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1. Introduction

The objective of this paper is to extend the existing literature on the estima-
tion of demand parameters using plant-level data sets, which typically report only
revenue and cost figures. A common approach to estimate these parameters is
given from a regression of output values on input values1 following Hall’s (1990)
approach. There, he demonstrates that, under imperfect competition, a demand
parameter shows up in the regression equation. Klette (1999), employing Nor-
wegian plant-level data, used Hall’s approach to make inference about demand
parameters and to evaluate firms’ market power. However, like most plant-level
studies2 plant-level quantities are obtained by simply deflating the revenue series
by a commonly available price index. This procedure is appropriate when goods
are perfect substitutes, however it can be seriously misleading when the degree of
product differentiation is not negligible.

Only recently, through the works of Klette and Griliches (1996), Melitz (2000)
and DeSouza (2004), researchers gave a closer look into this issue. They all as-
sume monopolistic competition and a CES demand for differentiated products.
DeSouza’s result is closer to the object developed in this paper – the other two
papers are rather concerned with the estimation of technology parameters. Indeed,
DeSouza estimates the CES demand parameter under the assumption that firms
are monopolistically competitive, and concludes that studies that neglect price
differentiation, and therefore price heterogeneity, tend to find misleading evidence
of highly elastic demands.

However, the assumption of monopolistic competition may not be a reasonable
model for many industries. It assumes that firms are not big enough to influence
the aggregate market variables and therefore a price change by one firm has an
irrelevant effect on the demand of any other firm. This assumption states that each
product has no neighbor in the product space, which strongly restricts cross-effects
and strategic interaction between products (Tirole, 1988).

The discrete-choice based demand function with oligopolistic competition
avoids some of the undesirable results of the monopolistic setup. Consumers choose
among N products given the product’s prices and characteristics. Producers, in
turn, set optimal prices in a Bertrand fashion. This allows for a richer model of
cross-effect patterns and interactions among firms. Berry (1994) and Berry et al.
(1995), henceforth referred to as BLP, develop an econometric methodology to
estimate such model using market-level data on prices and quantities.

Along the same lines, Katayama et al. (2003) – KLT from now on – use a nested
logit demand model and a price setting game to derive consumer and producer
surplus and to measure firms’ efficiency. Their work, however, differs from Berry’s

1If the econometrician can observe product-level prices and quantities or consumer-level
choices, demand and supply parameters can be estimated directly using Berry’s (1994) or Gold-
berg’s (1995) frameworks.

2Another example is Botasso and Sembenelli (2001).
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since the data set used there is not as informative. They develop a methodology
to uncover demand parameters from plant-level data that report only revenue and
cost figures. Using data from the Colombian beer industry, originally containing
only plant-level information on revenue and total costs from 1977 to 1990, I shall
demonstrate how to extend the KLT framework by including the extra information
provided by aggregate data. Although it may be difficult to obtain detailed data
on quantities at the plant level, the same is not true for aggregate variables in
many cases. For instance, in the beverage sector, the amount of beer, in liters,
consumed in a given year is widely available for many countries. The United
Nations common database reports the total production of many goods for a long
list of countries. Thus, the methodology proposed here qualifies as an extension
to the KLT framework as it applies not only to the Colombian beer industry, but
also to the data sets of many industries currently available to economists.

Aggregate quantities also carry information on demand parameters and there-
fore may help in the estimation process. Integrating different data sets to improve
the quality of inference is not new in the economic field. Examples include Petrin
(2002) and Berry et al. (2004). The first paper combines market-level data on
car purchases to data on the averaged characteristics of consumers that purchase
different types of car (e.g. minivans, station wagons and SUVs). The second paper
develops a methodology to deal with consumer-level data on car purchases aug-
mented by information on consumers’ second choices if their first choices were not
available. Another important contribution is provided by Imbens and Lancaster
(1994), who suggest bringing macro data to microeconometric models. A common
conclusion found in these papers is the precision gain (measured by the t-values)
in the parameter estimates. The same conclusion is reached in this paper.

