assets. So, in a Risk Manage-
ment framework, the goal of a goodness-of-fit test should be whether the tails of
the theoretical distribution are a good approximation to the tails of the empirical
distribution.

In this way usual goodness-of-fit tests would assess the goodness-of-fit of a
theoretical distribution based on mismatch of all distribution, and not only the
tails. Therefore, the main goal of this paper is to propose a new goodness-of-fit
hypothesis test with focus on the tails of the distribution,i.e., a tail-goodness-of-
fit test with focus on Risk Management. First, we propose a statistical distance
based on the Conditional Value at Risk (CVaR) of two distributions. Then we use
Monte Carlo Simulations to assess the power of the new test and also to perform
hypothesis tests using financial data. We test the hypothesis that the empirical dis-
tribution has a Normal, Scaled Student-t, Generalized Hyperbolic (GH), Normal
Inverse Gaussian (NIG) and Hyperbolic distributions, based on the new distance
proposed on this paper.

140 Revista Brasileira de Finanças 2008 Vol. 6, No. 2



A Goodness-of-Fit Test with Focus on Conditional Value at Risk

This paper is organized as follows: Section 2 gives a brief overview of market
risk models. Section 3 reviews some goodness-of-fit tests. In Section 4 we intro-
duce the new goodness-of-fit test proposed by this paper. Section 5 addresses the
power of the test and in Section 6 we have an empirical application of the new test.
Section 7 concludes the paper with the final remarks and suggestions for further
research.

2. Market Risk Models

2.1 Market risk measures

In recent years, risk management became popular among researchers, mar-
ket practitioners and regulators. The Value at Risk (VaR) emerged as one of the
benchmark measure for market risk.

According to Basak and Shapiro (2001), “evidence abounds that in practice
VaR estimates not only serve as summary statistic for decision makers, but are
also used as a tool to manage and control risk – where economicagents struggle
to maintain the VaR of their market exposure at a prespecifiedlevel”.

The VaR allows the market risk to be expressed in one number: the loss one
expected to suffer with a certain confidence level to a fixed holding period:

P [R < −V aR(α)] = 1 − α

whereR is the random variable of the asset’s returns, andα is the confidence level
with which the VaR is being calculated.

The distribution ofR can be an empirical non-continuous distribution, or a
theoretical specified continuous distribution. The Value at Risk of an empirical
distribution can also be viewed as theα quantile of the distribution.

Although the intense use of VaR, researchers have criticized this risk measure.
One question not addressed by the concept of VaR is what is themagnitude of the
loss when the VaR limit is exceeded. Another issue on VaR pointed out by the
article of Artzner et al. (1999) is that it is not a “coherent”measure of risk. They
say that a risk measure is a coherent measure of risk if it satisfies the following
four properties:

• Translation invariance: for a constantk, ρ(x + k) = ρ(x) + k

• Subadditivity: for allX andY , ρ(X + Y ) ≤ ρ(X) + ρ(Y )

• Positive homogeneity: for a positive constantk, ρ(kx) = kρ(x)

• Monotonicity: For allX ≤ Y for each outcome, thenρ(X) ≤ ρ(Y )

The VaR is not considered a coherent measure of risk, becauseit fails to hold
the subadditivity property, i.e., the VaR of a two assets portfolio can be greater
than the sum of the two individual VaR’s.

Revista Brasileira de Finanças 2008 Vol. 6, No. 2 141



Barbachan, J., Farias, A., Ornelas, J.

Also, Prause (1999) argues that to avoid bankruptcy one should forecast the
distribution of the maximum expected loss. From this point of view regulators
should use other risk measures than VaR. A better incorporation of extreme events
especially in view of nonlinear portfolios is desirable.

Therefore, a new measure of risk has emerged in the literature, the Conditional
VaR1, that is the expected value of the loss, given that it exceedsa certain level.
The Conditional VaR (CVaR) can be written as:

CV aR(R, α) = −E[R|R ≤ −V aR(α)]

Considering that distribution ofR is known, we have:

CV aR(R, α) =

∫

−V aR(α)

−∞
xfR(x)dx

1 − α

wherefR is the probability density function ofR.
This measure, differently from VaR, satisfies the subadditivity property above

mentioned, and addresses a question not answered by VaR: “How bad is bad?”.
The VaR informs only if the loss is above a certain level, but no information about
the magnitude of the loss is given. So, the CVaR is used to answer this question.

