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Abstract

In this paper we obtain the expression for the copula pertaining to the multivariate gen-
eralized t distribution, the generalized t-copula, or in short, GT-copula. The GT-copula
generalizes some well known copulas, such as the one associated with the multivariate
t distribution (t-copula). We derive the expression for its tail dependence coefficient
and show that the GT-copula may adjust for stronger tail dependence when compared
to the t-copula. The potentiality of the GT-copula allows for modeling varying degrees
and different types (linear and nonlinear) of dependence, as well as multimodality. By
applying Sklar’s theorem to the GT-copula, and by mixing symmetric and asymmetric
margins, we construct a new family of multivariate distributions. The resulting distri-
butions are suitable for modeling a wide variety of skew datasets. The flexibility of the
copula approach suggests applications in many fields, such as environment and finance.
We provide an illustration, where we quantify stock market linkages.
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1. Introduction

McDonald and Newey (1988) introduced the univariate GT Distribution as an
alternative to the normal and t distributions when modeling errors in regression.
The GT family applies to symmetric, fat-tailed data and therefore adjusts for
the leptokurtosis of nonnormal data. Recently, Theodossiou (1998) introduced
the univariate skew GT Distribution and Arslan (2004) defined a new family of
multivariate generalized t (MGT) distributions. The MGT family includes as
special cases the multivariate t distribution, and the generalized t distribution
defined by Arellano-Valle and Bolfarine (1995).

In this paper we obtain the expression for the copula pertaining to the MGT
family of distributions, the GT-copula, and investigate its properties. The GT-
copula may be seen as a generalization of the well known copula associated with
the multivariate t distribution (t-copula). We derive the expressions of the copula-
based coefficients of upper and lower tail dependence (λU and λL), and show that
the GT-copula may possess stronger tail dependence when compared to the t-
copula.

One useful application of copulas is the construction of multivariate distribu-
tions using Sklar’s theorem (Sklar, 1959). Given the marginals, many interesting
multivariate distributions, ranging from symmetric to asymmetric, can be obtained
from the GT-copula. A similar technique was used by Fang et al. (2002), where
they proposed the family of meta-elliptical distributions. We provide some other
examples of this type of family, combining the GT-copula with GT and skew GT
marginals.

The flexibility of the copula approach (which separately models margins and
dependence structure) allows for modeling many different data types, for example,
skew and multimodal data. In addition, the potentiality of the GT-copula allows
for modeling different degrees and types (linear and nonlinear) of dependence.
The combination of these two properties suggests applications in fields such as
environment, insurance, and finance. In finance, the GT-copula may be used, for
example, to model dependent risks and to compute measures of interdependence
and contagion.

We provide an illustration in finance using pairs of stock market indexes.
Whenever there exists positive association between two markets, there exists con-
tagion, and the asymptotic interdependence may be severely underestimated if
a copula with zero tail dependence coefficient is assumed. To measure linkages
at high quantiles between markets, we define a selection of tail events involving
the unconditional model based Value-at-Risk with small exceedance probability in
each margin, and compute their probabilities. These numbers may provide new
insights on the interrelationships of these markets.
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The dynamics in mean and volatility of the series may affect the copula and
dependence measures estimates. To investigate this issue, we model the conditional
mean and volatility using time series and GARCH models, and fit copulas to the
filtered data.

The remainder of this paper is organized as follows. In Section 2 we briefly
review the concept of copula and define some dependence measures. In Section 3
we obtain the copula of the MGt distribution and derive its properties. In Section 4
we provide some examples of the construction of new families of multivariate skew
distributions and give an algorithm to generate from the GT-copula. In Section 5
we illustrate the usefulness of the copula approach in finance, and compute market
linkages using raw and filtered log-returns. In Section 6 we discuss our results and
conclude.

2. Copulas

2.1 Definition of copula

Let F be the absolutely continuous distribution function (cdf) of the random
vector X= (X1, ..., Xd) ∈ ℜd. Let F1, ..., Fd be the marginal cdfs, and let Xi 7→
Fi(Xi) = Ui, i = 1, ..., d be the probability integral transformation to the standard
uniform distribution. The copula CF pertaining to F is defined as

CF (u1, ..., ud) = F (F−1
1 (u1), ..., F

−1
d (ud)), ∀ (u1, ..., ud) ∈ (0, 1)d (1)

where F−1
i , is the quantile function of Fi, i = 1, ..., d, that is, F−1

i (p) = inf{x|Fi(x)
≥ p}, p ∈ (0, 1).

The copula CF completely specifies the distribution F (Sklar’s theorem, Sklar
(1959)) since ∀ x = (x1, ..., xd) ∈ ℜd:

F (x1, ..., xd) = CF (F1(x1), ..., Fd(xd)) (2)

From (1) and (2) we observe that the copula CF is the cdf of the random vector
(U1, ..., Ud) and contains all information about the dependence structure existing
among the margins Fi’s. The copula representation of F is unique when all Fi,
i = 1, ..., d are continuous Sklar (1959). Next, we provide the densities of two
important families of elliptical copulas.