This paper is organized as follows. Section 2 describes the traditional ap-
proaches to estimating discrete-choice based demands. The next section provides
details of the data set to be analyzed. The subsequent section shows how to in-
corporate the aggregate information into the model. And finally, the last section
discusses the results.

2. Traditional Approaches to Estimating Discrete-Choice Demand Pa-

rameters

In this section, I shall describe the discrete-choice model commonly used in the
literature and the different econometric strategies to estimate its parameters.

Consumers rank products according to their characteristics and prices. There
are N + 1 choices in the market, N inside goods and one outside good. Consumer
i chooses a good j, given price pj , observed and unobserved characteristics3 (xj

and ξj respectively), and unobserved idiosyncratic preferences ǫij, according to the
following equation:

3For notational convenience I include only one observed characteristic, but more generally,
there could be more.
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uij = xjβ1(hi; θ1) − pjβ2(hi; θ2) + ξj + ǫij (1)

where β1(hi; θd) is a function of a vector of demographic variables hi, such as
income, age, and marital status and θ1 is a vector of parameters defining that
function. The coefficient for price, β2(hi; θ2), is defined similarly.

Assuming that ǫij has a Type I Extreme Value distribution, the probability of
individual i choosing good j takes the familiar logit form

prob(j/hi) =
exp(xjβ1(hi; θ1) − pjβ2(hi; θ2) + ξj)

∑

k

exp(xkβ1(hi; θ1) − pkβ2(hi; θ2) + ξk)
(2)

If the econometrician observes prices, individuals’ choices and their charac-
teristics, the vector of parameters can be estimated by setting up the maximum
likelihood profile of all the observed consumer choices. Goldberg (1995) and Tra-
jtenberg (1990) are two examples of this approach. The former author observes the
new car choices of a random sample of consumers in the U.S. from the Consumer
Expenditure Survey, whereas the latter author collected data on purchases of CT
scanners.4

Suppose now that consumer-level data are not available, the econometrician
observes only prices, market shares, and characteristics. Then, the estimation pro-
cedure has to be modified, since it is no longer possible to construct the maximum
likelihood profile. Instead, some aggregation argument has to be invoked.

Indeed, taking the expected value with respect to consumer attributes h yields
the market share implied by the model sj = E[prob (j/h)], which in extensive form
is simply

sj(x, p, θ, ξ) =

∫

exp(xjβ1(hi; θ1) − pjβ2(hi; θ2) + ξj)
∑

k

exp(xkβ1(hi; θ1) − pkβ2(hi; θ2) + ξk)
dF (h) (3)

A regression equation can now be written by matching observed market share
of product j(s̄j) with the one implied by the model, which gives

s̄j = sj(x, p, θ, ξ) (4)

Firms take into account the unobservables (ξ) when setting their prices. Thus,
the endogeneity of prices requires the use of instrumental variables. However, usual
IV estimation techniques do not apply since the unobservables enter the regression
equation nonlinearly. Some simulation method has to be applied. Shortly, it
involves solving for the ξj ’s given data and the parameters to construct moment
restrictions conditional on available instruments (for further details, see Berry
(1994), and BLP).

4Actually, these authors use a variation of the logit model known as the nested logit model,
which I shall discuss later in this paper.
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When setting prices, firms take into account demand and cost determinants.
Therefore, the pricing decision also contains information on consumer preferences
such that efficiency can be improved by incorporating this information into the
estimation procedure.

First, assume that each firm f produces a subset Ff of the goods sold in this
market and maximizes the sum of profits given by

Πf =
∑

j∈Ff

(pj −mcj)Msj (5)

where M is the total market size and mcj is the marginal cost of producing brand
j.

Then, it can be shown that the price pj of any product j produced by firm f
must satisfy the following equation.5

sj +
∑

r∈Ff

(pr −mcr)
∂sr

∂pj

= 0 (6)

Note that (6) is flexible enough to accommodate different market structures.
The first structure is the single-product firm, in which the firm can only control
the price of its unique brand. The second is the multiproduct firm, in which the
firm internalizes the price decision of all of its brands.

