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Abstract

When an insurance company sells a mutual fund with death and maturity guarantees
to its client, it may consider allowing the client to extend the guarantee for some more
years. If the renewal only happens once, a so-called rollover option is implied in the
contract. In this paper, we show how the generalized Bermudan option can be applied
to the special case of the rollover option.
By avoiding the heavy mathematical tools which are necessary to prove the existence of a
hedging strategy, we will focus on the calculations that are common in the Black-Scholes-
type analysis. Contrary to Bilodeau (1997) who analyzed the one-time renewal, we can
refer to the results on the (generalized) Bermudan option for which the existence of a
hedging strategy was already proved. We will see that the strike price has to be adjusted
if the contract is renewed in order to explicitly calculate the price of the contract.
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**Banco Itaú S.A., Área de Mercado de Capitais, Diretoria de Administração de Carteiras,
Superintendência de Pesquisa Quantitativa, São Paulo, Brasil.
E-mail: christian.zimmer@itau.com.br

Brazilian Review of Econometrics
v. 27, no 2, pp. 287–303 November 2007



Christian Johannes Zimmer

1. Introduction

The basic idea of contract renewal is of interest for several industries. Besides
specific insurance contracts, even investment vehicles for the general public may
have this feature. Take a look, for example, at the Brazilian PIBB fund, where
one invests in the IBOVESPA stock benchmark and receives a put option to hedge
against downside moves. This means that at expiration date t1 of the put, the
fund’s value is given by the underlying’s final value St1 plus the price of a put
option with strike K:

SGuar
t1 = St1 + (K − St1)

+

Let us focus on the put option (K − St1)
+

first and assume that the buyer has
the additional right to decide at expiration date whether to stop the contract and
receive SGuar

t1 = St1 + (K − St1)
+ or to continue the contract until final time T ,

where he receives SGuar
T = ST + (K − ST )+.1

The option with such a renewal feature is called rollover option. In the case of
continuing the contract, the initial strike price will be adjusted, if the underlying
is in the money, for the option to be at the money. In Bilodeau (1997), a way
to price this option was proposed, assuming that a hedging strategy exists. We
verify this existence by generalizing the rollover option to an option that allows
the buyer to decide whether he executes his right at several preset times. This
is the specification of a Bermudan option. The existence of a hedging strategy
for a generalized Bermudan option was shown in Zimmer (2000) and we use these
results to verify the pricing formula of Bilodeau (1997).2

After an introduction of the model settings, we analyze the rollover option
from two points of view. First, we follow the original paper, clarifying some steps
which explicitly use the Markovian framework. It will then become clear that
the possibility of an explicit pricing formula is caused not only by the Markovian
assumption, but also by the crucial feature of an adjustment of the previous strike
price. Then, in a second part, we show how to get the evaluation formula even if
more than two execution times are allowed. Here we use the approach of Bermudan
options.

As the rollover option was first analyzed in the framework of a complete Black-

Scholes model, we start with
(
Ω,F , F = (Ft)t≥0 , P

)
as a filtered probability space.

On this space lives the price process of the risky asset, S = (St)t∈[0,T ], which follows
a geometric Brownian motion:

1Actually, the PIBB does not have this additional right, but one might understand that such
a feature could be of interest for the general investor.

2Schweizer (2002) presented a nice summary of the main results and of the pricing of the
rollover option. In the present paper we provide the missing details for the rollover option.
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dSt

St
= µdt + σdWt (1)

S0 > 0

where W = (Wt)t∈[0,T ] is a standard Brownian motion under P ,

µ, σ ∈ R, σ > 0. We assume the interest rate r ∈ R
+ to be constant and pos-

itive. A riskless asset, B = (Bt)t∈[0,T ], shall be deterministic and remunerated
with interest rate r:

dBt

Bt
= rdt (2)

Setting W̃t = Wt + [(µ − r) /σ] t, we have

dSt

St
= rdt + σdW̃t (3)