(i) Density of the Gaussian Copula CR
Ga:

cRGa(u1, ..., ud) = |R|−1/2 exp{1

2
z′(Id −R−1)z} , (u1, ..., ud) ∈ (0, 1)d (3)

where z = (z1, ..., zd) with zi = Φ−1(ui) are the standard normal quantiles, Φ rep-
resents the (univariate) cdf of a standard normal random variable, and R is the cor-
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relation matrix. The Gaussian copula is the copula pertaining to a d -variate nor-
mal distribution (with cdf ΦR

d ) with standard normal margins and (Pearson) corre-
lation matrix R. From (2), F (x1, ..., xd) = ΦR

d (x1, ..., xd) = CR
Ga(Φ(x1), ...,Φ(xd)).

(ii) Density of the t-copula CR,ν
t :

cR,ν
t (u1, ..., ud) =

K∗|R|−1/2(1 + z
′R−1

z

ν )
− ν+d

2

∏d
i=1 fν(t−1

ν (ui))
, (u1, ..., ud) ∈ (0, 1)d (4)

where K∗ =
Γ( ν+d

2
)(πν)−

d
2

Γ( ν
2
) , z = (z1, ..., zd), with zi = t−1

ν (ui), and where t−1
ν (·)

represents the quantile function of a (univariate) standard t-distributed random
variable with ν degrees of freedom (d.f.) with density function fν and cdf tν . The
t-copula depends only on R and ν, and the value for ν is common for marginal
and joint distributions. The t-copula is the copula pertaining to a d-variate t
distribution with ν d.f. and correlation matrixR. A detailed study of its properties
may be found in Demarta and McNeill (2004).

2.2 Copula-based dependence measures

The scale-invariant dependence structure of a multivariate distribution F is
best represented by its copula, which remains unchanged when the marginal vari-
ables are subjected to strictly increasing transformations. Some dependence mea-
sures possess this invariance property and may be conveniently represented using
the corresponding CF copula. Examples of such copula-based dependence mea-
sures are Kendall’s τ and Spearman’s ρ.

An important example of a dependence measure not sharing the invariance
property is the Pearson correlation coefficient ρ, the canonical measure in the
elliptical world. It can be shown (Joag-Dev et al., 1983) that the Pearson corre-

lation coefficient ρ̃ij between the margins i and j of the copulas CR
Ga and CR,ν

t

are slightly smaller than the ρij of the corresponding distributions. Next we give
the definitions of Kendall’s τ and Spearman’s ρ along with the concept of tail
dependence. For the sake of simplicity, we write X1 and X2 representing any (i, j)
pair of margins.

Kendall’s τ(X1, X2) is defined as

τ(X1, X2) = Pr{(X1 − X̃1)(X2 − X̃2) > 0} − Pr{(X1 − X̃1)(X2 − X̃2) < 0} (5)

where (X1, X2) and (X̃1, X̃2) are independent random vectors from F . Joe (1997)
and Nelsen (1999) provide the copula-based expression for τ :

τ(X1, X2) = 4

∫ ∫

[0,1]2
CF (u1, u2)dCF (u1, u2) − 1 (6)
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Expression (6) may be rewritten as τ(X1, X2) = 4E[CF (U1, U2)]−1, where (U1, U2)
∼ CF . They make clear the role of the copula as a function that summarizes
the dependence structure of any joint distribution, independently of the choice of
marginals. A multivariate extension of Kendall’s τ is derived in Jouini and Clemen
(1996):

τ(X1, ..., Xd) =
1

2d−1 − 1

[
2d

∫
...

∫

[0,1]d
CF (u1, ..., ud)dCF (u1, ..., ud) − 1

]

Spearman’s ρS(X1, X2) is the Pearson’s ρ of (F1(X1), F2(X2)) and is defined
as

ρS(X1, X2) = 3
(Pr{(X1 − X̃1)(X2 −X2) > 0} − Pr{(X1 − X̃1)(X2 −X2) < 0}) (7)

where (X1, X2), (X̃1, X̃2), and (X1, X2) are independent random vectors from F .
The copula-based expression for ρS is (Joe (1997) and Nelsen (1999)):

ρS(X1, X2) = 12

∫ ∫

[0,1]2
CF (u, v)dudv − 3 (8)

A different copula-based measure of association is the so-called tail dependence
coefficient. If there exists positive association (Tawn (1988), Coles et al. (1999))
between extreme events of X1 and X2, then the conditional probability

λU (α) = Pr{X1 > F−1
1 (1 − α)|X2 > F−1

2 (1 − α)}

is greater than zero and decreases with α. The upper tail dependence coefficient
λU is the limit of the function λU (α), as α → 0+, if this limit exists. The two
variables X1 and X2 are said to be asymptotically dependent in the upper tail if
λU ∈ (0, 1], and asymptotically independent if λU = 0. The lower tail dependence
coefficient λL is defined similarly.