In turn, let marginal cost be modeled as

mcj = wjγ + ψj

where wj is a vector of product characteristics and ψj is an unobserved cost com-
ponent. Similarly to the demand-side unobservable, given (x, p, θ, ξ, w, γ), one can
solve for the vector ψ from the quasi-supply relation (6) and set up the moment
conditions based on appropriate instruments. All the parameters of the model can
then be estimated through GMM using the demand and supply-side moments.
KLT go a little further by devising a methodology to estimate the demand param-
eters without directly observed market-level data (prices and market shares).

3. Data

The data set consists of an unbalanced panel of plants in the beer industry, with
more than 10 employees, covering the period from 1977 to 1990. Originally, these
data were gathered by Colombia’s National Department of Statistics (DANE) and
have been cleaned by Roberts (1996), as described in further details in Appendix A.
Table 1 displays the summary of a few descriptive statistics for the beer industry
during the sample period. The revenue series are constructed as the total sale

5It is assumed that a Bertand-Nash equilibrium in pure strategies (prices) exists.
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revenue divided by a general wholesale price deflator.6 The total variable costs
are defined as the sum of payments to labor, intermediate input purchases and
energy purchases. Since some of the cost is incurred in the export activity, one
has to scale it by the ratio of total domestic sales to total sales and deflate the
result by the same wholesale price deflator mentioned before.

Labor costs only include payments to production workers. Intermediate input
purchases include items such as accessories and replacement parts of less than one
year of duration, fuels and lubricants consumed by the plant and raw materials.
The remaining cost item is the energy consumed by the plant.

Table 1
Summary statistics for the Colombian beer industry (1977-1990)

Mean SD Min Max

Sales revenue 445.44 471.03 6.39 2694.66
Total variable cost 184.47 195.74 4.64 1328.52
No. of employees 215.214 180.885 34 812
No. of active plants per year 21.35 1.88 20 23
Total no. of plants during 27
the sample period
No. of observations 299

Note: Sales and costs are in million of 1975 Colombian pesos.

There are a total of 27 plants in the sample. But not all of them were active
during the sampled years. The number of active plants per year did not vary so
much, averaging 21.35 with a standard error of only 1.88. The same cannot be
claimed regarding sales revenue, total cost and the number of employees whose
variance/mean ratios are much larger.

From an additional source (UN common database) I obtained the quantity
of beer (in hectoliters) produced in the country during the same sample period.
Ideally, one would want to have data on the quantity of beer consumed in the
country. However, the data in hand are not so restrictive since there is very little
export activity in this sector.

I also use auxiliary data to uncover the price of the imported good (p0t)
7 as well

as its imported quantity in hectoliters (q0t). In a separate publication DANE also
reports the net weight (in kilos) and the monetary value of imports (in pesos).
Assuming that beer has the same density as water (1kg per liter), it is easy to
convert the net weight in kilos to volume of imported beer in hectoliters (q0t).
Then, p0t follows from the ratio of the peso value of imports to q0t.

6I used the wholesale price deflator because I only observe revenue series, which by definition,
are based on prices before the incidence of taxes, freight and retail costs. If I could also observe
retailers’ revenue, a consumer price deflator would be more appropriate.

7This is a composite good that bundles together all the different imported varieties.
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4. Model

In this section I shall lay out the model used in this investigation. For exposi-
tional purposes I assume first that market-level data on prices and quantities are
available. Then, I shall demonstrate how to estimate the model with limited data
(only revenue and cost data) according to the methodology developed by KLT.

Assume now that products are divided into groups, g = 0, 1. The first group
contains only the outside good (imported variety)8 while the second collects all
the inside goods (domestic varieties). For product j belonging to group g define
utility9 as

uij = ξj − αpj + ςig + (1 − σ)ǫijforj = 0, 1, ..., N

The first random term on the RHS (ςig) is a common shock to all products
in group g and its distribution depends on the parameter σ (0 ≤ σ < 1). As
σ approaches zero the within correlation of utilities within each group decreases.
The second random term ǫij is identically and independently distributed extreme
value. Given these assumptions, McFadden (1981) shows that, if product j belongs
to the group that contains the inside goods (g = 1), the market share of product
j as a fraction of the total group share is

swj =
exp[(δj − δ0)/(1 − σ)]

N
∑

k=1

exp[(δk − δ0)/(1 − σ)]

, j = 1, 2, . . . , N (7)

Here, δj = −αpj + ξj . The share of all domestic brands is given by sd =

D/(D + 1), where D = [
N
∑

k=1

exp(δk − δ0)/(1 − σ)]1−σ .

