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1. Introduction

Heterogeneity plays an important role in regression analysis. In particular, due
to missing data, the econometrician may not be able to control for relevant factors
in the estimation of regression coefficients, leading to inconsistent inference. Our
paper provides an approach to address this problem, even with a cross section of
data.

One way of confronting unobserved heterogeneity issues is to consider panel
data methods that explore the potential similarity of observations across time
periods, either in the variable-intercept models or in the variable-coefficient model
(Hsiao, 1989). However, sometimes panel data are not available or, even worse,
their use can lead to inadequate sources of variation in the estimation process.
For example, in convergence studies, panel-data methods have advantages and
disadvantages. Durlauf and Quah (1999) argue that “many economists regard
growth analyses as relevant over long time spans. Averaging over the longest
time horizon possible-as in cross-section regression work-comes with the belief that
such averaging eliminates the business cycle effects that likely dominate per capita
income fluctuations at higher frequencies. (...) Different time scales for analyzing
the model are mutually appropriate only if the degree of misspecification in the
model is independent of time scale. In growth work, one can plausibly argue that
misspecification is greater at higher frequencies” (pp. 287). For the particular
case of convergence studies, it is a challenge to reconcile the need to control for
unobservables with the better source of variation provided by large time spans.

We propose a semiparametric framework based on a set of proxy variables to
control for heterogeneity and unobserved effects in regression models. Contrary
to Robinson (1988), who uses a kernel semiparametric correction, we consider a
series (sieve) expansion of the unknown and possibly nonlinear term, as in Chen
(2007). The use of sieve expansions has some advantages over kernel methods.
First, multiple explanatory variables can easily be handled. Second, sieve expan-
sions have better approximation capabilities than kernel methods, as several basis
functions choices can be shown to be dense in a given functional space. For exam-
ple, in this paper we advocate the use of artificial neural network sieves that can
simultaneously approximate the unknown function and its derivatives; see Hornik
et al. (1994) for further details. Although deriving the asymptotic properties for
sieve extremum estimators is more complicated than the kernel case, results from
Chen and Shen (1998), Chen and White (1998), and Chen (2007) can be applied
in our context.

We conduct a Monte Carlo simulation to study the finite sample properties
of our proposed estimator, comparing it with other alternatives available in the
literature: ordinary least squares (OLS) with an omitted variable, OLS with linear
specification and the kernel method proposed by Robinson (1988). The simulation
exercises are organized in such a way that we consider a different number of regres-
sors as all models with distinct levels of complexity. Our approach performs better
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than the alternatives. The differences become quite significant as the dimension
and complexity of the problem increase.

In addition, we use our semiparametric model to investigate an old issue in
economics: the convergence of per capita income. The origin of the debate around
convergence goes back to David Hume’s 1742 essay entitled “Of the Rise and
Progress of the Arts and Sciences” (Elmslie, 1995). Whether the income levels
of poorer economies grow faster than those of richer economies is not only an
important and central question in the literature of development economics, but is
also related to the issue of validating competing growth theories. In the recent
empirical literature, a wide array of empirical results on the subject exists. These
results were obtained using cross section, panel data, time series or distribution
approaches to the investigation of convergence both within an economy and across
economies (Islam, 2003) and, more recently, sectoral approaches to convergence
(Rodrik, 2013).

Consistent with the literature, our results suggest that convergence is stronger
when we account for unobserved differences across municipalities. The estimated
parameters associated with unobserved heterogeneity are related to steady-state
levels of per capita income, according to the neoclassical growth theory. In our
application, the estimated parameters exhibit notable differences across Brazil-
ian municipalities that do not necessarily coincide with aggregated administrative
units such as states or macro-regions. Furthermore, it is possible to identify clus-
ters of high-income steady-state municipalities in the central and southern parts
of the country.

The paper is organized as follows. Section 2 describes the model and the
estimation methodology. Section 3 presents the simulation exercises. Section 4
offers an application to the convergence of per capita income across Brazilian
municipalities. Section 5 concludes the paper. All proofs are presented in the
Appendix.