As shown in Joe (1997), both the upper and the lower tail dependence coeffi-
cients can be expressed using the copula CF pertaining to (X1, X2):

λU = lim
u↑1

C̄F (u, u)

1 − u
(9)

where C̄F (u1, u2) = Pr{U1 > u1, U2 > u2}, and

λL = lim
u↓0

CF (u, u)

u
(10)
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if these limits exist. There is lower tail dependence between the variables if λL ∈
(0, 1]. Lower tail independence corresponds to λL = 0.

Closed forms for λU and λL are not available for all copulas. For the copula of
a bivariate elliptically symmetric distribution these two measures coincide. Let λ
represent the common measure. Embrechts et al. (2002) showed that

λ = 2 lim
x↓−∞

Pr{X2 ≤ x|X1 = x} (11)

For example, λ = 2 limx→∞ Φ̄
(

x
√

1−ρ√
1+ρ

)
= 0 in the case of a bivariate Gaus-

sian copula with correlation coefficient ρ, and where Φ̄(x) = 1 − Φ(x); and

λ = 2t̄ν+1

(√
ν+1

√
1−ρ√

1+ρ

)
, where t̄ν(x) = 1 − tν(x), in the case of a bivariate t-

copula.

3. The GT-copula

Let X be a d-dimensional random vector with an MGT (µ,Σ, λ, β, q) distribu-
tion (see Arslan (2004) for details). The density function of X is

f(x;µ,Σ, λ, β, q) = Kλ−d/2 |Σ|−1/2 1
{
2q +

(
s
λ

)β}q+ d
2β

(12)

where

K =
βΓ(d

2 )Γ(q + d
2β )(2q)q

π
d
2 Γ(q)Γ( d

2β )
=
βΓ(d

2 )(2q)q

π
d
2B(q, d

2β )
(13)

is the normalizing constant, s = (x −µ)
′

Σ−1(x −µ) and B(·, ·) denotes the beta
function. Here, β > 0 and q > 0 are shape parameters, µ ∈ ℜd is the location
parameter, Σ is a positive definite scatter matrix, and we set the scale parameter
λ = 1. The parameters β and q both control the shape of the density. Larger
values of β and q yield an MGT density with thinner tails, and smaller values of
β and q are associated with thicker tailed densities. Although the parameters β
and q play similar roles, the parameter β has larger influence on the density shape
and affects the kurtosis. More information on the MGt distribution can be found
in Arslan (2004).

The MGT is a family of elliptical distributions with density generator function

ψ(t) = K
{
2q + tβ

}−(q+ d
2β )

(14)

It can be shown (Arslan, 2004) that the random vector X has the stochastic
representation
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X = µ+ V A′U
(d)

(15)

where V is an absolutely continuous random variable with a generalized beta
distribution of second kind, U (d) is a random variable uniformly distributed on
the unit sphere in ℜd, and V and U (d) are independent.

We now obtain the GT-copula pertaining to the MGt distribution. For sim-
plicity we write it in the bivariate case. The extension to the multivariate case is
straightforward.

Let Z= (Z1, Z2)
′ ∼ MGT(0, R, 1, β, q) withR =

(
1 ρ
ρ 1

)
, where −1 < ρ < 1.

The density function and the cdf of Z are, respectively,

f(z1, z2, ρ, β, q) = K
1√

1 − ρ2

[
2q +

(
z2
1 + z2

2 − 2ρz1z2
1 − ρ2

)β
]−q− 1

β

(16)

and F (z1, z2, ρ, β, q) =
∫ z1

−∞
∫ z2

−∞ f(z1, z2, ρ, β, q)dz2dz1. The marginal density
function and cdf of Zi, for i = 1, 2, are given by

q(z, β, q) = K

∫ ∞

z2

(y − z2)−1/2
[
2q + yβ

]−q− 1
β dy (17)

and

Q(z, β, q) =
1

2
+

∫ ∞

z2

arcsin

(
z√
y

)[
2q + yβ

]−q− 1
β dy +

π

2

∫ z2

0

[
2q + yβ

]−q− 1
β dy

(18)
We refer to Fang et al. (2002) and Fang et al. (2005) for the expression of the

marginal density and the distribution function for any elliptical distribution.
Using the copula definition (1) we obtain the bivariate GT-copula

Cρ,ν
GT (u1, u2) =

∫ Q−1(u1)

−∞

∫ Q−1(u2)

−∞

K√
1 − ρ2

{
ν +

(
s2 − 2ρst+ t2

(1 − ρ2)

)β
}−ν/2−1/β

dsdt (19)

where 2q = ν. When β = 1 we get the bivariate t-copula (see (4)). The density
function of the bivariate GT-copula is given by
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cρ,ν
GT (u1, u2) =

K 1√
1−ρ2

[
ν+

(
z2
1
+z2

2
−2ρz1z2

1−ρ2

)β
]
−

ν
2
−

1
β

[∫
∞

z2
1

(y−z2
1
)−1/2[ν+yβ ]

−
ν
2
−

1
β dy

][∫
∞

z2
2

(y−z2
2
)−1/2[ν+yβ ]

−
ν
2
−

1
β dy

] (20)

where zi = Q−1(ui), for i = 1, 2. Since the integrations in (20) are not tractable,
we cannot obtain the explicit formula for the density function of the GT-copula.
Note that as ρ → +1 or ρ → −1, the GT-copula approaches, respectively, the
Fréchet-Hoeffding upper and lower bounds copulas of perfect dependence (Joe,
1997).