Thus the market share for a domestic variety sj is given by

sj =











exp[(δj − δ0)/(1 − σ)]
N
∑

k=1

exp[(δk − δ0)/(1 − σ)]











[

D

D + 1

]

; j = 1, 2, . . . , N

8Usually the outside good is defined as a composite good that bundles together all goods
other than beer. Not allowing for the consumption of other goods yields an undesirable result.
If the price of all brands of beer goes up, including the imported variety, their market shares
remain unchanged, as consumers cannot substitute other goods (e.g. wine) for beer. Dealing
with this problem is not a simple task, though. To do so, one would have to define the potential
market size. In the BLP application this number is defined as the number of families in the U.S.,
based on the reasonable assumption that each family buys at most one car per year. Nevo (2000)
assumes that a person consumes at most one serving of ready-to-eat cereal per day to come up
with a number for the potential market size. However, defining the total market for beer is not
obvious since it is difficult to establish the potential consumption of beer (or alcohol) per capita.

9Plant-level data sets rarely report product characteristics. For this reason, as in KLT, they
are excluded from the model.
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which is simply the product of swj times sd. Further, taking the log-difference
between sj and s0 the demand equation takes the simple linear relation

ln sj − ln s0 = −α.(pj − p0) + σ ln swj + ξj − ξ0 (8)

If prices and quantities were available, the model above could be estimated
using the methodologies described in Section 2. Indeed, notice that, under some
rearrangements, (8) is a closed form version of (4) that can be solved, conditional
on the model parameters, for the unobservable term ξj − ξ0. Also, the marginal
cost unobservable can be uncovered from (6). Then, these unobservables can be
combined with appropriate instruments to estimate the parameters through GMM.

Obviously, this strategy is unfeasible in the absence of market-level data (prices
and quantities). However, KLT show that commonly available information on
revenue and total costs along with some assumptions on the technology can be
used to uncover relevant variables and estimate the model.

Note that firm j’s revenue (Rj) and variable cost10 (TCj) can be written as
Rj = pjqj , TCj = mcjqj , where qj represents firm j’s output. Thus, one can write
the market share for firm j as sj = qj/(Q + Q0), where Q and Q0 represent the
total output produced by domestic firms and total imported quantity, respectively.
Then, it is simple to demonstrate that these two identities together with the F.O.C
(6) can be solved for quantity as a function of data (R,TC, Q0) and the demand
parameters (α,σ), where R collects the revenue of all plants in the sample and TC
collects the costs of all plants in the sample in a given year.

Similarly, from the same system of equations, one can retrieve mcj = mcj
(α, σ,R,TC, Q,Q0), pj = pj(α, σ,R,TC, Q,Q0). Thus, from

∑

N

qj(α, σ,R,TC, Q,

Q0) = Q, one is able to solve for Q = Q(α, σ,R,TC, Q0). Then, using prices and
market shares, relative quality, defined as ajt = ξjt − ξ0t, can be determined from
the demand system (8). To summarize, given (α,σ, R,TC, Q0), the KLT algo-
rithm11 shows how to obtain firm level prices, marginal costs, relative quality and
quantities as well as aggregate output (Q).