2.2 The parametric approach

Several approaches can be used to estimate the market risk measures. The
choice will depend on the kind of portfolio, computational resources available and
time constraints. The main three approaches are: parametric, historical simulation
and Monte-Carlo simulation. This paper focuses on the parametric approach.

The parametric approach assumes that the asset returns havea specific proba-
bility distribution, (for example, the Normal). The parameters of the distribution
are estimated (for example, the volatility) and so the risk measure is calculated
based on the estimated distribution. So the risk measure depends on the parame-
ters used. The Normal distribution is the most used with thisapproach. The Risk-
Metrics? model is the most popular market risk model, and used this approach,
assuming that asset returns follow a Normal distribution, with mean equal to zero,
and volatility estimated by the EWMA (Exponential WeightedMoving Average)
method, using historical data. Various other methods to estimate the volatility have
been tested to replace the EWMA, usually methods of the GARCHfamily. This
approach is usually called Conditional Normal methods, since we use a Normal
distribution with the variance being calculated by conditional methods.

As the Normal distribution has thinner tails than the empirical distributions,
other distributions different from the Normal have also been tested, such as
student-t, mixture of Normals, Hyperbolic, etc.

Hull and White (1998) used a mixture of two Normal distributions to assess the
Value at Risk of 12 exchange rates from 1988 to 1997. The first half of data was

1This measure has been used with many other names such as Expected Shortfall and Tail VaR.
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used to estimate the parameters and the second to assess the model. An EWMA
was used to estimate the volatility. Results when each currency has a separate
estimation show the single currency model could be rejectedfor only four of the
currencies, using the chi-squared test with 95% confidence.When the same pa-
rameters are used for all currencies, the model cannot be rejected with 95% confi-
dence.

Brauer (2000) used a symmetric Hyperbolic distribution to perform VaR calcu-
lations, and used data from German stocks and internationalstock indexes (DAX,
Dow Jones and Nikkei) from 1987 to 1997. His results showed that the model with
Hyperbolic distribution outperformed Riskmetrics model.

Prause (1999) used the Generalized Hyperbolic distribution and its subclasses
to fit German stocks, U.S. stock indexes and exchange rates. He used several statis-
tics to assess the goodness-of-fit such as the Kolmogorov andAnderson-Darling
distances, with the Normal being always the worst one. Also,Prause performed
VaR calculations with single assets and multi-assets portfolios.

Also Generalized Pareto distributions are good candidatesto fit extreme event
data, then we can use these distributions to calculate VaR, for more details see
Embrechts et al. (1997).

The main advantage of the parametric approach is the speed ofcalculation.
Also, when using some conditional volatility estimation like EWMA or GARCH
(conditional parametric methods), this method captures better the market stresses
situations. On the other hand, this method has limitations if applied to portfolios
with non-linear instruments, such as options.

3. Goodness-of-fit Tests

To test whether an empirical distribution has a specific distribution (or not),
several tests have been used. The most common is the Kolmogorov-Smirnov. The
Kolmogorov distance (see, for example, Massey (1951)) is defined as the greatest
distance between empirical distribution and theoretical distribution, for all possible
values:

DKol = max
x∈R

|FEmp(x) − FTheo(x)|

whereFEmp is the empirical cumulative function andFTheo is the continuous and
completely specified theoretical cumulative function.FEmp can be defined by:

FEmp(x) = (numberofX ′

is ≤ x)/n

whereX ′

is are the sample’s elements andn is the sample number of elements.
The Kuiper (1962) distance is similar to the Kolmogorov distance, but consid-

ers both directions of the discrepancy adding the greatest distances upwards and
downwards:
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DKui = max
x∈R

{FEmp(x) − FTheo(x)} + max
x∈R

{FTheo(x) − FEmp(x)}

In particular, these tests can be used to analyze if all partsof the empirical dis-
tribution has a Normal shape. But, in a Risk Management framework, the analysis
focus is on the tails of the distributions, since we are interested on the extreme
returns of financial assets.