The density function of the d-dimensional GT-copula is given by

cR,ν
GT (u1, ..., ud) =

K|R|−1/2 [ν + (z′R−1z)β
]− ν

2
− d

2β

I1 · · · Id
(21)

where z = (z1, ..., zd), and, for j = 1, ..., d, Ij =
∫∞

z2
j
(y − z2

j )−1/2
[
ν + yβ

]− ν
2
− 1

β dy.

The coefficients τ and ρS of the GT-copula are obtained by using (19) and (20)
in (6) and (8). However, it is important to emphasize that although all degrees of
dependence are captured by the new proposed family of copulas as τ or ρS range
between −1 and 1, τ = ρS = 0 does not correspond to stochastic independence.

To compute the tail dependence coefficients λL and λU of the GT-copula we
consider the random vector Z = (Z1, Z2)

′ ∼ MGT(0, R, 1, β, q) with the copula
Cρ,ν

GT (Q(z1, β, q), Q(z2, β, q)). The conditional distribution of Z1|Z2 = z is an el-
liptically contoured distribution with expected value and variance given by

E(Z1|Z2 = z) = ρz and V ar(Z1|Z2 = z) = g(z)(1 − ρ2)

where g(z) is a positive real valued function. The conditional distribution function
of Z1|Z2 = z is

Q∗(z, β, q) = K1

∫ z

−∞
(1 − ρ2)−1/2

(
2q +

(
z2 +

(z1 − ρz)2

1 − ρ2

)β
)−q− 1

β

dz1 (22)

where K1 =
q

q+ 1
β Γ( 1

2
)

π
1
2 g1(z,β,q)

and g1(z, β, q) is some positive function (see Arslan

(2004)). Since the GT-copula is a symmetric copula, and following Embrechts
et al. (2002), to derive the tail dependence coefficients, we apply the quantile
transformation of (18) on equation (11) and obtain
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λU = 2 lim
z→∞

Pr{Z1 > z|Z2 = z}
= 2(1 − lim

z→∞
Pr{Z1 ≤ z|Z2 = z})

= 2 lim
z→∞

Q
∗
(

z√
g(z)

√
1 − ρ√
1 + ρ

)

For elliptical distributions, an expression for the tail dependence coefficient was
derived independently at the same time by Schmidt (2002) and Hult and Lindskog
(2002), see also Frahm et al. (2003) and Frahm et al. (2005). It was shown that if
the generator variable V (see (15) in the case of the MGt distribution) is regularly
varying with tail index ξ > 0 (a measurable function φ from ℜ+ → ℜ+ is regularly

varying at ∞ with tail index ξ ∈ ℜ, if for any a > 0, limt→∞
φ(at)
φ(t) = a−ξ), then

for all i 6= j,

λU (Xi, Xj) = λL(Xi, Xj) =

∫ π/2

(π/2−arcsin ρij)/2 cosξ tdt
∫ π/2

0 cosξ tdt
(23)

where the linear correlation coefficient ρij is an extension of the usual definition of
the Pearson correlation coefficient, which allows for its interpretation as a scalar
measure of dependence that should not rely on the finiteness of certain moments.
As noted by Hult and Lindskog (2002), from (23) we observe that we can have
a coefficient of tail dependence significantly larger than zero even if ρij is zero or
negative.

As pointed out by a referee, from the relation between the non-negative random
variable V and the generator ψ given in (14), it is possible to obtain the expression
for tail dependence of an MGt distribution. For q = ν/2 we have

ψ(t) ∝ K(ν + tβ)−( ν
2
+ d

2β ) ∼ t−( βν
2

+ d
2
) (24)

and thus the density function of the generating variate has tail index βν + 1, and
hence the generating variable V possesses tail index ξ = βν (for details about the
relation between V and the generator function, see Fang et al. (1990), Schmidt
(2002), and also Frahm et al. (2003)). By using the same arguments in Schmidt
(2002) and Hult and Lindskog (2002) we obtain the tail dependence coefficient for
the MGT distribution:

λ = 2t̄βν+1

(√
βν + 1

√
1 − ρ√

1 + ρ

)
(25)

The tail dependence of a GT-copula is decreasing in ν = 2q and β, and in-
creasing in ρ. For ρ < 1, λU and λL go to zero as ν → ∞. When β = 1 we obtain
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the tail dependence of a t-copula. For fixed ν and ρ, greater tail dependence is
obtained by small values of β, since as β decreases, the MGT gets fatter tails.