Further, dynamics is introduced into the model through the assumption that
relative quality and marginal cost follow an exogenous12 VAR process given by

ajt = b01 + ϕajt−1 + ϕcmcjt−1 + βt+ ǫajt (9)

10TCj = mcjqj as long as marginal costs are flat.
11For more details, see Appendix B, which lays out a generalization of the original transfor-

mation algorithm found in KLT in order to accommodate multiplant firms.
12It is also assumed that firms observe their marginal costs and relative quality before they

set prices. The exogeneity of the joint evolution of marginal costs and quality is an important
assumption since it keeps the model consistent with the assumption that firms maximize static
profits (5). Otherwise, if firms could influence marginal costs and quality of their products, one
would have to set up a dynamic model of profit maximization following Pakes and McGuire
(1994) framework.
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mcjt = b02 + λmcjt−1 + λaajt−1 + φt+ ǫcjt (10)

The VAR restricts the comovements of quality and costs. Since one does not
observe product characteristics, this restriction is crucial for identification, as ex-
plained below.

Estimation Strategy

From the demand system, the price setting game and the VAR, one is able to
uncover demand and supply side “errors”, represented respectively by ǫcjt and ǫajt.
At this point the model seems very close to Berry’s (1994) methodology, where
similar error terms are combined with exogenous product characteristics to form
the identifying moment conditions. Here, however, these data are not available.
Note that not even prices or quantities are observed; they are themselves functions
of data and demand parameters to be estimated within the model. The model is
therefore not identified such that traditional econometric techniques such as GMM
and ML do not apply.

To identify it more structure has to be imposed on the parameters. This is
achieved by assuming a prior knowledge of the parameter distribution and by
using the data set and the structure imposed by the model to update this prior
distribution according to Bayes’ rule

p(θ;D) ∝ L(D; θ)p(θ)

The LHS is the posterior probability distribution of the parameters θ updated
by the data D, and the RHS is the product of the likelihood function of the data
times the prior distribution. However, only in special cases, the posterior distri-
bution has a closed form from which one can make inference either by sampling
from it or by consulting easily available tables. Fortunately, Monte Carlo tech-
niques have been developed to deal with such problem. Shortly, it relies on ergodic
theory to guarantee that a computable statistic converges to the true posterior dis-
tribution. Then, once convergence has been attained, one can sample from this
statistic and make inference (see Appendix C for further details on the Bayesian
Monte Carlo estimation process).13

This paper proposes appending the KLT methodology by bringing data on
aggregate quantities to improve inference. Aggregate quantities also carry infor-
mation on demand parameters and therefore may help in the estimation process,
especially in small data sets. Assume now that the amount of beer consumed in
a given year is observed up to a measurement error. Note that the model implies

13An alternative methodology, which basically follows from Panzar and Rosse (1987), consists
in solving for prices and quantities, given demand and cost shifters up to the model parameters,
to obtain a reduced-form equation for observable revenue.
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an aggregate quantity given the demand parameters and data. One can then ask
the model to match the observed quantity for every period t according to

Qt(α, σ,Rt,TCt, Q0) = Qobs
t − wt (11)

where wt is assumed to be a serially uncorrelated and normally distributed mean
zero error term which is independent of the VAR error terms. To include this
new “moment”14 in the estimation it suffices to incorporate the likelihood of Qt

obs

in the likelihood function L(Djt; θ). The next section presents the estimates and
analyzes the effect of bringing more information into the model.

5. Market Idiosyncrasies and Results

While it is common for data sets to report plant-level revenue and cost data,
they do not usually contain information on plant ownership. This is important for
estimation since each ownership arrangement implies a different supply function
and therefore, given (α,σ,R,TC,Q0), different values for the unobserved variables
(price, quantities, marginal cost and qualities). In the Colombian beer sector,
however, ownership identification does not pose a problem since one company
(Bavaria S.A.) controls the whole non-imported beer market.

Indeed, after an aggressive horizontal merger strategy, Bavaria became a
monopoly in the beer production by acquiring all of its rivals (Cerveceria Aguila,
Cerveceria Union and Cerveceria Andina and other smaller producers) in the beer
business by the early seventies. Its monopoly went unchallenged until 1995 when
Cerveceria Leona entered the beer market as retaliation for the placeStateBavaria
entry in the soft drink business, which was dominated by Leona’s parent company.
Since the data sample period ranges from 1977 to 1990 all the estimations presented
below assume that a single firm owns all plants.

