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Abstract

An important aspect of empirical research based on the vector autoregressive (VAR)
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1. Introduction

In the modeling of economic and financial time series, the vector autoregressive
(VAR) model has become the standard linear model used in empirical works.
An important aspect of empirical research on the specification of VAR models
is determination of the lag order of the autoregressive lag polynomial, since all
inferences in the VAR model depend on the correct model specification. Several
works have demonstrated the effect of lag length selection. Lütkepohl (1993)
indicated that selecting a higher order lag length than the true one causes an
increase in the mean square forecast errors of the VAR and that underfitting the
lag length often generates autocorrelated errors. Braun and Mittnik (1993) showed
that impulse response functions and variance decompositions are inconsistently
derived from the estimated VAR when the lag length differs from the true length.
When cointegration restrictions are considered in the model, the effect of lag length
selection on the cointegration tests has been demonstrated. For example, Johansen
(1991) and Gonzalo (1994) pointed out that VAR order selection can affect proper
inference about cointegrating vectors and rank.

Recently, empirical works have considered other kinds of restrictions in the
VAR model (e.g., Engle and Issler (1995); Caporale (1997); Mamingi and Iyare
(2003)). Engle and Kozicki (1993) showed that VAR models can have other types
of restrictions, called common cyclical features, which are restrictions on the short-
run dynamics. These restrictions are defined in the same way as cointegration
restrictions, but while cointegration refers to relations among variables in the
long run, common cyclical restrictions refer to relations in the short run. Vahid
and Engle (1993) proposed the serial correlation common feature (SCCF) as a
measure of common cyclical features. SCCF restrictions might be imposed in a
covariance stationary VAR model or in a cointegrated VAR model. The concept of
serial correlation common features appears to be useful. It means that stationary
time series move together in a way such that there are linear combinations of
these variables which yield white noise processes and that their impulse response
functions are collinear. In several practical applications the existence of short-
run comovements between stationary time series (e.g., between first-differenced
cointegrated I(1)) has been analyzed. For instance, Engle and Issler (1995) found
common cycle comovement in U.S. sectoral output data; Hecq (2002) and Engle
and Issler (1993) found common cycles in Latin American countries; and Carrasco
and Gomes (2009) found common international cycles in GNP data for Mercosur
countries.

When short-run restrictions are imposed in cointegrated VAR models, it is
possible to define a weak version of SCCF restrictions. Hecq et al. (2006) defined
a weak version of SCCF restrictions, which they denominated weak-form (WF)
common cyclical restrictions. A fundamental difference between SCCF and WF
restrictions is the form in which each one imposes restrictions on the representation
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of the vector error correction model (VECM).1 When SCCF are imposed, all
matrices of a VECM have rank less than the number of variables analyzed. On
the other hand, with WF restrictions, all matrices except the long-run matrix have
rank less than the number of variables being analyzed. Hence, WF restrictions
impose less constraint on VECM parameters. Some advantages emerge when WF
restrictions are considered. First, due to the fact that the weak-form common
cyclical method does not impose constraints on the cointegration space, the rank
of common cyclical features is not limited by the choice of cointegrating rank.

The literature has shown how to select an adequate lag order of a covariance
stationary VAR model and an adequate lag order of a VAR model subject to coin-
tegration restrictions. Among the classical procedures are information criteria,
such as Akaike (AIC), Schwarz (SC) and Hannan-Quinn (HQ) (Lütkepohl, 1993).
Kilian (2001) studied the performance of traditional AIC, SC and HQ criteria of a
covariance stationary VAR model. Vahid and Issler (2002) analyzed the standard
information criteria in a covariance stationary VAR model subject to SCCF re-
striction and, more recently, Guillén et al. (2005) studied the standard information
criteria in VAR models with cointegration and SCCF restrictions. However, when
cointegrated VAR models contain an additional weak form of common cyclical
features, there are no reported works on how to appropriately determine the VAR
model order.

The objective of this paper is to investigate the performance of information
criteria in selecting the lag order of a VAR model when the data are generated
from a true VAR with cointegration and WF restrictions, referred to as the correct
model. We carry out the following two procedures:

a) the use of standard criteria, as proposed by Vahid and Engle (1993), referred
to here as IC(p), and

b) the use of an alternative model selection criterion (see Vahid and Issler (2002)
and Hecq et al. (2006)), which consists in simultaneously selecting the lag
order p and the number of weak forms of common cyclical features, s, which
is referred to as IC(p, s).2

The most relevant results can be summarized as follows. The information criterion
that selects the pair (p, s) performs better than the model chosen by conventional
criteria, especially the AIC(p, s) criterion. The cost of ignoring additional WF
restrictions in vector autoregressive modeling can be high, particularly when the
SC(p) criterion is used.

The rest of this paper is organized as follows. Section 2 presents the economet-
ric model. Section 3 discusses the information criteria. Section 4 shows a Monte

1When a VAR model has cointegration restriction it can be represented as a VECM. This
representation is also known as Granger representation theorem (Engle and Granger, 1987).

2This is quite recent in the literature (see, Hecq (2006)).
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Carlo simulation and Section 5 presents the results. Finally, Section 6 contains
our conclusions.