For the discounted risky asset Sdisk =
(
Sdisk

t

)
t∈[0,T ]

we then have

Sdisk
t =

St

Bt
= S0 · e

(
µ−r−σ2

2

)
t+σWt = S0 · e

(
−σ2

2

)
t+σW̃t (4)

Now, let P̃ be a P -equivalent probability measure, under which
(
W̃t

)
t∈[0,T ]

is

a standard Brownian motion.3 Under this measure (which differs from the original
measure if µ 6= r), the discounted price process Sdisk is a martingale. To ease the

notation, we just set µ = r and hence have P̃ = P , which implies that

Sdisk
t = S0 · e

(
−σ2

2

)
t+σW̃t = S0 · e

(
−σ2

2

)
t+σWt (5)

We adopt the following notation: (Px)x≥0 is a family of probability measures
on (Ω, F). Then the triple (St,Ft, Px) is a homogenous Markovian process, i.e.

1. St is Ft-measurable for every t ≥ 0;

2. Px (St ∈ Γ) is measurable with respect to x for t ≥ 0, Γ ∈ B;

3. Px (S0 ∈ R
+\ {x}) = 0 for every x ∈ R

+\ {0};

4. Px (St ∈ Γ| Fs) = PSs
(St−s ∈ Γ) Px-almost sure.

3The formal conditions, the formulation, and the proof of the necessary Girsanov’s theorem
may be found, e.g. in Karatzas and Shreve (1991), Section 3.5.
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The rest of the paper is structured as follows. We start with a review of the
original Bilodeau (1997) approach and show how the author calculates the price of
a rollover option with two execution times: t1 < T . Then, we show how to use the
general approach of a Bermudan option and derive the same price. In both parts,
it is important to understand why the original strike price K has to be adjusted
at t1, in order to allow for explicit results. The third part (Section 4) derives the
hedging strategy for the special case of two execution times.

2. The Original Approach – A Direct Way to Price the Rollover Option

Bilodeau (1997) assumes that there exists a hedging strategy for the rollover
option with only one additional execution time t1 before final time T. The author
then evaluates the payoff, under this hypothesis, and calculates the value of a
European put option with execution time t1 and the value of a European put
option with execution time t2 − t1 =: ∆t ≥ 0. After having done this, one just
has to multiply the value of the second option by the probability of renewing the
contract (hence the validity of the second option), and finally the two values have
to be added. One might want to evaluate the put option as:4

Et1

[(
K − Sdisk

t1

)+
+ 1{renewal}

(
K − Sdisk

∆t

)+]
,∆t ≥ 0 (6)

This payoff can then be evaluated within the Black-Scholes framework, where
the author analyzes two cases on how to determine the rule for renewing the
contract or not. The first case uses the rule K < St1 (naive behavior). In the
second case, named optimal behavior, the execution of the option (and hence no
renewal) is determined by the fact that the price process S is below a certain
(deterministic) critical value St1 < S∗

t1 with S∗
t1 < K. We will directly take a

look at the optimal behavior as the naive one can be shown to open arbitrage
possibilities.

In the case of optimal behavior (similarly to the well-known decision rule for
an American put option), the holder of the option does not directly execute his
right when the price of the underlying drops below the strike price. Rather, the
holder compares the payoff he would receive with the remaining value of the option.
Bilodeau (1997) argues in a heuristic way that the holder of the option is indifferent
about execution at t1 when the price of the underlying at t1 satisfies:

(
K − S∗

t1

)+
= S∗

t1 · Put

(
1,

K

x
, ∆t

)
(7)

4Here it is important to note that we wrote the payoffs with a fixed strike price K ∈ R
+. See

below for a further discussion about this important issue.
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where

Put

(
1,

K

x
, ∆t

)
(8)