2. Semi-Parametric Fixed-Effects Regression Model

2.1 Model definition

Consider the following assumption concerning the data generating process
(DGP).

Assumption 1 (Data Generating Process) The observed sequence of real-valued

dependent variable {yi}Ni=1 is generated as

yi = ai + β′0xi + ui, i = 1, . . . , N,

where yi is the dependent variable, ai is the unobserved fixed-effect representing
individual heterogeneities, xi ∈ Rk is a set of observed independent and identically
distributed (i.i.d.) random variables, and ui is an error term. The fixed-effects are
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possibly endogenous such that E [ai|xi] 6= 0. Furthermore, the sequence of i.i.d.
random vectors {xi} has a common joint distribution D on ∆, a measurable Eu-
clidean space with measurable Radon-Nicodým density. Finally, E

[
|xi|δ

]
<∞ for

δ = 1, . . . , 4.

We propose a semiparametric approach to estimate the fixed-effects ai, i =
1, . . . , N , and the parameter of interest β0. The core idea relies on the following
assumption.

Assumption 2. The unobserved effects ai, i = 1, . . . , N , can be written as an un-
known function of a set of observed, exogenous, i.i.d. proxy variables zi ∈ Rq,
distinct from xi. Therefore, ai = η0(zi) + εi, where η0(·) : Rq −→ R is an un-
known function. Furthermore, the sequence of i.i.d. random vectors {zi} has a
common joint distribution Dz on ∆z, a measurable compact space with measurable
Radon-Nicodým density. Finally, E

[
|zi|δ

]
<∞ for δ = 1, . . . , 4.

The model can be rewritten as

yi = η0(zi) + β′0xi + εi + ui. (1)

The vector θ0 = (η0,β
′
0)′ is defined as the parameter of interest, where η is

the nonparametric nuisance parameter.1

The following assumption states two crucial conditions for the identification
of (1).

Assumption 3 (Identification) The following conditions hold:

E [yi|xi, ai, zi] = E [yi|xi, zi] (2)

D [ai|xi, zi] = D [ai|zi] , (3)

where D[·|·] represents the conditional distribution.
Equation (2) implies that conditional on xi and zi, the expected value of yi does

not depend on ai. This is true if zi is sufficient as a proxy for ai. If ai = η(zi)+ εi
and E [εi|xi] = 0, (3) is trivially satisfied.

Finally, consider the following assumption about the error terms.

Assumption 4 (Errors). Set ξi = ui + εi, and consider that the error sequence

{ξi}Ni=1 is formed by random variables drawn from an absolutely continuous (with
respect to a Lebesgue measure on the real line), positive-everywhere distribution
such that E[ξi] = 0, E[|ξi|δ] < ∞, δ = 1, . . . , 4, and E[ξiξj ] = 0, ∀ i 6= j.

1There are many ways to estimate η(·) parametrically. However, in this paper we solely
consider the nonparametric alternative.
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In addition, consider the following restrictions: (1) E [ξi|xi, zi] = 0 and (2)
E
[
ξ2
i |xi, zi

]
= σ2

ξ (xi, zi), where 0 < σ2
ξ (xi, zi) <∞, ∀ i.

Assumption 4 is standard, implying that spatial dependence can be successfully
controlled once zi is included in the regression. Moreover, the moment conditions
in the assumption are important in deriving the asymptotic results.

2.2 Estimation method and asymptotic theory

The key idea of this paper is to jointly estimate both the parametric and
nonparametric components of θ by the sieve extremum estimation method.

Set ρ(vi;θ) ≡ ρ(vi;β, η(·)) = yi − β′xi − η(zi), where vi = (yi, z
′
i,x
′
i)
′
, i =

1, . . . , N . Assume that the conditional expectation E[ρ(vi;θ0)|xi, zi] = 0, where
θ0 ≡ (β′0, η0)′ ∈ Θ is the true parameter vector. Furthermore, define σ2(vi) =
E
[
ρ(vi;θ)2|xi, zi

]
. Let Θ = B × H, where H is a space of continuous functions

defined on a bounded set of Rq and B is a compact set in Rk. Consider also
a sequence of approximating parameter spaces (or sieves) represented as ΘN =
B ×HN , where

⋃
N HN is dense in H in some desirable metric.