2. The Econometric Model

We show the VAR model with short-run and long-run restrictions. First, we
consider a Gaussian vector autoregression of finite order p, called VAR(p), such
that:

yt =

p
∑

i=1

Aiyt−i + εt (1)

where, yt is a vector of n first-order integrated series, I(1), Ai, i = 1, . . . , p are
matrices of dimension n × n, εt ∼ Normal (0,Ω) , E (εt) = 0 and E (εtε

′
τ ) ={Ω

, if t = τ and 0n×n, if t 6= τ , where Ω is nonsingular}. The model (1) can
be written equivalently as; Π (L) yt = εt where L represents the lag operator
and Π (L) = In −

∑p

i=1 AiL
i such that when L = 1, Π (1) = In −

∑p

i=1 Ai. If
cointegration is considered in (1) the (n × n) matrix Π (·) satisfies two conditions:
a) rank (Π (1)) = r, 0 < r < n, such that Π (1) can be expressed as Π (1) =
−αβ′, where α and β are (n × r) matrices with full column rank, r; and b) the
characteristic equation |Π(L)| = 0 has n − r roots equal to 1 and all others are
outside the unit circle. These assumptions imply that yt is cointegrated of order
(1, 1). The elements of α are the adjustment coefficients and the columns of β
span the space of cointegration vectors. We can represent a VAR model as a
vector error correction model (VECM). By decomposing the polynomial matrix
Π (L) = Π (1)L+Π∗ (L) ∆, where ∆ ≡ (1−L) is the difference operator, a VECM
is obtained:

∆yt = αβ′yt−1 +

p−1
∑

i=1

Γi∆yt−i + εt (2)

where: αβ′ = −Π(1), Γj = −
∑p

k=j+1 Ak for j = 1, ...., p − 1 and Γ0 = In. The
VAR(p) model can include additional short-horizon restrictions as shown by Vahid
and Engle (1993). We consider an interesting WF restriction (as defined by Hecq
et al. (2006)) that does not impose constraints on long-run relations.

Definition 1 The weak form (WF) holds in (2) if, in addition to cointegration
restriction, there exists an (n × s) matrix β̃ of rank s, whose columns span the
cofeature space, such that β̃′(∆yt−αβyt−1) = β̃′εt, where β̃′εt is an s-dimensional
vector that constitutes an innovation process with respect to information prior to
period t, given by {yt−1, yt−2, ..., y1}.
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Equivalent to Definition 1, we consider WF restrictions in the VECM if there
exists a cofeature matrix β̃ that satisfies the following assumption:

Assumption 1: β̃′ Γj = 0s×n for j = 1, ...., p − 1.

Therefore, this is a naturally weaker alternative assumption which implies that
the common cyclical part is reduced to white noise by taking a linear combination
of the variables in the first differences adjusted for long-run effects. Imposing WF
restrictions is convenient because it allows for the study of both cointegration and
common cyclical feature without the constraint3 r + s ≤ n.

We can rewrite the VECM with WF restrictions as a model of reduced-rank
structure. In (2) let Xt−1 = [∆y′

t−1, .....∆y′
t−p+1]

′ and Φ = [Γ1, ....,Γp−1]. There-
fore, we obtain:

∆yt = αβyt−1 + ΦXt−1 + εt (3)

If Assumption (1) holds, then matrices Γi, i = 1, ..., p are all of rank (n−s) and
we can write Φ = β̃⊥Ψ = β̃⊥[Ψ1, ....,Ψp−1], where, β̃⊥ is n × (n − s) full column
rank matrix, Ψ has dimension (n−s)×n(p−1), and the matrices Ψi, i = 1, ..., p−1
all have rank (n − s) × n. Hence, given Assumption (1), there exists β̃ of n × s
such that β̃′β̃⊥ = 0. That is, β̃⊥ n × (n − s) is a full column rank orthogonal to
the complement of β̃ with rank(β̃, β̃⊥) = n. Rewriting model (3) we have:

∆yt = αβyt−1 + β̃⊥ (Ψ1,Ψ2, ...,Ψp−1) Xt−1 + εt (4)

= αβyt−1 + β̃⊥ΨXt−1 + εt (5)

Estimation of (5) is carried out via the switching algorithms (see Centoni et al.
(2007); Hecq (2006)) that use the procedure in estimating reduced-rank regression
models as suggested by Anderson (1951). There is a formal connection between a
reduced-rank regression and the canonical analysis, as noted by Izenman (1975),
Box and Tiao (1977), Tso (1981) and Velu et al. (1986). When all the matrix
coefficients of the multivariate regression are full rank, they can be estimated by
the usual least squares or maximum likelihood procedures. But when the matrix
coefficients are of reduced rank they have to be estimated using the reduced-
rank regression models of Anderson (1951). The use of canonical analysis may be
regarded as a special case of reduced-rank regression. More specifically, the maxi-
mum likelihood estimation of the parameters of the reduced-rank regression model
may solve a problem of canonical analysis.4 Therefore, we can use the expression
CanCorr{Xt, Zt|Xt−1} which denotes the partial canonical correlations between

3Since the SCCF also imposes constraints on the long-run matrix αβ′ = −Π(1), which has
dimension n, the cointegration restrictions, r, and SCCF restrictions, s, must satisfy r + s ≤ n.