= EPx

[(
K

x
− 1 · e(r−σ2/2)∆t+σW∆t

)+
∣∣∣∣∣Ft1

]
(9)

is the value at time t1 of a put option with strike price5 K
x on an underlying price

process with initial value of 1 (at t1). The time to maturity of the option is ∆t > 0.
The objective is to find the deterministic value S∗

t1 that yields equality. Having
found this value,6 the holder of the option should execute his right if the price
process falls below it. Bearing in mind that Put

(
1, K

x , ∆t
)

> 0, we get, under
K > S∗

t1 , that

S∗
t1 =

K

1 + Put
(
1, K

x , ∆t
) (10)

Altogether, we can calculate the value of the rollover option at t0 with optimal
behavior following the formula

V RO,opt
t0 = EPx

[
e−rt1 · (K − St1) · 1{St1<K} · 1{St1<S∗

t1
}
]

(11)

+ EPx

[
e−r∆t · (K − S∆t) · 1{S∆t<K} · 1{St1≥S∗

t1
}
]

where V RO,opt
t0 stands for the value of the rollover option at t0 when the holder

acts optimally.
Assuming that K > S∗

t1 we then have

EPx

[
e−rt1 · (K − St1) · 1{St1<K} · 1{St1<S∗

t1
}
]

= EPx

[
e−rt1 · (K − St1) · 1{St1<S∗

t1
}
]

(12)

with

d∗1 (x, t) := d1

(
x

S∗
t1

)
=

ln
(

x
S∗

t1

)
+
(
r + 1

2σ2
)
t

σ
√

t
(13)

d∗2 (x, t) := d∗1 (x, t) − σ
√

t = d2

(
x

S∗
t1

)
− σ

√
t (14)

5Observe that Px

(
S0 ∈ R

+\ {x}
)

= 0 from the Markovian assumption (3).
6With this idea, Bilodeau (1997) follows the argumentation for the American put option,

where the stopping boundary resolves a free boundary problem and this equation is one of the
additional conditions. For this idea, see also Carr et al. (1992), p. 90.
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and by using the notations of the Black-Scholes formula, we deduce:

V RO,opt
t0 = Ke−rt1 · N (−d∗2 (x, t1)) − xN (−d∗1 (x, t1))

+ N (d∗1 (x, t1)) (15)

·
{

Ke−r(∆t) · N
(
−d2

( x

K
, ∆t

))
− xN

(
−d1

( x

K
, ∆t

))}

Now, we add the term

0 = S∗
t1e

−rt1 · N (−d∗2 (x, t1)) − S∗
t1e

−rt1 · N (−d∗2 (x, t1)) (16)

and set

V Eu
(
S∗

t1 , t1
)

:= S∗
t1e

−rt1 · N (−d∗2 (x, t1)) − xN (−d∗1 (x, t1)) (17)

V Eu (K, ∆t) := Ke−r∆t · N
(
−d2

( x

K
, ∆t

))
− xN

(
−d1

( x

K
, ∆t

))
(18)

These are the values of a European put option at t0 with strike price S∗
t1 and

time t1, respectively with strike price K and time ∆t. Altogether, we then have
the value proposed by Bilodeau (1997)

V RO,opt
t0 = V Eu

(
S∗

t1 , t1
)

+ e−rt1 · N (−d∗2 (x, t1)) ·
(
K − S∗

t1

)
(19)

+ N (−d∗2 (x, t1)) · V Eu (K, ∆t)

3. Evaluating the Rollover Option Using the Bermudan Approach

In the previous section, we analyzed the rollover option with two execution
times. Nevertheless, more execution times t1, ..., tN , N > 1 may be possible. It
is possible to tackle the pricing problem of such a Bermudan option, once again,
with backward induction. In the case of a general pricing process, the existence
of a hedging strategy and the associated price was developed in Zimmer (2000)
and summarized, e.g., in Schweizer (2002). In the complete Markovian case used
by Bilodeau (1997), one expects to get the same results. In what follows, we will
show how to carry out the details when using the Bermudan approach. We give
the price at and between execution times.