Two different models are implemented. The first one uses the nested logit
model without the aggregate quantity while the second one uses the same model,
but includes the aggregate quantity. They are both estimated using Markov Chain
Monte Carlo (MCMC) Bayesian techniques (for details on the estimation tech-
nique, see Appendix C). In both models, the demand parameters are significantly
different from zero.

In addition, they yield high estimates for the within value σ, which means that
the set of the inside goods (domestic goods) is highly differentiated from the out-
side good (imported variety). In other words, the degree of substitution between
domestic varieties is higher than the degree of substitution between domestic and
imported varieties.

Table 2 displays all parameter estimates. The demand parameter estimates are

14Although this is a likelihood-based econometric model, I keep the GMM terminology due
to its intuitive appeal.
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sensitive to the inclusion of the aggregate moment.15 There is a sizeable precision
gain (higher t-values) for the demand parameters. The t-values for σ go from 64.0
to 94.1 once the aggregate information is brought to estimation. In turn, α shows
an even larger precision gain, going from 3.75 to 14.18. The same is not true for
the VAR estimates, which do not show considerable changes (t-values are slightly
higher). This should not come as a surprise as the new moment incorporated into
the model bears more directly on the demand parameters and only obliquely on
VAR parameters.

Table 2
Parameter estimates

With aggregate Without aggregate

information information

α 2.738 3.122

(0.193) (0.828)

[14.186] [3.758]

σ 0.941 0.960

(0.010) (0.015)

[94.1] [64.0]

VAR quality equation (9)

Const. 20.287 19.232

(4.495) (4.934)

[3.898]

Lagged 0.026 0.022

Quality (0.068) (0.069)

[0.382] [0.319]

Lagged 1.279 1.292

Marg. cost (0.289) (0.295)

[4.426] [4.379]

Trend −0.204 −0.191

(0.052) (0.058)

[3.923] [3.293]

VAR cost equation (10)

Const. −0.542 0.669

(1.249) (1.265)

[0.434] [0.529]

Lagged −0.042 −0.041

Quality (0.018) (0.018)

[2.333] [0.277]

Lagged 0.752 0.745

Marg. Cost (0.075) (0.075)

[10.026] [9.933]

Trend 0.005 0.006

(0.014) (0.014)

[0.357] [0.428]
∗Standard deviations are in parentheses and t-values in square brackets.

15Figures 1 and 2 show the Monte Carlo simulation for the demand parameters calculated
with the aggregate moment.
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6. Final Remarks

Using data from the Colombian beer industry from 1977 to 1990, I demonstrate
how to extend the KLT framework by including the extra information provided
by commonly available data on aggregate physical output. The idea behind the
estimation procedure is to ask the structural model, parameterized by consumers’
preferences, to reproduce observed data on aggregate physical quantities. The
model is then estimated through Bayesian Markov Chain Monte Carlo Methods.
The results show a precision gain in the parameter estimates once the additional
information is included. This precision gain, measured by the t-values, is sizeable
for the demand parameters α and σ. In turn, the VAR parameters show little
sensitivity to the inclusion of the aggregate variable. Although the closed form
of the nested logit demand systems has some computational advantages, it comes
at the cost of strong restrictions on own and cross-price effects (see Nevo (2000)).
In this way, an interesting extension to this paper would consist in introducing
consumer heterogeneity in a more sophisticated fashion along the same lines as
BLP.
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Appendix A

Colombian Data Set

This appendix shows how Roberts (1996) constructed his data set from the
survey collected by DANE.

Plant-specific identification numbers are not available on the original Colombia
data set. Then, plants are matched across years by using reported values for in-
ventories and capital stock and by comparing them in successive years. Inventories
and capital stock are unlikely to change considerably in successive years. For this
reason, they were selected as matching criteria.