To obtain an efficient estimator of β0 we apply the following three-step proce-
dure suggested by Ai and Chen (2003):

Step 1 Obtain an initial consistent sieve nonlinear least squares estimator θ̂N =
(β̂N , η̂N ) by

θ̂N = arg min
(β,η)∈B×HN

1

N

N∑
i=1

ρ(vi;θ)2.

Step 2 Obtain a consistent estimator σ̂2(vi) of σ2
0(vi) ≡ E

[
ρ(vi;θ0)2|xi, zi

]
us-

ing θ̂N = (β̂N , η̂N ).

Step 3 Obtain the optimally weighted estimator θ̃N = (β̃N , η̃N ) by solving

θ̃N = arg min
θ∈B×HN

Q(θ,M),

where Q(θ,M) ≡ 1
N

∑N
i=1

ρ(vi;θ)2

σ̂2(vi)
.

There are a number of distinct sieve estimators. In this paper, we advocate
the use of the Artificial Neural Network (ANN) sieve, defined as

η0(zi) ∈ H ≡

{
α0 +

MN∑
m=1

αmf(zi;ωm, cm)

}
,

where

f(zi;ωm, cm) =
1

1 + e−(ω′
mzi−cm)

,
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and |α0| < ∞, |αm| < ∞, |cm| < ∞, and ‖ωm‖ < ∞, m = 1, . . . ,MN . The class
of ANN sieves is dense in H.

Consider the following assumption.

Assumption 5 (Approximation Capability) There exists a small number δ > 0 such
that |ai − η0(zi)| < δ, ∀ i, a.s.

Assumption 5 states that the unobserved fixed-effects may be approximated in
an arbitrarily accurate way by a function of zi, i = 1, . . . , N . As the class of ANN
sieves is dense inHN , and thus is a universal approximator of the unknown function
η0(zi), the semi-parametric estimator η̂ can be used to control for unobserved
characteristics, leading to an unbiased estimator of β. Assumption 5 requires that
the distribution of the approximation error has a compact support. Nevertheless,
Assumption 5 can be dropped, but in this case the sieve approximation will not
be a universal approximator anymore.

Define D(xi, zi) = xi − E [xi|zi] and D(X,Z) = [D(x1, z1) . . .D(xN , zN )]
′
.

From the results in Ai and Chen (2003) and under Assumptions 1–5, it follows
that

√
N(β̃N − β0)

d−→ N(0,G−1
0 ),

with

G0 = E
{
D(X,Z)′

[
Σ̂(X,Z)

]−1

D(X,Z)

}
and Σ(X,Z) = diag

[
σ2

0(v1), . . . , σ2
0(vN )

]
.

2.3 Model selection

In applications, the number of sieves is unknown and should be determined
from the data. In the neural network literature, several approaches to determining
the number of sieves have been proposed. A popular method is pruning, in which
a model with a large number of hidden units is estimated first, and the size of
the model is subsequently reduced by applying an appropriate technique such as
cross-validation. Another technique used in this context is regularization. This
procedure may be characterized as penalized maximum likelihood or least squares
applied to the estimation of neural network models. Bayesian regularization, based
on selecting a prior distribution for the parameters, is an example of this approach.