As already mentioned, the approach called naive behavior does not lead to an
arbitrage-free price. The comparison with the approach called optimal behavior
turns out to be more interesting, though. The evaluation at any time t ∈ [t0, t2] =
[0, T ] is of special interest for the hedging strategy developed in Section 4. We
have to pay attention that we need to differentiate explicitly between strike prices
Kt1 and Kt2 , a fact that does not become very clear in the original approach.
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3.1 Determination of the stopping boundary and of the payoff process

According to Theorem 16 in Zimmer (2000) we can ensure the existence of a
stopping boundary. This boundary shall now be determined for our special case.
The idea is that at the boundary price the buyer of the option is indifferent about
whether to execute the option or to continue the contract. This happens at time
t1 if and only if we have

(Kt1 − St1)
+

= e−r(t2−t1) · EPx

[
(Kt2 − St2)

+
∣∣∣Ft1

]
(20)

As a consequence of the Markovian property of S, we can write this as

(Kt1 − St1)
+

= e−r(t2−t1) · EPy

[
(Kt2 − St2−t1)

+
]∣∣∣

y=St1

(21)

Now, let sBer
t1 be that deterministic value which implies equality. We then have:

(
Kt1 − sBer

t1

)+
= e−r(t2−t1) · EP

sBer
t1

[
(Kt2 − St2−t1)

+
]

(22)

The right side is the value of a European put option at t0 with time t2 − t1,
strike price Kt2 and start of the price process in sBer

t1 . We can write this as

e−r(t2−t1) · EP
sBer

t1

[
(Kt2 − St2−t1)

+
]

= sBer
t1 e−r(t2−t1) · EP1

[(
Kt2

sBer
t1

− 1 · e
(

r−σ2

2

)
(t2−t1)+σ(Wt2−t1)

)+
]

(23)

Altogether, by considering Kt1 > sBer
t1 and Put

(
1,

Kt2

sBer
t1

, t2 − t1

)
> 0 from

formula (22) we get:

sBer
t1 =

Kt1

1 + Put
(
1,

Kt2

sBer
t1

, t2 − t1

) (24)

We now see that a constant strike price does not allow us to explicitly determine
the stopping boundary. But, if we use

Kt2 :=
Kt1

x
St1 (25)

as the strike price valid for t2 (and if there was no execution at t1), we will get the
value indicated in (10):7

7Here, we also have to set sBer
t1

= S∗

t1
, Kt1 = K and t2 − t1 = ∆t in formula (24).
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sBer
t1 =

K

1 + Put
(
1, K

x , ∆t
) (26)

Hence, we note that it is necessary to adjust the strike price in order to explicitly
determine the stopping boundary. In the next section, it will become clear that
we also have to adjust the strike price Kt2 in order to get an explicit evaluation
formula.

3.2 Evaluation at t0 and equivalence to the Bilodeau (1997) approach

The fair price of the rollover option at starting time t0 can be determined from
the Bermudan approach, as follows:

V RO,Ber
t0 = ess sup

τ∈T >t0
Ber

EPx

[
e−rτ · fτ

∣∣Ft0

]
(27)

where we already considered that the option should not be executed at t0, but
only at times t1 and t2 = T. V RO,Ber

t0 is the value of a rollover option (with two
execution times in this case) using the Bermudan approach. Bearing in mind the
representation of a time point between two execution times and the fact that Ft0

is trivial, this term may be written as

V RO,Ber
t0 = EPx

[
V RO,Ber

t1

]
(28)

= EPx

[
e−rt1 · max

{
ft1 , EPx

[ft2 | Ft1 ] · e−r(t2−t1)
}]

(29)

Explicitly, we get

V RO,Ber
t0 = e−r·t1 · EPx[(

(K − St1) · 1{St1<K}

· 1{
(K−St1)

+
>e−r·t2 ·EPx

[ (
K·St1

x
−St2

)+
∣∣∣∣Ft1

]}

)

+

(
EPx

[
e−r(t2−t1) ·

(
K · St1

x
− St2

)
· 1{

K·St1
x

>St2

}
∣∣∣∣Ft1

]
(30)