The original data set has information on: SIC code (at the four digit level),
the year in which the plant was established, the section of the country in which
the plant is located (not available in 1977 – 79) and metropolitan area in which
the plant is located. Values of inventories and capital stocks are broken down into
their component parts as follows:

Total inventories = finished goods + raw materials + goods in progress

Total capital stock = buildings and structures + machinery and equipment

+ land + transportation equipment + office equipment

The matching algorithm goes as follows. First, observations are pre-matched
on: SIC, year of establishment, section of the country and metropolitan area.
Then, values for inventories and capital stocks are compared in the following order:
finished goods inventories, raw materials, total inventories, buildings and struc-
tures, machinery and equipment, land, transportation equipment, office equipment
and total capital stock.

When a candidate for a match is found following the sequence described above
the matching observation is checked for quality. For instance, if a match is made
on finished goods, it needs to match on at least one other continuous variable.
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Appendix B

Uncovering Relevant Quantities from Revenue and Cost Data with Mul-

tiplant Ownership

This appendix shows how to uncover relevant plant-level quantities from rev-
enue and cost data conditional on the parameters of the model. Equation (6) in
the text can be rewritten as

1 +





∑

r∈Ff

(pr −mcr)
∂sr

∂pj

/

sj



 = 0 (B.1)

Further, it is easy to show that the following equalities hold for the cross and
own price derivatives

∂sr

∂pj

/

sj = −
α

1 − σ

sr

sj

[−(1 − σ)sj − σsw]

∂sj

∂pj

/

sj = −
α

1 − σ
[1 − (1 − σ)sj − σsw]

Note also that sr/sj = qr/qj , Rj = pj .qj , TCj = mcjqj , and sj = qj/(Q+Q0)
where Rj , TCj, Q and Q0 are revenue, total variable cost, total output produced
by domestic firms and total imported quantity, respectively. Hence, substituting
these equations into the pricing rule (B.1) and solving for quantity of plant j
belonging to firm f (j∈ Ff ), one obtains

qj =





1 − σ

α(Rj − TCj)
+





(

(1 − σ)

Q+Q0
+
σ

Q

)

∑

r∈Ff

(Rr − TCr)

(Rj − TCj)









−1

(B.2)

Aggregating over the qj ’s results in

Q =
∑

f=1,2,...,NF

,
∑

j∈Ff





1 − σ

α(Rj − TCj)
+





(

(1 − σ)

Q+Q0
+
σ

Q

)

∑

r∈Ff

(Rr − TCr)

(Rj − TCj)









−1

where NF is the total number of firms. This nonlinear equation can be solved
numerically for Q given (α,R,TC, Q0), where R = {Rj ; j = 1, ...NF} and TC =
{TCj; j = 1, ...NF}. Then, given the same parameters and data, qj is determined
from (A1.2), whereas pj , mcj and sj follow trivially from pj = Rj/qj,mcj =
TCj/qj and sj = qj/(Q+Q0) respectively.

Brazilian Review of Econometrics 26(2) Nov 2006 229



Sergio Aquino DeSouza

Finally, the log-linearized version of the demand system (8) can be solved for
relative quality aj

ajt ≡ ξj − ξ0 = α(pj − p0) − σ ln sw + ln sj − ln s0

In sum, for a given set (α,R,TC, Q0, p0), this mapping shows how to obtain
total quantity (Q) and plant-level information on price, marginal cost, relative
quality and quantity.
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Appendix C

Gibbs Sampler16

Although one cannot make inference directly from L(D; θ)p(θ), it is possible
to sample from the full conditionals of the θ components. In the NLB model, the
parameter vector is divided into: θ1 = (ϕ, λ), θ2 = (Σ), θ3 = (ν), θ4 = (α, σ). The
parameters ϕ, λ, α, σ are defined as before, Σ is the covariance matrix of the VAR
error terms and ν is the variance of error in the aggregate quantity equation (10).
The Gibbs algorithm goes as follows.

Step 0: Draw initial values for the parameter vector

θ0 = (θ01 , θ
0
2, θ

0
3 , θ

0
4) and set i = 0

Step 1: Draw θi+1 from the conditionals below.