Another possibility, which is adopted in this paper, is to estimate R models,
with MN = 1, ..., R, for a sufficiently large R, and choose the optimal M∗N based
on the use of model selection criteria (MSC). In the simulation study we show that
this procedure works reasonably well.
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3. Simulations

3.1 Setup

In this section, we conduct a Monte Carlo simulation to check the finite sample
properties of the estimator discussed in this paper and compare it with alternatives
available in the literature. We simulate the following DGP:

yi = ai + xi + ui,

where xi ∈ R and

ai = f(zi; ζ) =

ζ∑
j=1

(
K∑
k=1

zik

)j
+ εi,

and zi is aK-dimensional vector. The parameter ζ is a complexity index. {xi, zi}Ni=1

is generated from a normal distribution, such that:

(xi, z
′
i)
′ ≡ (xi, z1i, z2i, z3i)

′ ∼ N(µ,Σ), i = 1, ...N,

where

µ =


0
1
2
3

 and Σ =


2.5 · · ·
−0.3 1 · ·

1 −.2 1.6 ·
1 −.3 −.1 1.3

 .

The disturbances ui and εi are generated from independent standard nor-
mal distributions. Simulations with 400 repetitions are performed using differ-
ent combinations of values for ζ, K and N : ζ ∈ {2, 3, 4}, K ∈ {1, 2, 3}, N ∈
{200, 1000, 3000}. The sieve estimation procedure was applied to the data with

the identity weighting matrix Σ̂0(X,Z) = I. Three competing procedures are
also evaluated: (1) an ordinary least squares model omitting ai (OLS-OV), yi =
xiβ + ξi; an ordinary least squares model including as regressors (xi, z

′
i) (OLS),

yi = βxi+γ
′zi+ξi; and finally a version of Robinson’s (1988) estimation method.

Note that we violated the assumption of compact support on purpose. The
idea is to check how harmful this can be in finite samples.

In brief, our version of Robinson’s (1988) estimation procedure consists of the
following steps: (1) regress xi on zi using a nonparametric estimation method
and collect the vector of residuals UX ; (2) regress Y on Z using a nonpara-
metric estimation method and collect the vector of residuals UY ; (3) obtain

β̃ = (U ′XUX)−1U ′XUY . In steps (1) and (2), residual estimation is based on
a Nadaraya-Watson kernel estimator with a Gaussian kernel.

In this exercises, the number of sieves MN is chosen through the minimization
of the Hannan-Quinn information criterion (HQC) in the range of 0 (linear case)
to 15 sieves.
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3.2 Results

The median, mean and standard error (SE) of each of the estimators of β
across the 400 simulations are reported in Tables 1-3. In each table, we present
the results for the competing estimation methods: OLS-OV, OLS, Robinson and
sieves for different values of the complexity index ζ and the number of observations
N .

When the number K of variables in the semi-parametric component is one
(Table 1), Robinson’s (1988) estimation method performs well. When the com-
plexity index ζ equals 2, the mean of the estimated parameter ranges between
0.98 (N = 200) and 1.00 (N = 3000). When the complexity increases to four,
Robinson’s method performs more poorly. However the produced estimate is still
not far from the true value of β, especially when the sample is large: for N = 3000
and ζ=4, the mean of Robinson’s estimator is 0.98. The means of our sieve point
estimations are all either 1.00 or 1.01 and the median of the number of sieves
is between 2 and 4. The OLS and OLS-OV estimation methods perform poorly
in all cases with different combinations of the number of observations and the
complexity index.

Table 2 shows the simulation results for the case of two variables (K = 2). In
this case, the performance of Robinson’s estimation method worsens dramatically
as the complexity index increases. As was already noted in Robinson (1988),
the performance of this method is poor when the number of variables in the semi-
parametric component is greater than one. On the other hand, our sieve estimator
continues to perform well: in all cases with different combinations of the number
of observations and the complexity index, its mean and median are between 1.00
and 1.01. The median number of sieves increases for a range between 3 and 8.
The OLS and OLS-OV estimation methods perform even more poorly in the case
of two variables than in the case of one variable.

The three-variable case results are displayed in Table 3 and are similar to the
results for the one-variable and two-variable cases. The sieve estimator is very
close to one, which is the real value of β, while the Robinson, OLS and OLS-OV
estimation methods perform progressively more poorly as the complexity index
increases.