· 1{
(K−St1)

+≤e−r·t2EPx

[ (
K·St1

x
−St2

)+
∣∣∣∣Ft1

]}

)]
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Here, we substitute the stopping boundary sBer
t1 and get the formula

V RO,Ber
t0 = e−r·t1 · EPx

[
(K − St1) · 1{St1<K} · 1{St1<sBer

t1
}
]

(31)

+ e−r·t1 · EPx

[
EPx

[
e−r(t2−t1)

(
K · St1

x
− St2

)+
∣∣∣∣∣Ft1

]

· 1{St1≥sBer
t1

}
]

Considering sBer
t1 = S∗

t1 , the first term in (31) can be written as in the case of
the optimal behavior:8

e−rt1 · EPx

[
(K − St1) · 1{St1<K} · 1{St1<sBer

t1
}
]

= EPx

[
e−rt1 (K − St1) · 1{St1<sBer

t1
}
]

(32)

= Ke−rt1 · N
(
−d2

(
x

sBer
t1

, t1

))
− x · N

(
−d1

(
x

sBer
t1

, t1

))
(33)

= V Eu
(
sBer

t1 , t1
)

+ N

(
−d2

(
x

sBer
t1

, t1

))
·
(
K − sBer

t1

)
e−rt1 (34)

The second term in (31), we first rewrite as:

e−rt1 · EPx

[
EPx

[
e−r(t2−t1) ·

(
K · St1

x
− St2

)+
∣∣∣∣∣Ft1

]
· 1{St1≥sBer

t1
}

]
(35)

= e−rt1 · EPx

[
EPx

[
e−r(t2−t1) · K · St1

x
· 1{

K·St1
x

>St2

}
∣∣∣∣Ft1

]
· 1{St1≥sBer

t1
}
]

−e−rt1 · EPx

[
EPx

[
e−r(t2−t1) · St2 · 1{K·St1

x
>St2

}
∣∣∣∣Ft1

]
· 1{St1≥sBer

t1
}
]

There are now two equivalent possibilities to derive a more detailed form of
this term. The first alternative uses the tower property of the conditional expec-
tation. The second approach uses the Markovian property of the price process. It
seems that Bilodeau (1997) has followed one of these alternatives, too. We will
restrict ourselves to the first alternative using the tower property of the conditional
expectation.

As an example, we will calculate the first term of (35). It is possible to rewrite
this term (recalling that 1{St1≥sBer

t1
} is Ft1-measurable) in the form

8Compare with equalities (12) and (19).
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e−rt1 · EPx

[
EPx

[
e−r(t2−t1)K · St1

x
· 1{

K·St1
x

>St2

}
∣∣∣∣Ft1

]
· 1{St1≥sBer

t1
}
]

= e−rt1 · EPx

[
EPx

[
e−r(t2−t1)K · St1

x
· 1{

K·St1
x

>St2

} · 1{St1≥sBer
t1

}
∣∣∣∣Ft1

]]
(36)

=
K

x
· e−r(t2−t1) · EPx

[
e−rt1St1 · 1{St1≥sBer

t1
} · 1{

K·St1
x

>St2

}
]

(37)

Now we take the terms for St1 and St2 and substitute them into K · St1

x > St2 ,
which leads us to:

K · x

x
exp

{
σWt1 +

(
r − σ2

2

)
t1

}
> x exp

{
σWt2 +

(
r − σ2

2

)
t2

}
(38)

This can be formulated as:

σ (Wt1 − Wt2) +

(
r − σ2

2

)
(t1 − t2) > ln

x

K
(39)

or even as

σ (Wt2 − Wt1) +

(
r − σ2

2

)
(t2 − t1) < ln

K

x
(40)

Now we introduce St1 into the equality (37) and have the result

K

x
· e−r(t2−t1) · EPx

[
e−rt1St1 · 1{St1≥sBer

t1
} · 1{

K·St1
x

>St2

}
]