One approach to give emphasis on the tails of a distribution is to use the An-
derson and Darling (AD) distance, proposed in a 1952’s paper. They propose a
distance that would be viewed as Kolmogorov distance with weight. Weighting
can be defined giving special importance to tails, and so being especially relevant
to risk measures. The formula of this distance with tail emphasis is:

DAD = max
x∈R

|FEmp(x) − FTheo(x)|
√

FTheo(x)[1 − FTheo(x)]

Prause (1999) uses the AD distance to assess which theoretical distribution
fits better the data of German Stocks. The distributions assessed were Normal,
Generalized Hyperbolic, Hyperbolic and Normal Inverse Gaussian. Nevertheless,
he did not perform a hypothesis test, he just compared the AD distance of the
distributions, to find out which one is the best. According toPrause, the Normal
distribution is the worst one to his set of data.

There are other kinds of distances and tests that give emphasis on the tail, like
the ones proposed in Crnkovic and Drachman (1996), hereafter CD, and Fajardo
et al. (2005), hereafter FOF. Both use distances similar to the Kuiper, but with
greater weights on the tails. Crnkovic and Drachman have proposed the following
formula:

DCD = max
x∈R

−1

2
{FEmp(x) − FTheo(x)} (log (FTheo (x) (1 − FTheo (x))))

+ max
x∈R

−1

2
{FTheo(x) − FEmp(x)} (log (FTheo (x) (1 − FTheo (x))))

4. Tail-Goodness-of-fit Test considering CVaR

In this paper, we propose a new distance to test the goodness-of-fit of a theo-
retical distribution to an empirical distribution.

The distance proposed here gives emphasis on the tails of thedistribution (like
the AD, CD and FOF tests) and so is more adequate to risk measures than the Kol-
mogorov distance. Our distance gives special emphasis on a specific risk measure
– the Conditional Value at Risk (CVaR), and it is the absolutedifference between
the empirical and the theoretical CVaR for a given significance level. Intuitively,
we are calculating the error of the theoretical distribution in estimating the CVaR
of the empirical distribution. Mathematically:
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DCV (X, α) = |CV aRTheo(X, α) − CV aREmp(X, α)|

=
1

1 − α

∣

∣

∣

∣

∣

(

∫ V aREmp

−∞

x fEmp(x) dx

)

−
(

∫ V aRT heo

−∞

x fTheo(x) dx

)
∣

∣

∣

∣

∣

where:
X is the random variable representing the returns of the asset;
V aREmp is the Value at Risk calculated using the Empirical distribution with a
confidence levelα;
V aRTheo is the Value at Risk calculated using the Theoretical with a confidence
levelα.;
femp is the probability density function of the empirical distribution and
ftheo is the probability density function of the theoretical distribution.

Differently from the Kolmogorov, AD, CD, FOF and other distances analyzed
on this paper, the distance proposed is not based on a Maximumoperator over
the cumulative probability distribution, but it is a sum over the density probability
functions. This has the purpose to fit in a better way the CVaR measure, which is
also a sum.

Note that the distance has a parameterα besides the two distributions (em-
pirical and theoretical). This is the level of confidence of the VaR beyond which
the distance works. So, if one is interested on both tails of the distribution,2 it
is necessary to define a bi-caudal distance BCV (Bi-caudal Conditional Value at
Risk):

DBCV (X, α) = |CV aRTheo(X, α) − CV aREmp(X, α)|
+ |CV aRTheo(−X, α) − CV aREmp(−X, α)|

Based on this distance, we can perform a hypothesis test withthe null hypoth-
esis that the empirical distribution is equal to the theoretical distribution. As our
distance focus on the tails of the distribution, we can say this is a “tail-goodness-
of-fit” test.

5. The Power of the Test

To evaluate the power of the proposed test, the following procedure is used:
a standard Normal distribution is taken as the theoretical distribution, and sev-
eral other distributions are used to generate a large numberof samples, i.e., they

2This is important when short positions on the asset are frequent.
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are considered as the “true” empirical distribution (TED).For each sample gener-
ated, the distance between the standard Normal (the theoretical distribution) and
the sample (the empirical distribution) is calculated and compared with the critical
values of the Standard Normal, in order to perform the test with the null hypoth-
esis being that both distributions are equal. So for each sample we have a result
“reject” or “don’t reject”. Note that, as the two distributions are actually different
by construction, the desirable result is to reject the null hypothesis. Therefore, the
higher the percentage of rejection, the more powerful is thetest. The percentage
of “don’t reject” may be viewed as the percentage of type II error of the test, and
the lower this number, the better the test. This approach hasbeen used to assess
statistical tests, including backtests of VaR models, for example see Lopez (1997)
and Kerkhof and Melenberg (2004).