4. Applications: Economic Growth and Convergence among Brazilian
Municipalities

We illustrate our semi-parametric regression model by testing convergence
among Brazilian municipalities between 1970 and 2000. Our starting point is
the simplified convergence equation presented in Barro and Sala-i-Martin (1992):

log

(
yi,t
yi,t−1

)
= ai + γ · log yi,t−1 + φi · (t− 1) + ui,t, (4)
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where yi,t is the per capita income of region i in period t, ai is associated with
the steady-state level of per capita income and the rate of technological progress,
φi is a parameter related to the time trend determined by technological progress,
and ui,t is the random term. Convergence corresponds to the parameter γ.

From a conceptual point of view, there are two alternative assumptions that
determine the most important distinction of convergence concepts. First, we can
assume that ai = a and φi = φ, i.e., that the basic parameters of preference
and technology are the same for all economies represented in the sample. This is
the case when γ < 0 represents unconditional convergence – a situation in which
poor municipalities tend to grow unconditionally more quickly than rich ones.
Alternatively, we can state a weaker assumption allowing for possible differences
in the steady state across the economies considered. In terms of equation (4), ai
and φi are allowed to vary. In this case, γ < 0 means conditional convergence –
controlling for differences in the steady-state per capita income, poor economies
grow more quickly.

Here, we estimate (4) in a cross-section setup, where there is no identifiable
time trend and we are not able to distinguish between φi and ai. Thus, we estimate
the following equation:

log

(
yi,2000

yi,1970

)
= αi + γ · log yi,1970 + ui,2000. (5)

Our data comes from the Brazilian Demographic Censuses of 1970 and 2000.
The geographical units were adapted to reflect the changes in the organization
of the Brazilian territory during that period. In 1970, Brazil was comprised of
3,951 municipalities. By 2000,this number had grown to 5,507. Therefore, all the
information collected in 2000 were aggregated to match the municipal structure
of 1970. Our dependent variable is the average per capita income growth between
1970 and 2000 for each municipality. The independent variable is the logarithm of
the per capital income level in 1970. These two variables are presented in Figures
1 and 2.

Figures 1 and 2 illustrate the large differences across municipalities, in terms of
both growth rate and 1970 income level. Figure 2 shows a sharp contrast between
the poor northeastern part of the country and the southeastern and southern
regions. Figures 1 and 2 also show that the variations in both growth and income
levels do not coincide with the administrative state frontiers. There are numerous
variations within many of the Brazilian states.

We consider different formulations in the estimation of equation (5). For the
case of unconditional convergence, where αi = α, equation (5) can be estimated
by OLS, providing consistent estimates for γ if E (log yi,1970 · ui,2000) = 0. This
result is reported in column (1) of Table 4 and in the scatter plot of Figure 3.
The estimated γ coefficient is -0.004, significant at the 1% level. Thus, the poorer
municipalities in 1970 experienced a (unconditionally) lower growth rate between
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Figure 1
Map of the log(Brazilian per capita income growth 1970-2000)

Figure 2
Map of the log(Brazilian per capita income level 1970)
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Table 4
Convergence Regressions – Brazilian Municipalities

Dependent variable: per capita growth rate, 1970-2000

(1) (2) (3) (4)

log(per capita income level 1970) -0.004*** -0.014*** -0.014*** -0.017***
(0.000) (0.000) (0.000) (0.000)

Constant 0.059*** 0.104*** 0.118*** -
(0.001) (0.002) (0.009) -

Number of Sieves - - - 12
Macrorregion dummies (5 regions) No Yes No No
State dummies (27 states) No No Yes No
Method of estimation OLS OLS OLS Sieves GLS
Observations 3948 3948 3948 3948
R-squared 0.031 0.386 0.487 0.498
Note: Standard errors in parentheses.
* significant at 10%; ** significant at 5%; *** significant at 1%

Figure 3
Growth rate from 1970 to 2000 vs. log(1970 per capita income level)

1970 and 2000.
Although we found significant evidence of unconditional convergence in Brazil-

ian municipalities, Brazil is a large country that displays salient regional differences
as shown in Figures 1 and 2. As a consequence, we might expect significant vari-
ation in the steady-state levels of per capita income across cities. Therefore, we
consider the more flexible concept of conditional convergence.