(41)

= K · e−r(t2−t1) · EPx

[
e−rt1 exp

{
σWt1 +

(
r − σ2

2

)
t1

}

·1


Wt1≥ln

sBer
t1
x

−(r− σ2
2 )t1

σ





· 1{
(Wt2−Wt1)<

ln K
x

−(r− σ2
2 )(t2−t1)

σ

}




As we know that W is a Brownian motion, we also know that the random
variables (Wt2 − Wt1) and Wt1 are independent. This leads us to
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K

x
· e−r(t2−t1) · EPx

[
e−rt1St1 · 1{St1≥sBer

t1
} · 1{

K·St1
x

>St2

}
]

(42)

= K · e−r(t2−t1) · EPx
e−rt1 exp

{
σWt1 +

(
r − σ2

2

)
t1

}
· 1


Wt1≥ln

sBer
t1
x

−(r− σ2
2 )t1

σ








·Px


(Wt2 − Wt1) <

ln K
x −

(
r − σ2

2

)
(t2 − t1)

σ




The term (42) can now be calculated in the following manner: First, we set
again

Yt1 := σWt1 +

(
r − σ2

2

)
t1 (43)

As Yt1 ∼ N
((

r − σ2

2

)
t1, σ

2t1

)
and with the transformation

z :=
Yt1 −

(
r − σ2

2

)
t1

σ
√

t1
(44)

we arrive at the following equation
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EPx


e−rt1 exp

{
σWt1 +

(
r − σ2

2

)
t1

}
· 1


Wt1≥ln

sBer
t1
x

−(r− σ2
2 )t1

σ








=

∞∫

ln
sBer

t1
x

−(r− σ2
2 )t1

σ
√

t1

1√
2π

· e− 1
2 z2+z·σ√t1−σ2

2 t1dz (45)

=

∞∫

ln
sBer

t1
x

−(r− σ2
2 )t1

σ
√

t1

1√
2π

· e−
(z−σ

√
t1)2

2 dz (46)

=

ln x

sBer
t1

+

(
r+ σ2

2

)
t1

σ
√

t1∫

−∞

1√
2π

· e− z2

2 dz (47)

= N

(
d1

(
x

sBer
t1

, t1

))
(48)

In the case of setting S∗
t1 = sBer

t1 , analogously to Bilodeau (1997) we would
have:

N

(
d1

(
x

sBer
t1

, t1

))
= N (d∗1 (x, t1)) (49)

Altogether, for (42) we get:

K

x
· e−r(t2−t1) · EPx

[
e−rt1St1 · 1{St1≥sBer

t1
} · 1{

K·St1
x

>St2

}
]

(50)

= K · e−r(t2−t1) · N
(

d1

(
x

sBer
t1

, t1

))
· N
(
−d2

( x

K
, t2 − t1

))

This is the same term as the third term in (15) from the “optimal” approach
with ∆t = t2 − t1 and S∗

t1 = sBer
t1 :

K · e−r(∆t) · N (d∗1 (x, t1)) · N
(
−d2

( x

K
, ∆t

))
(51)
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The second sum of (35) can be calculated in an analogous way and hence results
in:

EPx

[
e−rt1 · EPx

[
e−r(t2−t1) · St2 · 1{K·St1

x
>St2

}
∣∣∣∣Ft1

]
· 1{St1≥sBer

t1
}
]
(52)

= x · N
(

d1

(
x

sBer
t1

, t1

))
· N
(
−d1

( x

K
, t2 − t1

))

By substituting (52) and (35) in (31), we can specify the value of the rollover
option with the Bermudan approach as:

V RO,Ber = V Eu
(
sBer

t1 , t1
)

+ N

(
−d2

(
x

sBer
t1

, t1

))
·
(
K − sBer

t1

)
e−rt1 (53)

+N

(
d1

(
x

sBer
t1

, t1

))
·
{

K · e−r(t2−t1) · N
(
−d2

( x

K
, t2 − t1

))