4This estimation is referred to as full information maximum likelihood – FIML. (see Johansen
(1995).
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Xt and Zt: both sets are concentrated out of the effect of Xt−1 allowing us to
obtain canonical correlation (see Johansen (1995)), represented by the eigenvalues

λ̂1 > λ̂2 > λ̂3....... > λ̂n. The Johansen test statistic is based on canonical corre-
lation. In model (2) we can use the expression CanCorr{∆yt, yt−1|Xt−1} where
Xt−1 = [∆y′

t−1, .....∆y′
t−p+1]

′, which summarizes the reduced-rank regression pro-
cedure used in Johansen approach. This means that we extract the canonical
correlations between ∆yt and yt−1: both sets are concentrated out of the effect of
lags of Xt−1. In order to test for the significance of the r largest eigenvalues, we
can rely on Johansen’s trace statistic (6):

ξr = −T
n

∑

i=r+1

Ln (1 − λ̂2
i ) i = 1, ..., n (6)

where the eigenvalues 0 < λ̂n < ... < λ̂1 are the solution to : |λm11 −
m−1

10 m00m01| = 0, where mij , i, j = 0.1, are the second-moment matrices:

m00 = 1
T

∑T

t=1 ũ0tũ
′
0t, m10 = 1

T

∑T

t=1 ũ1tũ
′
0t, m01 = 1

T

∑T

t=1 ũ0tũ
′
1t, m11 =

1
T

∑T

t=1 ũ1tũ
′
1t of the residuals ũ0t and ũ1t obtained in the multivariate least

squares regressions ∆ yt = (∆yt−1,...,∆yt−p+1) +u0t and yt−1 = (∆yt−1, ...
∆yt−p+1) +u1t respectively (see, Hecq (2006); Johansen (1995)). The result of
Johansen test is a superconsistent estimation of β. Moreover, we could also use a
canonical correlation approach to determine the rank of the common feature space
due to WF restrictions. This is a test for the existence of cofeatures in the form
of linear combinations of the variables in first differences, corrected for long-run
effects which are white noise (i.e., β̃′(∆yt − αβyt−1) = β̃′εt where β̃′εt is a white
noise). We use canonical analysis is this work to estimate and select the lag rank
of VAR models, as shown in the subsequent sections.

3. Model Selection Criteria

In model selection we use two procedures to identify the VAR model order: the
standard selection criteria, IC(p), and the modified information criteria, IC(p, s),
a novelty in the literature, which consists in identifying p and s simultaneously.

The model estimation following the standard selection criteria, IC(p), originally
used by Vahid and Engle (1993), entails the following steps:

1. Estimate p using standard information criteria: Akaike (AIC),
Schwarz (SC) and Hanna-Quinn (HQ). We chose the lag length of the
VAR in levels that minimizes the information criteria.

2. Using the lag length chosen in the previous step, find the number
of cointegration vectors, r, using Johansen cointegration test.5

5Cointegration rank and vectors are estimated using the FIML, as shown in Johansen (1991).
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3. Conditional on the results of the cointegration analysis, estimate a
final VECM and then calculate the multi-step ahead forecast.

The above procedure is followed when there is evidence of cointegration re-
strictions. We check the performance of IC(p) when WF restrictions are imposed
on the true model. Additionally, we check the performance of IC(p, s) alternative
selection criteria. Vahid and Issler (2002) analyzed a covariance stationary VAR
model with SCCF restrictions. They showed that the use of IC(p, s) performs
better than IC(p) in VAR model lag order selection. In the present paper we an-
alyze the cointegrated VAR model with WF restrictions in order to analyze the
performance of IC(p) and IC(p, s) for model selection. The question investigated
is: Does IC(p, s) perform better than IC(p)? This is an important question we
aim to answer in this paper.

The procedure to choose the lag order and the rank of the structure of short-
run restrictions is carried out by minimizing the following modified information
criteria (see Vahid and Issler (2002); Hecq (2006)).

AIC (p, s) =
T

∑

i=n−s+1

ln(1 − λ2
i (p)) +

2

T
× N (7)

HQ(p, s) =
T

∑

i=n−s+1

ln(1 − λ2
i (p)) +

2 ln(lnT )

T
× N (8)

SC(p, s) =
T

∑

i=n−s+1

ln(1 − λ2
i (p)) +

lnT

T
× N (9)

N = [n × (n × (p − 1)) + n × r] − [s × (n × (p − 1) + (n − s))]

where n is the number of variables in model (2) and N is a number of parameters.
N is obtained by subtracting the total number of mean parameters in the VECM
(i.e., n2 × (p − 1) + nr), for given r and p, from the number of restrictions the
common dynamics imposes from s × (n × (p − 1)) − s × (n − s). The eigenvalues
λi are calculated for each p. In order to calculate the pair (p, s) we assume that
no restriction exists, that is, r = n (see Hecq (2006)). We fix p in model (3)
and then find λi i = 1, 2...n by computing the cancorr(∆yt,Xt−1 | yt−1). This
procedure is followed for every p and in the end we choose the p and s that
minimize the IC(p, s). After selecting the pair (p, s) we can test the cointegration
relation using the Johansen procedure. Finally, we estimate the model using the
switching algorithms as shown in the next section. Notice that in this simultaneous
selection, testing the cointegration relation is the last procedure followed, so we
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are inverting the hierarchical procedure followed by Vahid and Engle (1993) where
the first step is to select the number of cointegration relations. This may be an
advantage, especially when r is overestimated. Few works have analyzed the order
of VAR models considering modified IC(p, s). As mentioned, Vahid and Issler
(2002) suggested the use of IC(p, s) to simultaneously choose the order p and a
number of reduced-rank structure s in a covariance stationary VAR model subject
to SCCF restrictions. However, no work has analyzed the order of the VAR model
with cointegration and WF restrictions using a modified criterion, which is exactly
the contribution of this paper.