There is now a vast literature on how to estimate tail dependence indexes.
Among them we cite Wendin (2002), who proposed an estimator for the tail depen-
dence coefficient based on an estimator of a measure µ, which may alternatively
express the notion of multivariate regular variation. Schmidt and Stadtmüller
(2003) introduced the concept of tail copulas and proposed several nonparametric
estimators for the tail copula and for the tail dependence coefficient. They proved
their weak convergence, asymptotic normality, and strong consistency. Hsing et al.
(2004) defined the bivariate tail dependence function which includes as a partic-
ular case the tail dependence coefficient, and introduced a method to visualize
extreme tail dependence. Schmidt (2003) characterized tail dependence within
the class of elliptical and extreme value copulae, and provided a parametric and
non-parametric estimator for the tail dependence coefficient. Frahm et al. (2005)
presented several parametric and nonparametric estimators for the tail depen-
dence coefficient. In a detailed simulation study, they compared the advantages
and disadvantages of all estimators.

3.1 Simulating from the GT-copula

Consider the stochastic representation (15) of a d-dimensional random vector
X with distribution MGT(µ,Σ, λ, β, q). An algorithm to generate data from the
d-dimensional MGT distribution and GT-copula may be as follows:

• Find the Cholesky decomposition A of R, where R is the correlation matrix;

• Simulate a random variate u(d) from a uniform distribution in Rd;

• Simulate a random variate v from the generalized beta distribution of second
kind and independent of u(d);

• Set y = A′u(d). Note that this is a d-dimensional vector;

• Set x = µ+ vy. Note that x has a d-dimensional MGT-distribution;

• Set ui = Q(xi) , i = 1, ..., d.

The resulting (u1, ..., ud)
′

is a random variate from a d-dimensional GT-copula.

4. Examples of Multivariate Skew Distributions

In this section we use the GT-copula to define a new family of multivariate
skew distributions. Our main focus is the asymmetric, possibly multimodal case,
which is not covered by other existing skew multivariate distributions. The idea
is as follows. Consider the random vector X with each component Xi, i = 1, ..., d,
having continuous density fi(xi) and corresponding cdf Fi(xi). Let the random
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vector Z be MGT(0, R, 1, β, q), where R = {ρij : ρii = 1,−1 < ρij < 1 for i 6=
j, ρij = ρji; i, j = 1, ..., d}, R a positive definite matrix. Suppose that Zi =
Q−1(Fi(Xi)), for i = 1, .., d. Then the joint density function of X can be obtained
as

h(x1, ...xd) = cR,ν
GT (F1(x1), ..., Fd(xd))

d∏

i=1

fi(xi) (26)

Distributions constructed in this way have been named by Fang et al. (2002)
as meta-elliptical distributions. The random vectors X and Z possess the same
copula, termed meta-elliptical by Abdous et al. (2005).

Note that in (26) one can choose any marginal distribution. All multivari-
ate distributions (26) will have the same copula-based measures, for example,

Kendall’s τ coefficient, which only depends on CR,ν
GT . Also note that the variables

Xi, Xj, will be positively or negatively correlated according to ρij ≥ 0 or ρij ≤ 0,
and moreover, despite the choices of Fi, i = 1, 2, by letting ρij → +1 or ρij → −1,
the margins become perfectly correlated.

It would be interesting to interpret the dependence matrix R in the new mul-
tivariate distributions (see Song (2000)). By construction, ρij = corr(Zi, Zj) =
corr(Q−1(Fi(Xi)), Q

−1(Fj( Xj))). That is, the ρijs (the Pearson linear correlation
coefficient of the original variables (Z1, ..., Zd)) are now the the Pearson correla-
tion coefficient of nonlinear transformations of the (X1, ..., Xd). Thus, in the new
multivariate distributions, R contains pairwise measures of nonlinear association
between the variables. Note that if R is the identity matrix, then (X1, ..., Xd) are
uncorrelated. In addition, note that the tail dependence concerns the copula by
itself.

To obtain asymmetric multivariate distributions we use skew marginal distri-
butions. We especially focus on skew margins possessing different degrees and
directions of skewness. To illustrate that, we consider the univariate skew GT
Distribution proposed in Theodossiou (1998), which has density function

f(x, k, ν, λ) =



M
(
1 + k

ν−2
|x|k

θk(1−λ)k

)−(ν+1)/k

for x < 0

M
(
1 + k

ν−2
|x|k

θk(1+λ)k

)−(ν+1)/k

for x ≥ 0
(27)

where k, ν and λ are the scaling parameters and M = 0.5kB(1/k, ν/k)−3/2B(3/k,
(ν − 2)/k)1/2S(λ) is the normalizing constant ensuring that the above density
function is a proper density function. B(·, ·) is the beta function, θ = (k/(ν−2))1/k

B(1/k, ν/k)1/2B(3/k, (ν−2)/k)−1/2S(λ)−1, and S(λ) = (1+3λ2−4λ2B(2/k, (ν−
1)/k)2B(1/k, ν/k)−1B(3/k, (ν − 2)/k)−1)1/2. This family of skew distributions
includes the following special cases:
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• The case λ = 0 gives symmetric univariate GT Distribution proposed by
McDonald and Newey (1988) with density function

f(x, k, ν) =
k

2ν1/kB(1/k, ν)

(
1 +

|x|k
ν

)−(ν+1)/k

(28)

• The case λ = 0 and k = 2 gives the t distribution.
• The case k = 2 gives the skew t distribution proposed by Hansen (1994).