−x · N
(
−d1

( x

K
, t2 − t1

))}

So, using the alternative of the tower property, bearing in mind the slightly
different notations, we have that

V RO,Ber
t0 = V RO,opt

t0 (54)

3.3 Evaluation for any time

As the final task of pricing the rollover option, we will specify its values for the
relevant regions [t0, t1) , {t1} , (t1, t2). The time t2 is obvious and will be included
in the analysis of the interval (t1, t2). We use the notation V RO for the value
process of the rollover option, whose value at t0 is given by (54).

1. Case: t ∈ (t1, t2]
It is true for t ∈ (t1, t2] , as St1 is Ft1-measurable that St is Ft-measurable for

every t ∈ (t1, t2]. Thus, also K̃ := K · St1

x is measurable with respect to Ft. Now,
we can calculate the value

V RO
t = EPx

[(
K · St1

x
− St2

)+
∣∣∣∣∣Ft

]
· e−r(t2−t) (55)

In Zimmer (2000), Section 6.1, Lemma 6.1.2, it was shown that the value
process in the interval (t1, t2] is a martingale. The term (55) is hence given by the
well-known formula of a European put option:
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V RO
t = K̃ · N

(
−d2

(
St

K̃
, t2 − t

))
· e−r(t2−t) (56)

− St · N
(
−d1

(
St

K̃
, t2 − t

))
e−r(t2−t), t ∈ (t1, t2]

2. Case: t = t1
For t = t1 it holds that

V RO
t1 = max

{
(K − St1)

+
, EPx

[(
K · St1

x
− St2

)+

· e−r(t2−t1)

∣∣∣∣∣Ft1

]}
(57)

which we can rewrite, as in the above cases, as

V RO
t1 = (K − St1) · 1{St1<sBer

t1
} (58)

+ EPx

[(
K · St1

x
− St2

)+

· e−r(t2−t1)

∣∣∣∣∣Ft1

]
· 1{St1≥sBer

t1
}

As in the second term, we only have to calculate the value of the payoff at
t1, and as the process

(
EPx

[
ft2 · e−r(t2−t)

∣∣Ft

])
t∈[t1,t2]

is a martingale at [t1, t2],

analogously to the first case, we have:

EPx

[(
K̃ − St2

)+

· e−r(t2−t1)

∣∣∣∣Ft1

]
= K̃ · N

(
−d2

(
St1

K̃
, t2 − t1

))
· e−r(t2−t1)

− St1 · N
(
−d1

(
St1

K̃
, t2 − t1

))

e−r(t2−t1) (59)

Altogether, we can write:

V RO
t1 = (K − St1) · 1{St1<sBer

t1
} + 1{St1≥sBer

t1
}

·
{

e−r(t2−t1)K̃ · N
(
−d2

(
St1

K̃
, t2 − t1

))

−St1 · N
(
−d1

(
St1

K̃
, t2 − t1

))}
(60)
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3. Case: t ∈ [t0, t1)
This case was already proven in the previous section, and hence, for every

t ∈ [t0, t1), we analogously have:

V RO
t = V Eu

t

(
sBer

t1 , t1 − t
)

+ N (d∗1 (St, t1 − t)) · V Eu
t (K, t2 − (t1 − t)) (61)

+N (−d∗2 (St, t1 − t)) ·
(
K − sBer

t1

)
· e−r(t1−t)

4. Determining a Hedging Strategy

As the rollover option is a special case of the Bermudan option, we can apply the
theorem of the existence of an optional decomposition, which gives us the existence
of a hedging strategy. During the derivation of the original approach, this existence
was only assumed because the Bermudan approach was yet unknown. Now, we will
explicitly specify the replicating trading strategy φ = (φt)t∈[0,T ] =

(
φS

t , φK
t

)
t∈[0,T ]

abusing the special structure of the Black-Scholes model. In order to do this, we
have to analyze different cases: At time t = t2 it holds that V RO

t2 = (Kt2 − St2)
+

,

hence we immediately calculate φS
t2 =

(Kt2−St2)
+

St2
and φK

t2 = 0.