To estimate the VAR model, considering cointegration and WF restrictions,
we use the switching algorithms model as considered by Hecq (2006). Consider
the VECM given by:

∆yt = αβ′yt−1 + β̃⊥ΨXt−1 + εt (10)

A full description of switching algorithms is presented below in four steps:

Step1 : Estimation of the cointegration vectors β.

Using the optimal pair (p̄, s̄) chosen by the information criteria (7),
(8) or (9), we estimate β (and so its rank, r = r̄) using Johansen
cointegration test.

Step2 : Estimation of β̃⊥ and Ψ.

Taking the estimate of β in step one, we proceed to estimate β̃⊥ and Ψ.
Hence, we run a regression of ∆yt and of Xt−1on β̂′yt−1. We label the
residuals u0 and u1, respectively. Therefore, we obtain a reduced-rank
regression:

u0t = β̃⊥Ψu1t + εt (11)

where Ψ can be written as Ψ =
(

C1, ..., C(p̄−1)

)

of (n − s̄) × n(p̄ − 1)

and β̃⊥ of n× (n− s̄). We estimate (11) by FIML. Thus, we can obtain
β̃⊥ and Ψ̂.

Step3 : Estimation of the maximum likelihood (ML) function.

Given the parameters estimated in steps 1 and 2 we use a recursive
algorithm to estimate the maximum likelihood (ML) function. We

calculate the eigenvalues associated with Ψ̂, λ̂2
i i = 1, ..., s̄ and the

matrix of residuals
∑max

r̄, s=s̄. Hence, we compute the ML function:

L0
max, r̄<n, s=s̄ = −

T

2

[

ln

∣

∣

∣

∣

∣

max
∑

r̄<n, s=s̄

∣

∣

∣

∣

∣

−

s̄
∑

i=1

ln
(

1 − λ̂2
i

)

]

(12)
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If r̄ = n, instead of (12) we use the derived log-likelihood:

Lmax, r=n, s=s̄ = −T
2 ln

∣

∣

∣

∑max
r̄=n, s=s̄

∣

∣

∣
. The determinant of the covari-

ance matrix for r̄ = n cointegration vector is calculated by

ln

∣

∣

∣

∣

∣

max
∑

r̄=n, s=s̄

∣

∣

∣

∣

∣

= ln
∣

∣m00 − m01m
−1
11 m10

∣

∣ −

s̄
∑

i=1

ln
(

1 − λ̂2
i

)

(13)

where mij refers to cross moment matrices obtained in multivariate
least squares regressions from ∆yt and Xt−1 on yt−1. In this case,
estimation does not entail using an iterative algorithm yet, because
the cointegrating space spans Rn.

Step4 : Reestimation of β.

We reestimate β to obtain a more appropriate value for the parameters.

In order to reestimate β we compute the CanCorr
[

∆yt, yt−1 | Ψ̂Xt−1

]

and thus using the new β̂ we can repeat step 2 to reestimate β̃⊥ and
Ψ. Then, we calculate the new value of the ML function in step 3.
Hence, we obtain L1

max, r=r̄, s=s̄ to calculate ∆L = (L1
max, r=r̄, s=s̄ -

L0
max, r=r̄, s=s̄).

We repeat steps 1 to 4 to choose β̃⊥and Ψ until convergence is reached (i.e.,
∆L < 10−7). In the end, the optimal parameters p̄, r̄ and s̄ are obtained and they
can be used to estimate and forecast a VECM with WF restrictions.

4. Monte Carlo Design

The simple real business cycle models and also the simplest closed economy
monetary dynamic stochastic general equilibrium models are three-dimensional.
Consumption, saving and output and prices, output and money are notable ex-
amples. Motivated by these applications and according to the previous paper
of Vahid and Issler (2002), we construct a Monte Carlo experiment in a three-
dimensional environment. Therefore, the data generating processes considering
a VAR model with three variables, one cointegration vector, and two cofeature
vectors (i.e., n = 3, r = 1 and s = 2, respectively). β and β̃ satisfy:

β =





1.0
0.2
−1.0



 , β̃ =





1.0 0.1
0.0 1.0
0.5 −0.5









ε1t

ε2t

ε3t





∼ N









0
0
0



 ,





1.0 0.6 0.6
0.6 1.0 0.6
0.6 0.6 1.0








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Consider the VAR(3) model: yt = A1yt−1 +A2yt−2 +A3yt−3 + εt. The VECM
representation as a function of the VAR level parameters can be written as:

∆yt = (A1 + A2 + A3 − I3)yt−1 − (A2 + A3)∆yt−1 − A3∆yt−2 + εt (14)

The VAR coefficients must simultaneously comply with the restrictions:

a) the cointegration restrictions: αβ′ = (A1 + A2 + A3 − I3) ;

b) WF restrictions: β̃′A3 = 0 (iii) β̃′(A2 + A3) = 0 and c) the covariance
stationary condition.