However, the study of conditional convergence in this cross-section environ-
ment, is a more complex task. On the one hand, we use no additional data to
approximate αi. On the other hand, there is no degree of freedom to estimate αi
without additional statistical structure.

A natural strategy is to use aggregation through dummy variables to enable the
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Figure 4
Conditional Growth rate from 1970 to 2000 vs. log(1970 per capita income level)

estimation of different steady-states, based on administrative divisions such as the
five Brazilian macro-regions or the 27 states. The drawback of this approach is that
administrative divisions of the territory do not necessarily represent differences in
the steady-state levels of per capita income and technology. Figures 1 and 2 show
that considerable variation exists within many states.

Columns (2) and (3) report the estimation of equation (5), controlling for
dummy variables of the Brazilian macro-regions and states, respectively. In both
cases, the estimated coefficient of convergence indicates a faster process of conver-
gence, where γ̂ = −0.014 at the 1% level.

Finally, we use the semi-parametric approach presented in the previous section
to evaluate conditional convergence. Differences in preference and technological
parameters are endogenously incorporated into the analysis through geographical
similarities. The underlying assumption is that cities that are near each other face
similar steady-states. In terms of the modeling, we estimate (5), considering that
αi is a semi-parametric function of the latitude and longitude coordinates, as in
(1). The result is presented in the column (4) of Table 4, while the estimates for
αi are depicted in Figure 4.

The semi-parametric approach gives us a highly significant γ̂ = −0.017, which
is also significantly different from the point estimate −0.014 obtained from OLS
using dummy variables. There are two possible interpretations of this result. First,
one can argue that the semi-parametric approach makes it possible to incorporate
unobserved heterogeneity across Brazilian municipalities in the estimation of the
convergence parameter. This is a remarkable result, especially considering that
the border Brazilian states are a highly non-linear function of the latitude and
longitude coordinates. Second, from a statistical point of view, the parameter of
convergence estimated by the OLS with dummy variables is missing significant
unobserved heterogeneity that was incorporated in the semi-parametric approach.
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Figure 5
Map of the Semi-Parametric Geographical Fixed Effects

Another aspect of this approach is the ability to estimate geographic fixed-
effects at the municipality level. This allows us to investigate the evidence for
unconditional convergence and conditional convergence in our sample. Figures
3 presents a plot growth versus initial per capita income for the OLS (without
dummies), depicting the pattern of unconditional convergence. Figure 4, on the
other hand, presents a plot of the growth rate adjusted by differences in the steady-

state
(

log
(
yi,2000
yi,1970

)
− αi

)
versus the initial per capita income. A comparison of

Figures 3 and 4 reveals that the evidence for conditional convergence is much
clearer than that for unconditional convergence. Controlling for differences in the
steady-state, poor cities grow more quickly than rich cities.

Figure 5 depicts the geographical fixed effects on a map. The estimated geo-
graphic fixed-effects vary from 0.071 to 0.122, with notable clusters of high-income
municipalities in the central and southern parts of the country. There are signif-
icant geographic differences across municipalities that do not coincide with the
geographic structure of the Brazilian states. This is a possible explanation for the
significant differences between the OLS estimates and the values obtained using
our semi-parametric method.

5. Conclusion

This paper proposes a semi-parametric approach to control for unobserved
fixed effects in linear regression models. The approach is based on the artificial
neural network sieve extremum estimator. We present a procedure to specify the
model and use simulations to examine its finite sample properties.

The semi-parametric fixed-effect regression model is applied to the study of
convergence across Brazilian municipalities for the period from 1970 to 2000. The
estimated fixed effects account for differences in the steady-state levels of per
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capita income, allowing for a more evident convergence relation. The estimated
coefficient of convergence is significantly different from the OLS counterparts, and
the relationship between the (adjusted) growth rate and the per capita income level
becomes closer to a straight and negatively sloped line. We find strong evidence
of conditional convergence among Brazilian cities between 1970 and 2000.
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