As this paper is concentrated on distributional tests, our approach is slightly
different, we aim to assess pairs of different distributions, instead of pairs of
the distribution with the same probability function, but with different parameters.
Kerkhof and Melenberg (2004), hereafter K& M, compare a Standard Normal with
a student-t and two Normal Inverse Gaussian (NIG) distributions, one symmetric
and other with high asymmetry. The idea behind is that real world financial data
possess two characteristics: fat tails and negative asymmetry (see for example Ry-
dberg (1997)), but in general risk models use a Normal distribution to model data.
The three distributions used by K&M have fat tails, and one also negative asym-
metry.

We use three “true” empirical distributions very similar with those of K&M,
and compare with a Standard Normal (the one we choose as theoretical). The three
TED used are:

• A Scaled-t distribution, with scale parameter equal to one,location parame-
ter equal to zero and 5 degrees of freedom. This is a symmetricdistribution,
with expected value equal to zero and standard deviation equal to one. The
only difference to the Standard Normal is an excess of kurtosis. K&M use a
Student-t with 5 degrees of freedom, i.e., symmetric and centered, but with
a variance larger than 1.

• A symmetric NIG. This is exactly the same symmetric NIG used by K&M,
and has a moderate excess kurtosis.

• A negative skewed NIG. This the same used by K&M, except for the loca-
tion parameter that we adjusted in order to obtain an expected value equal to
zero. Therefore, this distribution has the same expected value and variance
of the Standard Normal, and a large excess kurtosis.

Table 1 summarizes the characteristics of the distributions used, and table 2
shows the parameters. Note that the Scaled-t is the closest to the Standard Normal,
and the Asymmetric NIG the most different.
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Table 1
Distribution characteristics “true” empirical distribution

Distribution Scaled-t Symmetric NIG Asymmetric NIG
Expected Value 0 0 0
Standard Deviation 1 1 1
Symmetry yes yes Negative Skewed
Kurtosis small excess Moderate Excess Large Excess

Table 2
Parameters

Distribution Scaled-t Symmetric NIG Asymmetric NIG
α – 1 1.031
β – 0 -0.250
δ – 1 0.941
µ 0 0 0.235
σ 1 – –
DF 5 – –

We used a Monte Carlo (MC) simulation approach with stratified sam-
pling. For comparison purposes, we estimated the power of three other tests:
Kolmogorov-Smirnov, Kuiper and CD. The BCV distance used onthis simulation
was calculated with an alfa equal to 95%. The procedure to estimate the power of
the tests is the following:

1. Using 10,000 MC runs, we calculate the Critical Values fora Standard Nor-
mal, considering the BCV, CD, Kolmogorov and Kuiper distances, for sam-
ple sizes of 50, 125, 250, 500 and 1000.

2. For each sample size and TED, generate 10,000 MC runs.

3. For each MC run of the previous step, calculate the distance between the
sample generated by the MC run and a Standard Normal.

4. For each distance of the previous step, calculate the p-value using the critical
values of the first step.

5. Comparing the p-value with the standard significance level of 5%, we get
the test result: reject or don’t reject. Calculate the percentage of type II
error dividing the number of “don’t reject” by the number of MC runs, i.e.,
10,000.

The results for the BCV, CD, Kuiper and Kolmogorov distancesare shown on
table 3, in terms of type II error percentages. We see that forsmall samples, the
BCV distance is in general better than the CD. For large samples the CD performs
better. The Kolmogorov distance has the worst performance by far. The Kuiper
distance has a good relative performance for samples over 500 observations, but a
bad performance for samples under 250.
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Table 3
Power of the tests in terms of type II error