Figure 1 shows an example of a family of skew meta-elliptical distributions
constructed from the GT-copula. This figure shows the density perspective (left)
and the density contours (right) of the particular case of the multivariate distribu-
tion (26), obtained by setting d = 2 and choosing a GT-copula with β = 1, ν = 4,
ρ = 0.5. The margins are composed by the asymmetric distributions (27), with
k = 2, ν = 4, and λ equal to 0.4 and 0.4 for the upper figures, and λ equal to 0.7
and 0.4 for the bottom figures.
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Figure 1: Density perspective (left) and contours (right) of a meta-elliptical distribution constructed from

a GT-copula with ¯ = 1, º = 4, ½ = 0:5, and asymmetric t-distributed margins with k = 2, º = 4, and ¸

equal to 0.4 and 0.4 for the upper ¯gures, and ¸ equal to 0.7 and 0.4 for the bottom ¯gures.
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Figure 1
Density perspective (left) and contours (right) of a meta-elliptical distribution

constructed from a GT-copula with β = 1, ν = 4, ρ = 0.5, and asymmetric t-distributed
margins with k = 2, ν = 4, and λ equal to 0.4 and 0.4 for the upper figures, and λ equal

to 0.7 and 0.4 for the bottom figures
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5. Measuring Financial Market Interdependencies

The bottom line in many applications in finance is the multivariate modeling of
a set of risky assets. Usually, the challenge is to estimate the dependence structure
required for developing methods for hedging risk, for asset classification, portfolio
optimization, and also to compute alternative measures of dependence. In this
section we illustrate the potentiality of copula modeling in finance by working on
a simple exercise using log-returns.

Squared log returns usually show significant autocorrelation in the first few
lags, although daily log-returns are not in general significantly autocorrelated.
This motivates us to analyze the data under two different approaches. First, we
treat the (raw) returns as if they formed a random sample. In a second exercise, we
fit ARMA-GARCH type models to the returns to remove the dynamics in the mean
and in the volatility, and then analyze the filtered returns. We should note that
filtering the data through GARCH type models is not a monotonic transformation.
Thus, we do not expect the raw and filtered log daily returns to possess the same
copula.

Let X1 and X2 denote financial returns from markets 1 and 2. Whenever there
exists any type of positive dependence among the markets, the probability

Pr{X1 > x1|X2 > x2} (29)

is greater than Pr{X1 > x1}, property also known as the positive quadrant de-
pendence, introduced by Lehmann (1966). In this case we say that there exists
contagion between markets 1 and 2 (see definitions of contagion in Straetmans
et al. (2004) and in the references therein). This interdependence may change
during crisis and is not necessarily explained by economic theories.1

The correlation coefficient and its conditional version have been widely used in
empirical analysis of dependence across financial markets. However, it has been
shown (Boyer et al. (1999), Longin and Solnik (2001), Embrechts et al. (2002))
that they can be misleading. As shown in Section 2, two copulas may have the
same value for the correlation coefficient, but just one of them can capture an
extra type of nonlinear dependence.

To assess the strength of the linkage between markets during stress periods,
we compute the probabilities (29) and choose as meaningful values x1 and x2, the
unconditional model based Value-at-Risk with small exceedance probability α in
each margin, respectively denoted as the VaR(X1, α) and the VaR(X2, α).

Rewriting (29) in terms of copulas, we assess linkages at extreme levels by
computing

1For example, markets with similar economic or political positions to another one experi-
encing crisis, may be seen with precaution from market participants, even when the countries
involved have weak trade links.
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1 − u− u+ C(u, u)

1 − u
(30)

where u = F1(VaR(X1, α)) = F2(VaR(X2, α)) = 1 − α. Note that under inde-
pendence (30) is equal to 1 − u, and that this holds at ρ = 0 only for Gaussian
(meta-)elliptical copulas, as established in Abdous et al. (2005). Also, the stronger
the dependence structure between the two markets (as modeled by C), the larger
(30) is.

According to the results of Section 2, expression (30) is the function λU (α),
whose limit as α→ 0+ is the upper tail dependence coefficient λU . We may then
interpret λU as a measure of asymptotic linkage. As we have seen, the Gaussian
copula has λU equal to zero, but the t- and the GT-copulas possess non-zero
tail dependence.2 For the illustration that follows, we compute the function λ(α)
(λ(α) = λU (α) = λL(α)) for a decreasing sequence of values α.