Considering the cointegration restrictions, we can rewrite (14) as the following
VAR(1):

ξt = F ξt−1 + vt (15)

ξt =





△yt

△yt−1

β′yt



 , F =





−(A2 + A3) −A3 α
I3 0 0

−β(A2 + A3) −β′A3 β′α + 1



 and vt =





εt

0
β′εt





Thus, Equation (15) will be covariance stationary if all eigenvalues of matrix
F lie inside the unit circle. An initial idea to design the Monte Carlo experiment
can consist in constructing the companion matrix (F ) and verifying whether the
eigenvalues of the companion matrix all lie inside the unit circle. This can be
carried out by selecting their values from a uniform distribution, and then ver-
ifying whether or not the eigenvalues of the companion matrix all lie inside the
unit circle. However, this strategy could lead to a wide spectrum of search for
adequate values for the companion matrix. Hence, we follow an alternative pro-
cedure. We propose an analytical solution to generate a covariance stationary
VAR, based on the choice of the eigenvalues, and then on the generation of the
respective companion matrix. In the Appendix, we present a detailed discussion
of the final choice of these free parameters, including analytical solutions. In our
simulation, we constructed 100 data generating processes and for each of these we
generated 1,000 samples containing 1,000 observations. To reduce the impact of
the initial values, we considered only the last 100 and 200 observations. All the
experiments were conducted in the MatLab environment.

5. Results

Figure 1 shows one example of the three-dimensional VAR model with cointe-
gration and WF restrictions for 100 and 200 observations.

The values in Table A.1 represent the percentage of time the model selection
criterion, IC(p), takes to choose the cell corresponding to the lag and number of
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Figure 1
One example of a VAR(3) model with n = 3, r = 1 and s = 2 for 100 and 200

observations

cointegration vectors in 100,000 runs. The true lag-cointegrating vectors are iden-
tified by boldface numbers and the selected lag-cointegration vectors often chosen
by the criterion are underlined. In Table A.1, the results show that, in general, the
AIC most often chooses the correct lag length for 100 and 200 observations. For
example, for 100 observations, the AIC, HQ and SC criteria chose the true lag, p,
54.08%, 35.62% and 17.48% of the times, respectively. Note that all three crite-
ria chose the correct rank of cointegration (r = 1). When 200 observations were
considered, the correct lag length was chosen 74.72%, 57.75% and 35.28% of the
times for AIC, HQ and SC, respectively. Again, all three criteria selected the true
cointegrated rank r = 1. Table A.2 contains the percentage the alternative model
selection criterion, IC(p, s ), has in choosing that cell, corresponding to the lag rank
and number of cointegrating vectors in 100,000 runs. The true lag rank cointegra-
tion vectors are identified by boldface numbers and the best lag rank combination
often chosen by each criterion are underlined. In Table A.2, the results show that,
in general, the AIC(p, s) criterion more frequently chooses the lag rank for 100 and
200 observations. For instance, for 100 observations, the AIC(p, s), HQ(p, s) and
SC(p, s) criteria more often choose the true pair (p, s) = (3, 1), 56.34%, 40.85%
and 25.2% of the times, respectively. For 200 observations, the AIC(p, s), HQ(p, s)
and SC(p, s) criteria more frequently choose the true pair (p, s) = (3, 1), 77.06%,
62.58% and 45.03% of the times, respectively. Note that all three criteria more
often choose the correct rank of cointegration (r = 1) in both samples. What
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happens when the weak-form common cyclical restrictions are ignored? Tables
A.1 and A.2 also show the relative performance of IC(p, s) vis-à-vis IC(p ). For
instance, for T = 100 the SC(p, s) has a success rate of 25.2% in selecting the true
p = 3, while the SC(p) only has a success rate of 17.48%. This represents a gain
of more than 44%. For T = 200, the gains are more than 27%. For T = 100 the
HQ(p, s) selects the true p =3 with a 40.85% accuracy while the HQ(p) only has
a success rate of 35.62%. This represents a gain of 14%. For T = 200, the gains
are more than 8%. For T = 100 the AIC(p, s) has a success rate of 56.34% in
choosing the true p = 3, in comparison with a rate of 54.08% for the AIC(p), a
gain of more than 4%. For T=200, the gains are more than 3%. Thus, it appears
that when using the AIC(p,s) criteria the cost of ignoring the weak-form common
cyclical restriction is low.

The most relevant results can be summarized as follows:

− All criteria (AIC, HQ and SC) choose the correct parameters more
often when using IC(p, s) vis-à-vis IC(p).

− There is a cost of ignoring additional weak-form common cyclical
restrictions in the model especially when the SC(p) criterion is used.
In general, the standard Schwarz, SC(p), or Hannan-Quinn, HQ(p),
selection criteria should not be used for this purpose in small samples
due to the tendency to identify an underparameterized model.

− The AIC performs better in selecting the true model more frequently
for both the IC(p, s) and the IC(p) criteria.

6. Conclusions

In this paper, we considered an additional weak-form restriction of common
cyclical features in a cointegrated VAR model in order to analyze the appropriate
way to choose the correct lag order. These additional WF restrictions are defined in
the same way as cointegration restrictions. While cointegration refers to relations
among variables in the long run, the common cyclical restrictions refer to relations
in the short run. Two methodologies have been used for selecting lag length; the
traditional information criterion, IC(p), and an alternative criterion (IC(p, s)) that
selects the lag order p and the rank structure s due to the weak-form common
cyclical restrictions.