Type II Errors
Sample Scaled-t Symmetric NIG Asymmetric NIG
Size Kuiper Kolmog BCV-95 CD Kuiper Kolmog BCV-95 CD Kuiper Kolmog BCV-95 CD
50 100.00% 100.00% 78.43% 90.49% 100.00% 100.00% 75.88% 88.74% 100.00% 100.00% 51.30% 74.65%
125 100.00% 100.00% 72.40% 80.98% 100.00% 100.00% 66.81% 72.86% 99.90% 100.00% 26.29% 42.65%
250 99.84% 100.00% 49.20% 54.68% 77.21% 100.00% 12.06% 23.94% 3.99% 99.03% 2.11% 1.33%
500 0.06% 99.99% 4.73% 5.32% 0.00% 99.00% 0.16% 0.01% 0.00% 0.00% 0.07% 0.00%
1000 0.00% 46.49% 0.61% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Generally speaking, we can say that the BCV has the best performance on
small samples. This is especially important when time period available is small or
when data has low frequency (monthly or yearly). However, for sample sizes under
125 observations, none of the tests can adequatedely detecta mismatch, except,
perhaps, for the case of BCV with Asymmetric NIG, which is very different from
the Normal. For the sample size of 250 the two tail-focused distances have a
reasonable performance, while for sample sizes over 250 only the Kolmogorov
still performs poorly.

6. Empirical Application

In this section we exemplify the tail-goodness-of-fit test,proposed on section 4.
We use daily data from three major exchange rates, two fixed income indices and
two stock indices. The three exchange rates used are Japanese Yen (JPY) per U.S.
Dollar, Swiss Franc (CHF) per U.S. Dollar and U.S. Dollar perGreat Britain Pound
(GBP). The fixed income indices are the U.S. Treasury 5 to 10 years (UST) and
U.S. Corporate High Yield (HY) provided by Lehman Brothers.The stock indices
are the Nikkei 225 (NIKKEI), which is a major Japanese index,and the FTSE
Eurotop 100 which represents the performance of the 100 mosthighly capitalized
blue chip companies in Europe. Exchange rates time series cover the period from
January 1st 1987 to August 29th 2002, and Fixed Income and Equity indices cover
the period from February 1st 2001 to June 6th 2008. We fit data from these series
into five theoretical distributions: Normal, Scaled-t, GH,NIG and Hyperbolic.
The estimation method used is the maximum log-likelihood. After estimating the
parameters, the next step to perform the test is to calculatethe critical values and
the p-values for each time series, considering the specific sample size. The critical
values were obtained after 10.000 Monte Carlo (MC) Simulations runs for the
sample sizes. For each MC run, we do the following two steps:

1. Generate a sample with the size of the time series, using each distribution
and parameters estimated;

2. Calculate the Bi-caudal CvaR (BCV) distance with alfa equal to 95% be-
tween the sample generated on step 1, with the theoretical distribution;

At the end of the 10.000 runs, we will have 10.000 BCV distances that will
be ordered. So the critical value for the significance level Swill be the percentile
(1 − S) of the ordered BCV distance sequence.

In order to obtain the p-value, we have just to find the significance level cor-
responding to the BCV distance calculated between the empirical and theoretical
distribution. Then we can compare the p-value to a certain significance level (we
choose 1%), to assess the null hypothesis that the empiricaldistribution is equal to
the theoretical distribution. These results are shown on table 4:
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Table 4
BCV Hypothesis Test Results

UST HY EUROTOP NIKKEI JPY GBP CHF
distance distance distance distance distance distance distance

Normal 8,45E-02 1,42E-01 6,22E-03 6,33E-03 3,08E-03 3,16E-03 2,73E-03
[0,08%] [0,00%] [0,00%] [0,00%] [0,00%] [0,00%] [0,00%]

Scaled-t 1,01E-01 6,44E-02 1,85E-03 5,56E-04 2,53E-03 5,82E-04 1,10E-03
[87,10%] [99,92%] [37,56%] [91,38%] [0,97%] [69,97%] [23,07%]

NIG 1,35E-02 1,70E-02 6,96E-04 7,41E-04 5,37E-04 3,32E-042,97E-04
[99,99%] [99,87%] [79,32%] [81,57%] [68,14%] [84,21%] [87,74%]

Hyperbolic 1,16E-02 2,04E-01 1,86E-03 3,14E-04 2,90E-03 5,72E-04 4,77E-04
[99,99%] [0,00%] [9,94%] [95,33%] [0,00%] [50,30%] [69,07%]

GH 1,01E-02 1,02E-02 6,74E-04 3,79E-04 3,16E-04 4,46E-04 5,32E-04
[99,99%] [99,91%] [79,95%] [94,20%] [89,00%] [71,69%] [62,17%]

As expected, results from table 4 had rejected Normal distribution for all time
series tested, corroborating previous empirical studies.For the CHF and GBP,
all the others distribution have been not rejected on the BCVhypothesis test, but
for the JPY, only the NIG and GH were not rejected with 1% confidence level,
although the scaled-t is very near this confidence level. Thebest distribution ac-
cording to the minimum BCV distance criteria is the NIG for GBP and CHF, and
the GH for the JPY.