Let I1 = (t1, t2) , I2 = {t1}, I3 = [t0, t1) be subsets of R
+,

I = I1∪I2∪I3 and D = (0, +∞)×I. Let further v : D → R be given by v (St, t) =
V RO

t . We then know that v|I1∪I2 ∈ C1,2 (I1 ∪ I2, R) and v|I3 ∈ C1,2 (I3, R) , which
means that v is sufficiently smooth on the considered intervals. We will write

vs (s, t) =
∂v (s, t)

∂s
(62)

for the partial derivative of v in the first variable. Again, we use the fact that
the value processes between two execution times are martingales. We do not only
know that a hedging strategy exists, but we can also derive it directly from the
martingale representation theorem. If we ignore, in a first step, the question about
whether the holder of the option executed his right or not, then we can formulate
the strategy for the stock respectively for the savings account for times t ∈ (ti−1, ti)
for i = 1, 2 as:

φS
t = vs (St, t) (63)

φK
t = e−rt

(
V RO

t − φS
t · St

)

As another example, let us derive the strategy for the case t = t1. It also
indicates how to use the knowledge about whether the holder of the option used
his right of execution. First of all, analogously to the above case, we have:
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φS
t1 = vs (St1 , t1) (64)

= −
(
1{St1<sBer

t1
} + N

(
−d1

(
St1

K̃
, t2 − t1

))
· 1{St1≥sBer

t1
}
)

and

φK
t1 = e−rt1

(
V RO

t1 − φS
t1 · St1

)
(65)

= K̃ ·
(

e−rt1 · 1{St1<sBer
t1

} + e−rt2 · N
(
−d2

(
St1

K̃
, t2 − t1

))

· 1{St1≥sBer
t1

}
)

Here we have to pay special attention to the possibility of execution of the
option. The buyer of the option will behave optimally, if he executes his right as
soon as St1 ≥ sBer

t1 becomes true. If he does not execute his right following this
rule, the seller of the option will realize a riskless gain at t1 with the value of

Ct1 := ft1 − EPx
[ft2 | Ft1 ] e

−r(t2−t1). (66)

For simplicity, we assume that the decision of execution (which obviously can
be suboptimal) is taken independently of the price of the underlying S. We will
model this event on the same probability space and define it as Ft1 -measurable:
A := {“The buyer of the option does not execute his right at t1 ”}.

The additional consumption arising for the seller of the option in the case of a
suboptimal execution will be accounted for the savings account and will only have
a value for the seller if the residual value of the option is smaller than the actual
payoff at t1:

φK
t1 = e−rt1

(
V RO

t1 − φS
t1 · St1

)
+ 1A · 1{St1≥sBer

t1
} (Ct1) (67)

= K̃ ·
(

e−rt1 · 1{St1<sBer
t1

} + N

(
−d2

(
St1

K̃
, t2 − t1

))
· 1{St1≥sBer

t1
}
)

+ 1A · 1{St1≥sBer
t1

}(
(K − St1)

+ − EPx

[(
K

St1

x
− St2

)+
∣∣∣∣∣Ft1

]
e−r(t2−t1)

)
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5. Conclusion

In this paper, we showed how the Bermudan option can be used to generalize
the rollover option. We showed how the Bermudan approach replicates the results
of Bilodeau (1997) to price the rollover option, and provided additional insights
into the problems of pricing and hedging of this option. We explicitly carried out
the calculations following either the original approach of Bilodeau (1997) or the
steps necessary to price a Bermudan option. Both approaches yielded the same
result. We made it also clear that when the strike prices were readjusted at every
possible execution time, an explicit result could be obtained.

This approach may be of practical interest for investment vehicles, such as the
Brazilian PIBB, when further attractiveness via a renewal option is desired.
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