To illustrate that we use a pair of stock market indexes: The Dow Jones Indus-
trial Average (U. S.) and the IBOVESPA (Brazil). Data are from Economatica
and consist of daily log-returns from January/1995 to June/2003. The copulas
considered are the Gaussian, the t- and GT-copulas. We apply the maximum
likelihood estimation method in two steps, the so-called IFM method (inference
function for margins, Joe (1997)). For some models the efficiency of this procedure
has been established, see Xu (1996), Joe (1997), and discussion in Frahm et al.
(2005).

Under the first approach for modeling the margins, we fit the Normal, the
asymmetric t of Hansen (1994), and the symmetric t distributions to the sample
((x1,1, x1,2)), ..., (xT,1, xT,2)) of log-return observations. For each margin i = 1, 2,

the best fit F̂i is chosen based on standard goodness-of-fit tests. In the second step
of the IFM method, the copula parameters are estimated from the approximate
realizations (ut,1, ut,2) = (F̂1(xt,1), F̂2(xt,2)), t = 1, ..., T . The best copula fit is
chosen based on the AIC criterion, and then a goodness-of-fit test is applied based
on a bivariate extension of the usual Pearson chi-square test, described in Genest
and Rivest (1993).3

Under the second approach, we assume that, for i = 1, 2, xt,i = µt,i + σt,iyt,i,
where µt,i is defined through some ARMA model, σt,i is specified by some GARCH
model, and yt,i, t = 1, ..., T are independent and identically distributed random
variables with zero mean, unit variance, and marginal distribution Fi, either a
Gaussian or a t-Student. The ARMA-GARCH models are estimated by maxi-

2However, caution is needed in the case of asymptotic independence, since the convergence
of λ(α) to zero may be very slow (Coles et al. (1999), Costinot et al. (2000)) As we will see in
the application that follows, even for copulas with very small λU , the interdependencies may be
relevant for small probabilities α.

3We note that there are other goodness-of-fit techniques used to assess the quality of the
models. In the present context, for example, methods developed in Wang and Wells (2000),
Fermanian (2005) or Chen and Fan (2005), among others, could be implemented.
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mum likelihood, and the best model is chosen based on the AIC criterion. The

filtered log-returns (ŷt,1, ŷt,2) = (
xt,1−µ̂t,1

σ̂t,1
,

xt,2−µ̂t,2

σ̂t,2
), free of serial dependence and

volatility clusters, are used to finally obtain the copula approximate realizations
(ut,1, ut,2) = (F1(ŷt,1), F2(ŷt,2)), t = 1, ..., T .

Table 1
Lower left and upper right quadrants linkage estimates for the pair U.S. and Brazil

λ̂(0.10) λ̂(0.05) λ̂(0.01) λ̂U=λ̂L

Log-returns 0.3040(0.05) 0.2072(0.04) 0.1236(0.02) 0.000028(0.000009)

Independence 0.1000 (0.02) 0.0500 (0.01) 0.0100 (0.003) 0.000000 (0.0)

Filtered data 0.3440 (0.04) 0.2644 (0.06) 0.1273 (0.02) 0.024810 (0.0067)

The best univariate fits for the raw log-returns of the Dow Jones and the
IBOVESPA were, respectively, the symmetric t (5 d.f.) and the asymmetric t
(λ = 0.06 and 4 d.f.) distributions. The best copula fit turned out to be a
GT-copula with ρ = 0.45, β = 0.967, and 56 d.f. We provide the estimates of
λ(α) and their standard errors in the first row of Table 1. Due to the copula
symmetry, results for the bull and bear markets are the same. Even though the
value λU = 0.000028 is really small, the linkages (30) at high quantiles (on the
copula diagonal) are quite strong. For example, for the small probability 0.01,
we found λ(0.01) = 0.1236, see Table 1. This means that the probability that
one of the markets goes beyond its VaR(·, 1 %), given that the other one had
broken through its VaR(·, 1 %), is more than 10 times greater than its value under
independence (1%, second row of Table 1).

We now choose different cutoff values x1 and x2 and consider

Pr{X1 > x1|X2 > x2} =
1 − u− v + C(u, v)

1 − v

where, for example, u = 0.99, v = 0.95, and therefore x1 = VaR(X1, 1%) and x2 =
VaR(X2, 5%). This is the probability of market 1 going beyond its VaR(·, 1%),
given that market 2 has just surpassed its VaR(·, 5%). Let x10

1 , x5
1, and x1

1, and
x10

2 , x5
2, and x1

2, denote, respectively the VaR of X1 and X2 with exceedance
probabilities 1−u = 1−v =10%, 5%, and 1%. Using the fitted univariate models,
we found the VaR values for the pair U.S. (1) and Brazil (2) to be, respectively,
equal to (1.421, 1.916, 3.155) and (3.015, 4.145, 7.191).