For the Fixed Income indices, besides the Normal, only the Hyperbolic distri-
bution for the High Yield Time Series was rejected at 1%. The GH distribution has
the minimum BCV distance for both Fixed Income indices. For the Stock indices,
the Normal distribution was the only one rejected at 1%. The Hyperbolic was
rejected at 10% for the FTSE Eurotop. However, for the Nikkei, the Hyperbolic
was the best distribution using the BCV distance criteria. The GH was the best
distribution for the FTSE Eurotop. To provide a comparison to classical tests, the
Kolmogorov-Smirnov and Kuiper tests were also performed onthe same data as
can be seen on tables 5 and 6:

Table 5
Kolmogorov-Smirnov hypothesis test results

UST HY EUROTOP NIKKEI JPY GBP CHF
distance distance distance distance distance distance distance

Normal 3,72E-02 1,36E-01 5,97E-02 5,60E-02 5,60E-02 5,60E-02 4,40E-02
[1,19%] [0,00%] [0,00%] [0,00%] [0,00%] [0,00%] [0,00%]

Scaled-t 1,43E-02 2,54E-02 1,09E-02 1,17E-02 1,28E-02 1,25E-02 1,19E-02
[84,69%] [16,60%] [57,23%] [40,29%] [51,44%] [54,76%] [60,96%]

NIG 8,15E-03 1,12E-02 8,26E-03 7,63E-03 6,92E-03 9,13E-039,81E-03
[99,95%] [95,97%] [87,17%] [88,15%] [98,95%] [88,38%] [82,48%]

Hyperbolic 8,69E-03 4,80E-02 1,04E-02 5,75E-03 1,15E-02 9,11E-03 9,06E-03
[99,93%] [0,04%] [63,34%] [98,86%] [64,83%] [88,60%] [88,97%]

GH 8,75E-03 9,80E-03 8,27E-03 6,10E-03 8,58E-03 9,13E-03 8,85E-03
[99,94%] [98,43%] [86,76%] [98,13%] [92,37%] [88,45%] [90,49%]
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Table 6
Kuiper Hypothesis Test Results

UST HY EUROTOP NIKKEI JPY GBP CHF
distance distance distance distance distance distance distance

Normal 6,61E-02 2,56E-01 1,19E-01 1,12E-01 1,04E-01 1,11E-01 7,80E-02
[0,00%] [0,00%] [0,00%] [0,00%] [0,00%] [0,00%] [0,00%]

Scaled-t 2,28E-02 3,94E-02 2,13E-02 2,32E-02 2,41E-02 2,12E-02 2,31E-02
[90,94%] [8,04%] [17,09%] [5,04%] [14,63%] [31,96%] [19,59%]

NIG 1,59E-02 2,15E-02 1,44E-02 1,40E-02 1,32E-02 1,65E-021,76E-02
[99,98%] [86,53%] [77,11%] [71,85%] [95,75%] [74,45%] [64,09%]

Hyperbolic 1,70E-02 8,51E-02 1,84E-02 1,15E-02 2,05E-02 1,76E-02 1,59E-02
[99,74%] [0,00%] [36,82%] [93,81%] [37,15%] [64,83%] [79,73%]

GH 1,63E-02 1,80E-02 1,48E-02 1,06E-02 1,70E-02 1,58E-02 1,62E-02
[99,94%] [96,97%] [73,21%] [97,13%] [70,31%] [81,01%] [77,36%]

The classical tests also rejected Normal distribution as was expected, with the
all other distributions being not rejected. Note that for the CHF and GBP, test
results are the same of the BCV, but for the JPY, the Scaled-t and the Hyperbolic
that were rejected on the BCV test, now are being not rejected. So we can say that,
for overall applications, we can use Scaled-t and Hyperbolic distributions for the
JPY, but for Risk Management applications, they are not adequate. Results about
the best distribution for these criteria are mixed: for the JPY currency, the NIG
was the best distribution on both Kolmogorov and Kuiper distances. For the GBP
and CHF, Hyperbolic and GH were the best distribution depending on the criteria
(Kolmogorov or Kuiper).