The results indicate that the information criterion that selects the lag length
and the rank order performs better than the model chosen by conventional criteria.
When the WF restrictions are ignored there is a nontrivial cost in selecting the
true model with standard information criteria. In general, the standard Schwarz
or Hannan-Quinn selection criteria should not be used for this purpose in small
samples, due to the tendency to identify an underparameterized model.

In applied work, when the VAR model contains WF and cointegration restric-
tions, we suggest the use of AIC(p, s) criteria to choose the lag rank, since it
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provides considerable gains in selecting the correct VAR model. Since no work in
the literature has analyzed a VAR model with WF common cyclical restrictions,
the results of this paper provide new insights and incentives to proceed with this
kind of empirical work.
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Appendix A: Tables

Table A.1 Performance of the IC(p) information criterion in selecting lag order p

Frequency of lag(p) and cointegrating vectors (r) chosen by different criteria for the
trivariate VAR model in levels when the true model has parameters: p = 3 and r = 1

Number of observations=100 Number of observations=200
selected cointegrated vectors selected cointegrated vectors
0 1 2 3 0 1 2 3

Selected
lag
1 0,000 0,996 0,359 0,031 0,000 0,095 0,016 0,003
2 0,002 32,146 1,136 0,048 0,000 17,073 0,686 0,033
3 2,792 54,082 0,902 0,041 0,012 74,721 1,488 0,108

AIC(p) 4 0,737 4,068 0,091 0,003 0,005 4,177 0,081 0,006
5 0,392 0,987 0,031 0,000 0,013 0,828 0,020 0,000
6 0,219 0,333 0,014 0,000 0,023 0,257 0,005 0,000
7 0,166 0,173 0,006 0,000 0,039 0,133 0,002 0,000
8 0,133 0,107 0,005 0,000 0,060 0,115 0,001 0,000

1 0,000 3,884 1,915 0,165 0,000 1,098 0,243 0,021
2 0,002 52,593 1,907 0,080 0,000 37,390 1,614 0,098
3 2,600 35,617 0,612 0,027 0,012 57,749 1,146 0,082

HQ(p) 4 0,065 0,189 0,007 0,000 0,001 0,158 0,004 0,000
5 0,059 0,037 0,000 0,000 0,009 0,082 0,001 0,000
6 0,073 0,025 0,000 0,000 0,016 0,076 0,000 0,000
7 0,059 0,019 0,001 0,000 0,030 0,070 0,000 0,000
8 0,053 0,011 0,000 0,000 0,044 0,055 0,001 0,000

1 0,000 8,344 6,609 0,511 0,000 3,964 1,385 0,093
2 0,003 61,966 2,279 0,105 0,000 55,156 2,776 0,169
3 2,042 17,485 0,313 0,015 0,012 35,283 0,728 0,044

SC(p) 4 0,049 0,045 0,000 0,000 0,001 0,083 0,002 0,000
5 0,071 0,025 0,000 0,000 0,007 0,076 0,001 0,000
6 0,057 0,016 0,000 0,000 0,013 0,063 0,000 0,000
7 0,036 0,009 0,000 0,000 0,025 0,056 0,000 0,000
8 0,017 0,003 0,000 0,000 0,027 0,035 0,001 0,000

The numbers represent the percentage the model selection criterion has in choosing the cell
corresponding to the lag and number of cointegration vectors in 100,000 runs.
The true lag-cointegrating vectors are identified by boldface numbers.
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Table A.2 Performance of the IC(p, s) information criterion in selecting p and s

Johansen tested coint.vectors(r) 0 1 2 3
Selected rank(s) 1 2 3 1 2 3 1 2 3 1 2 3
Selected lag(p)

Sample size=100
1 - - - - - - - - - - - -
2 0.002 0,000 0,000 39,049 0,001 0,000 1,218 0,000 0,000 0,056 0,000 0,000
3 0,301 0,000 0,000 56,341 0,003 0,000 1,559 0,000 0,000 0,053 0,000 0,000

AIC(p, s) 4 0,004 0,000 0,000 1,186 0,001 0,000 0,070 0,000 0,000 0,001 0,000 0,000
5 0,000 0,000 0,000 0,114 0,001 0,000 0,012 0,000 0,000 0,000 0,000 0,000
6 0,000 0,000 0,000 0,020 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000
7 0,000 0,000 0,000 0,006 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000
8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 - - - - - - - - - - - -
2 0,002 0,000 0,000 55,563 0,000 0,000 1,888 0,000 0,000 0,081 0,000 0,000
3 0,267 0,000 0,000 40,855 0,000 0,000 1,207 0,000 0,000 0,043 0,000 0,000

HQ(p, s) 4 0,000 0,000 0,000 0,088 0,000 0,000 0,005 0,000 0,000 0,000 0,000 0,000
5 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
6 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
7 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 - - - - - - - - - - - -
2 0,004 0,000 0,000 70,971 0,000 0,000 2,574 0,000 0,000 0,113 0,000 0,000
3 0,221 0,000 0,000 25,204 0,000 0,000 0,887 0,000 0,000 0,025 0,000 0,000

SC(p.s) 4 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
5 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
6 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
7 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