In Table 2 we give the probabilities associated with a selection of tail events
involving the VaR values of markets (1) and (2). These numbers may provide
insights into the interrelationships of these markets. We start by considering the
sequence of probabilities

Pr{X1 > x5
1|X2 > x10

2 } , P r{X1 > x1
1|X2 > x10

2 } (31)
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which measure tail events in the same conditional probability space. From the
copula symmetry, the probabilities (31) are equal for the lower-left and the upper-
right quadrants. For the pair U.S. and Brazil, they are given in the 1st row, and
in columns 2 and 3 of Table 2 (0.1816 and 0.0974). They should be contrasted
against the unconditional probabilities 0.05 and 0.01 (see 2nd row). From the
examination of columns 2 and 4 of Table 2, it seems that contagion increases as
both markets get into stress periods.

This suggests the investigation of the probability of two markets crashing to-
gether, given that at least one of them is already in crisis (see Hartman et al.
(2001) and Straetmans (1999)), given by

Pr{X2 > x2 , X1 > x1
1 | X2 > x2 or X1 > x1

1}
for some large value x2, x2 = F−1

2 (v). This means computing the limit as v → 1
of

Pr{X2 > F−1
2 (v), X1 > F−1

1 (u)|X2 > F−1
2 (v) or X1 > F−1

1 (u)}
=

1 − u− v + C(u, v)

1 − C(u, v)

for fixed u = 0.99. For example, for 1 − v = 0.01 we obtained 0.08342. As a
measure of risk (or contagion) one could compare this figure to the unconditional
probability 0.0012. It is important to stress that all these probabilities depend
upon the marginals only through the VaR values.

We now take the second approach and fit the copula models to the approxi-
mate realizations (ut,1, ut,2) = (F1(ŷt,1), F2(ŷt,2)), t = 1, ..., T , based on the filtered
log-returns. For the pair U.S. and Brazil, the best model turned out to be a com-
bination of an ARMA(1,1) for the conditional mean, and a GARCH(1,1) model
with leverage term with Fi being a t-Student distribution with 8 and 11 d.f. re-
spectively for i = 1, 2. The best copula fit was the GT-copula with ρ = 0.47,
β = 0.99, and 16 d.f. Tables 1 and 2, in the third row, provide the probabilities
associated with the dependence structure of the filtered log-returns. We found
these probabilities to be now slightly bigger.

As already commented, raw and filtered log-returns are not expected to possess
the same copula. For this specific illustration, we found weaker dependence for
the raw log-returns. These considerations call for a much more comprehensive
empirical work and theoretical investigations.
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Table 2
Probabilities of tail events for the pair U.S. (X1) and Brazil (X2)

[X1 > x5
1
|X2 > x10

2
] [X1 > x1

1
|X2 > x10

2
] [X1 > x1

1
|X2 > x5

2
]

Raw log-returns 0.1816 0.0974 0.1152
Independence 0.0500 0.0100 0.0100
Filtered log-returns 0.2108 0.1014 0.1324
Notation in table: [A|B] denotes event A given B.

6. Conclusions

In this paper we obtained the GT-copula pertaining to the multivariate GT
distributions and derived some of its properties, including its coefficient of tail
dependence. The advantage of the GT-copula over the existing elliptical copulas,
such as the Gaussian or the t-copula, is its extra parameter, which allows for more
flexibility when fitting data. We showed how to construct a new general class of
skew meta-elliptical distributions using Sklar’s theorem and provided some exam-
ples built on marginal skew t-distributions. As an illustration of its applicability
we provided a simple exercise in finance. Using the fitted copula we computed
several measures of stock market linkages, and computed changes in interdepen-
dencies at extreme levels. We also examined the effect of volatility filtering on
copula and contagion estimates.

Inference was based on the maximum likelihood method in two steps: margins
first and then copula models. In the illustration we provided, the univariate fits
posed no difficulties. Choosing a parametric copula family for a particular applica-
tion is a crucial issue. Elliptical copulas are a natural extension of the multivariate
normal model and possess nice properties. All elliptical copulas fitted yielded very
close estimates for ρ. The robustness of the ρ estimate with respect to copula
models validates the ρ value found as a real indication of dependence.

Important issues such as modeling based on time-varying copulas, or the de-
velopment of fast algorithms for copula estimation, were not addressed in the real
data application of this paper. Efficient algorithms for fitting elliptical copulas to
data, in particular the t- or the GT, are still an open research problem. In the ap-
plication provided, our focus was on the dissemination of copula-related concepts,
emphasizing their importance in the area of finance. We hope to have motivated
practitioners to get acquainted with this subject and to try their own applications.

There are ways of introducing skewness into the copula itself. This could be
obtained by working on the many generalizations of the multivariate t distribution
presented in the literature at large, some of which allow skewness, offering the
potential for asymmetric copulas. In a further work this may be developed in
order to place the GT-copula or the MGT distribution in the larger context of
skew multivariate t distributions.
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