7. Conclusions

In this paper we proposed a way to test the goodness-of-fit of theoretical dis-
tributions to empirical data with focus on the CVaR risk measure. The distance
we propose showed a better performance on We used a Monte-Carlo Simulations
with three types of distributions to assess the power of the new test and compare
with tests commonly used in the literature. Results showed abetter performance
of the new test in general. A sample with three exchange rates, two stock indexes
and two Bond indexes was used used to exemplify the use of the test proposed
with real world data. The test proposed on this article can beeasily applied to
other kinds of distributions and assets, including portfolios, since it needs only the
series of returns and the expression for the distribution’sdensity. So, as sugges-
tion for future research, other kinds of distributions maybe be also tested, together
with other classes of assets. It is worth to mention that the test proposed here as-
sesses the unconditional distribution of returns, but mostof the risk management
approaches use conditional distributions approaches. Anyway, as suggested by
Berkowitz (2002, figure 1), one of the steps to check the validity of a risk model is
to test the distribution used, and this would be done by the CVaR test proposed on
this paper. Also the CVaR-focuses distance proposed can be used to estimate the
parameters of distributions, through minimization of thisdistance. For example,
Prause (1999) uses an estimation method that minimizes the Anderson-Darling
distance. Then, with an estimation focused on the tails of the distribution, the
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CVaR measure is expected to be more reliable. After the distance minimization
estimation, a conditional volatility model may be used to re-scale the distribution
to get the volatility forecasted by the model. Backtests would then assess the va-
lidity of this approach.
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Appendix A

A.1 Stable Paretian distributions

Characteristic function of the Stable Paretian distribution is the following:

φx(t) = exp {−γα|t|α (1 − iβsign(t)tg(πα/2)) + itδ} for α 6= 1

and

φx(t) = exp {−γ|t| (1 + 2iβsign(t) ln(|t|)) /π + itδ} forα = 1

where:
δ is the location parameter,
γ is the scale/dispersion parameter,
β is the asymmetry parameter andα is the stability index.

A.2 Scaled Studentt distribution

The density function of the scaled Studentt distribution is the following:

f(x; µ, σ, ν) =
Γ(ν+1

2 )

Γ(ν/2)
√

π(ν − 2)σ2

[

1 +
(x − µ)2

(ν − 2)σ2

]−(ν+1)/2

where:
v is the degrees of freedom parameter,
µ is the location parameter and
σ the dispersion parameter.
whenv → ∞ the Studentt converges to the Normal Distribution.

A.3 Mixture of Normals

Density function of the returns is a weighted average of several Normal densi-
ties:

f(x; µ1, . . . , µn, σ1, . . . , σn, λ1, . . . , λn−1) =

n
∑

i=1

λiN(µi, σi)

where:
µi andσi are respectively the mean and standard deviation of each Normal distri-
bution, and
λ is the weight of each Normal. As the sum of the weights must be one, the lastλ
is completely defined by the others.
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A.4 Generalized Hyperbolic Distribution

The density probability function of one-dimensional GH distribution is defined
by the following equation:

GH(x; λ, α, β, δ, µ) = a(λ, α, β, δ)
(

δ2 + (x − µ)2
)(λ−1/2)/2 ×

Kλ−1/2

(

α
√

δ2 + (x − µ)2
)

e(β(x−µ))

whereKx is the modified Bessel function of third kind and

a(λ, α, β, δ) =

(

α2 − β2
)λ/2

√
2παλ−0.5δλKλ

(

δ
√

α2 − β2
)

The parameters are real numbers with the following restrictions (see Prause
(1999)):

δ ≥ 0, |β| < α ifλ > 0

δ > 0, |β| < α ifλ = 0

δ > 0, |β| ≤ α ifλ < 0

The parameterδ is a scale factor, compared to theσ of a Normal distribution,
andµ is a location parameter. Parametersα andβ determine the distribution shape
andλ defines the subclasses of GH and is directly related to tail fatness (Barndorff-
Nielsen and Blæsild, 1981). The functiona(.) is introduced to guarantee that the
cumulative distribution has values between zero and one.

The GH has several subclasses, among them the Hyperbolic andNormal In-
verse Gaussian(NIG). Settingλ = −1/2, we get the NIG, and withλ = 1, we get
the Hyperbolic distribution. The Gaussian is a limiting distribution of GH, when
δ ∞ andδ/ασ2.
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