Sample size=200
1 - - - - - - - - - - - -
2 0,000 0,000 0,000 18,797 0,000 0,000 0,681 0,000 0,000 0,038 0,000 0,000
3 0,000 0,000 0,000 77,065 0,002 0,000 2,260 0,000 0,000 0,145 0,000 0,000

AIC(p, s) 4 0,000 0,000 0,000 0,908 0,000 0,000 0,035 0,000 0,000 0,001 0,000 0,000
5 0,000 0,000 0,000 0,063 0,000 0,000 0,002 0,000 0,000 0,000 0,000 0,000
6 0,000 0,000 0,000 0,003 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
7 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 - - - - - - - - - - - -
2 0,000 0,000 0,000 33,952 0,000 0,000 1,370 0,000 0,000 0,086 0,000 0,000
3 0,000 0,000 0,000 62,576 0,000 0,000 1,877 0,000 0,000 0,111 0,000 0,000

HQ(p, s) 4 0,000 0,000 0,000 0,027 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000
5 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
6 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
7 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 - - - - - - - - - - - -
2 0,000 0,000 0,000 50,983 0,000 0,000 2,351 0,000 0,000 0,146 0,000 0,000
3 0,000 0,000 0,000 45,028 0,000 0,000 1,416 0,000 0,000 0,076 0,000 0,000

SC(p, s) 4 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
5 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
6 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
7 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
8 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

The numbers represent the percentage the IC(p,s) simultaneous model selection criterion has in choosing the cell corresponding to the lag rank
and number of cointegrating vectors in 100,000 runs. The true lag rank cointegration vectors are identified by boldface numbers and the best
lag rank cointegration vectors chosen by the criteria are underlined.
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Appendix B: VAR Restrictions for the DGPs

Consider the vector autoregressive, VAR(3), model:

yt = A1yt−1 + A2yt−2 + A3yt−3 + εt (16)

with parameters: A1 =





a1
11 a1

12 a1
12

a1
21 a1

22 a1
22

a1
31 a1

32 a1
32



, A2 =





a2
11 a2

12 a2
12

a2
21 a2

22 a2
22

a2
31 a2

32 a2
32



 and A3 =





a3
11 a3

12 a3
12

a3
21 a3

22 a3
22

a3
31 a3

32 a3
32



 . We consider the cointegration vectors β =





β11

β21

β31



, the

cofeature vectors β̃ =





β̃11 β̃12

β̃21 β̃22

β̃31 β̃32



 and the adjustment matrix α =





α11

α21

α31



 .

The long-run relation is defined by αβ′ = (A1 + A2 + A3 − I3). Thus, the VECM
representation is:

∆yt = αβ′yt−1 − (A2 + A3)∆yt−1 − A3∆yt−2 + εt (17)

We can rewrite Equation (17) as a VAR(1):

ξt = F ξt−1 + vt (18)

where ξt =





△yt

△yt−1

β′yt



 , F =





−(A2 + A3) −A3 α
I3 0 0

−β(A2 + A3) −β′A3 β′α + 1



 and vt =





εt

0
β′εt





1) Short-run restrictions (WF)

We now impose the common cyclical restrictions (i) and (ii) on model (16).
Let, G = −[R21K + R31], K = [(R32 − R31)/(R21 − R22)], Rj1 = β̃j1/β̃11, Rj2 =

β̃j2/β̃12 (j = 2, 3) and S = β11G + β21K + β31

(i) β̃′A3 = 0 => A3 =





−Ga3
31 −Ga3

32 −Ga3
33

−Ka3
31 −Ka3

32 −Ka3
33

−a3
31 −a3

32 −a3
33





(ii) β̃′(A2 + A3) = 0 => β̃′A2 = 0 => A2 =





−Ga2
31 −Ga2

32 −Ga2
33

−Ka2
31 −Ka2

32 −Ka2
33

−a2
31 −a2

32 −a2
33




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2) Long-run restrictions (cointegration)

The cointegration restrictions are specified by (iv) and (v ):
(iv) β′(A2 + A3) = [−(a2

31 + a3
31)S − (a2

32 + a3
32)S − (a2

33 + a3
33)S] and

β′A3 = [−a3
31S − a3

32S − a3
33S]

(v) β′α + 1 = β =
[

β11 β21 β31

]





α11

α21

α31



 + 1 = β11α11 + β21α21 +

β31α31 + 1
Taking into account the short- and long-run restrictions, the companion matrix

F can be represented as:

F =





−(A2 + A3) −A3 α

I3 0 0
−β(A2 + A3) −β′A3 β′α + 1





=



















−G(a2
31

+ a3
31

) −G(a2
32

+ a3
32

) −G(a2
33

+ a3
33

) −Ga3
31

−Ga3
32

−Ga3
33

α11

−K(a2
31

+ a3
31

) −G(a2
32

+ a3
32

) −G(a2
33

+ a3
33

) −Ka3
31

−Ka3
32

−Ka3
33

α21

−(a2
31

+ a3
31

) −G(a2
32

+ a3
32

) −(a2
33

+ a3
33

) −a3
31

−a3
32

−a3
33

α31

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

−(a2
31

+ a3
31

)S −(a2
32

+ a3
32

)S −(a2
33

+ a3
33

)S −a3
31

S −a3
32

S −a3
33

S b



















with b = β′α + 1 = β11α11 + β21α21 + β31α31 + 1

3) Covariance stationary restrictions

Equation (18) will be covariance stationary if all eigenvalues of matrix F lie
inside the unit circle. That is, eigenvalue of matrix F is a number λ such that:

|F − λI7| = 0 (19)