1.1) Draw θi+1
1 ∼ π1(θ1 | θi

2, θ
i
3, θ

i
4, D)

1.2) Draw θi+1
2 ˜π2(θ2 | θi+1

1 , θi
3, θ

i
4, D)

1.3) Draw θi+1
3 ∼ π3(θ3 | θi+1

1 , θi+1
2 , θi

4, D)

1.4) Draw θi+1
4 ∼ π4(θ4 | θi+1

1 , θi+1
2 , θi+1

3 , D)

Step 2: Set i = i+ 1 and go back to step 1.

Here πk(θk | θ−k, D) = L(D; θ).pθk(θk), where pθk(θk) is the prior of the sub-
vector θk. Further, to describe the conditionals, define

Yjt = (ajt,mcjt)
′, Zjt = (1, ajt,mcjt, t)

′, Ujt = (ǫajt, ǫ
c
jt)

′, and B′

=

(

b01 ϕϕ
c β

b02 λλ
c φ

)

In addition, let

Y = [Y12....Y1T ......YN2......Y
′
NT

Z = [Z12....Z1T ......ZN2......Z
′
NT

16This appendix is heavily based on KLT (2003) and is included in this work for the sake of
clarity.
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U = [U12....U1T ......UN2........U
′
NT

The VAR system can then be written as Y=XB+U. Given θ4, Y and Z are
given and 1.1) to 1.3) have known probability distributions. On the other hand,
π4(θ4 | θ1, θ2, θ3, D) does not have a closed form solution, which requires the use
of a Metropolis-Hastings (M-H) algorithm.

More specifically, defining K as one plus the number of variables appearing on
the RHS of the VAR and assuming that the prior of θ1 is N(02k, 100×I2k), one can
show that π1(θ1 | θ2, θ3, θ4, D) is also a normal with mean un = [(Z ′ ⊗ Σ)V ec(Y ′)]

and variance Vn =
[

((Z ′Z) ⊗ Σ−1) + (1/100)I2k

]−1
.

For 1.2 it is assumed that Σ has Inverse Wishart prior with parameters 6 and
100xI2. Then π2(θ2 | θ1, θ3, θ4, D) has a distribution InvWish(mn, G

−1
n ), where

mn = 6+ number of observations,17 and

G−1
n = (100 × I2) + (Y − ZB)′(Y − ZB)

Similarly, ν has the prior distribution defined as the scalar version of the inverse
Wishart (InvWish(6,100)). Hence, the conditional π3(θ3 | θ1, θ2, θ4, D) is also an
InvWish(mn, G

−1
n ),mn = 6+(np−1), and G−1

n = 100+w′w, where w is a vector
that collects all the wt’s.

The prior for α is uniform with support [0,10], while σ has the same prior,
but its support is a little narrower [0,1]. Since one cannot identify the shape
of π4(θ4 | θ1, θ2, θ3, D), θ4 has to be sampled using a random walk Metropolis-
Hastings acceptance criterion with a normal proposal density. The probability

of acceptance of θ
′

4 is min

{

1,
π4(θ

′

4|θ
i+1

1
,θ

i+1

2
,θ

i+1

3
,D)

π4(θi
4
|θi+1

1
,θ

i+1

2
,θ

i+1

3
,D)

}

, where θ
′

4 is drawn from a

normal density with mean θi
4 and variance Λ. In principle, any Λ can be used in

the algorithm, however, for a well behaved convergence to the invariant probability
distribution, it is recommended to calibrate this variance such that it is not too
“big” (all the proposed θ

′

4 will be accepted, but the chain will move slowly) nor
too “small” (nearly all proposed moves will be rejected and the chain may not
move for several iterations).

Once convergence of the Markov chain has been attained (suppose at the Lth

simulation), it suffices to sample from the invariant distribution using the draws θi,
where i > L. To obtain the statistics reported in Table 1, I run 20,000 iterations
of the Markov chain and set L to be 2,000. Figures 1 and 2 show the graphs of the
MCMC simulations for the demand parameters for the nested logit model with the
aggregate quantity. Clearly, after 2,000 iterations the Markov chain moves within
a certain range and inference can be made from then on.

17Adjusted for the lags.
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Figure 1
MCMC simulation for α
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Figure 2
MCMC simulation for σ
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