The solution of (19) is:

λ7 + Ωλ6 + Θλ5 + Ψλ4 = 0 (20)

where the parameters Ω, Θ, and Ψ are: Ω = G(a2
31+a3

31)+K(a2
32+a3

32)+a2
33+a3

33−
b, Θ = Ga3

31+Ka3
32−(a2

33+a3
33)b−Gb(a2

31+a3
31)−Kb(a2

32+a3
32)+α31S(a2

33+a3
33)+

Sα21(a
2
32+a3

32)+Sα11(a
2
31+a3

31)+a3
33 and Ψ = −a3

33b−Ga3
31b−Ka3

32b+α31a
3
33S+

a3
32Sα21 + a3

31Sα11, and the first four roots are λ1 = λ2 = λ3 = λ4 = 0. We
calculated the parameters of matrices A1, A2 and A3 as functions of roots (λ5, λ6

and λ7) and free parameters. Hence, we have three roots satisfying Equation (20)

λ3 + Ωλ2 + Θλ + Ψ = 0 (21)

for λ5, we have: λ3
5 + Ωλ2

5 + Θλ5 + Ψ = 0 ..................................Eq1
for λ6, we have: λ3

6 + Ωλ2
6 + Θλ6 + Ψ = 0 ..................................Eq2
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for λ7, we have: λ3
7 + Ωλ2

7 + Θλ7 + Ψ = 0 ..................................Eq3

Solving Equations 1, 2 and 3 yields: Ω = −λ7−λ6−λ5, Θ = λ6λ7+λ6λ5+λ5λ7

and Ψ = −λ5λ6λ7. Equating these parameters with the relations above we have:

a2
31 = −(−Ka2

32 − Ka2
32b + α31Sa2

33 − λ6λ7 − λ6 − λ7 − a2
33b − λ5λ6λ7 + b

− λ5λ7 − λ5λ6 − a2
33 + Sa2

32α21 − λ5)/(Sα11 − G − Gb)

a3
32 = (−S2λ7α11α31 − b2λ7G − λ6Gb2 + bλ7Sα11 + λ6Sα11b − a3

31Sα11G

+ a3
31S

2α2
11 − Ga3

31bSα11 − λ5Gb2 + λ5Sα11b − λ7λ6α31SG − λ7λ5α31SG

− S2α11λ
5α31 − S2α11λ

6α31 + Sλ5Gbα31 + Sα31λ
6Gb − λ5λ7λ6G

+ λ6λ7Gb + λ5λ7Gb + λ5λ6Gb − SGb2α31 + S2α11bα31

− S2α11α31a
2
33 + S2α2

31a
2
33G + SG2a3

31α31 + Sα11a
2
33b + Gb3 − Sα11b

2

− S2α11Ka2
32α31 − S2α11α31Ga3

31 + S2a2
32α21Gα31 − Sa2

32α21Gb

+ Sα31G
2a3

31b − Sα31a
2
33Gb + Sα11Ka2

32b + Sλ7Gbα31

− λ5λ6α31SG − λ5λ7λ6α31SG + λ5λ7λ6Sα11)/(Sα11Kα31 − KGα31

+ bGα21 − Kα31Gb − Sα11α21 + Gα21)/S
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a3
33 = −(Kb3G − λ5Gb2K + Sα11λ

6Kλ7λ5

+ Kbλ7Sα11 − Kb2λ7G − S2α21λ
7α11 + λ6GbSα21

+ Sα21λ
7Gb − λ6Gb2K + λ6Sα11Kb

− λ6S2α11α21 + λ5GbSα21

+ λ5Sα11Kb − λ5S2α11α21

− λ7λ6Sα21G + Kbλ7λ6G + Kbλ7λ5G

+ Kbλ5λ6G − λ7λ6KGλ5

− S2α11α21Ka2
32 + S2α11α21b

− S2α11α21a
2
33 + S2α2

21a
2
32G

− Sα11Kb2 + Sα21G
2a3

31 − Sα21Gb2

+ S2a3
31Kα2

11 − S2α11α21Ga3
31

+ S2α21a
2
33Gα31 + Sα11Kˆ2ba2

32

+ Sα11Kba2
33 − Sα11a

3
31KG − Sα11KbGa3

31

− SKba2
33Gα31 + Sα21G

2a3
31b − Sα21λ

5λ6G

− Sα21λ
5λ7λ6G − Sα21Ka2

32Gb

− Sα21λ
7λ5G)/(Sα11Kα31 − KGα31 + bGα21

− Kα31Gb − Sα11α21 + Gα21)/S

We can calculate a2
31, a3

32 and a3
33 fixing the set λ1 = λ2 = λ3 = λ4 = 0. The

values of a3
31, a

2
32, a2

33, λ5, λ6 and λ7 are sorted independently from uniform
distributions (−0.9; 0.9). Hence, each parameter of the matrices A1, A2 and A3

are defined and we can generate the DGPs of VAR(3) model with cointegration
and WF restrictions.

78 Brazilian Review of Econometrics 29(1) May 2009


