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1. Introduction

Since Black and Scholes (1973) seminal paper, many researchers have studied
the true dynamics of the underlying asset return process. This true return differs
from that seminal model assumptions in three different aspects: asset prices jump
(so we do not observe normal returns), the volatility is stochastic and returns and
volatility are correlated. Frequently, that correlation is negative, and this feature
is called leverage effect.

In an effort to improve option pricing results, many models have been sug-
gested. We can mention Merton (1976) model, where a compound Poisson process
is introduced as the structure of the jumps, and the stochastic volatility model
of Heston (1993), where a mean-reverting square root process is used. Of course,
some of that work can be done with the affine diffusion models introduced by
Duffie et al. (2000), but the use of the compound Poisson process to model jumps
limits these models.

In fact, if we observe asset returns, we can see the presence of many small
jumps in finite time intervals. To deal with this fact, more realistic jump struc-
tures have been suggested, such as the inverse Gaussian (IG) model of Barndorff-
Nielsen (1998), the generalized hyperbolic (GH) model of Eberlein et al. (1998),
the variance-gamma (VG) model of Madan et al. (1998) and the CGMY model of
Carr et al. (2002). These models are called Lévy process models.

On the other hand, by a result due to Monroe (1978), we know that every
semimartingale can be written as a time-changed Brownian motion. This large
family of processes have allowed to show that time-changed Lévy processes can
capture the best features of the above models: high jump activity and leverage
effect, as was shown by Carr and Wu (2004). Nevertheless, the construction in
Monroe (1978) is not direct, meaning that the problem of the specification of
different models according to convenient parameter sets remains an important
issue.

The stochastic time change in the Lévy process generates stochastic volatility.
We can understand the original clock as a calendar time and the new random clock
as a business time; more activity on a business day generates a faster business clock,
and this randomness in business clock generates stochastic volatility. If we let the
Lévy process be correlated with the random clock, we can capture the correlation
between returns and volatility, see Black (1976) and Bekaert and Wu (2000). For
an analysis of the best specification of the option pricing model with time-changed
Lévy processes, see Huang and Wu (2004).
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In the present paper we study the relationship between prices of put and call
options, of both the European and the American type, when the underlying stock
is driven by time-changed Lévy processes. This relationship is called put–call
duality and it includes the relationship known as put–call symmetry as a particular
case. Similar results for the cases of Lévy processes and additive processes have
been obtained by Fajardo and Mordecki (2006b) and Eberlein and Papapantoleon
(2005), respectively.

Duality and symmetry relationships are very useful, since they allow us to
obtain American put prices from American call prices, which in some cases coin-
cide with their respective European version, as is done by Chesney and Jeanblanc
(2004). Also, we can use the symmetry relationship to price and construct static
hedging for exotic options. That fact is very important, since we do not need to
look for dynamic hedging, which would be more expensive and more difficult to
implement. For more details, see Bowie and Carr (1994) and Carr et al. (1998).
More recently, they were used to address the so-called skewness premium by Fa-
jardo and Mordecki (2006b).

The paper is organized as follows: in Section 2 we introduce time-changed
Lévy processes. In Section 3 we describe the market model. In Section 4 we study
the put–call duality relation. In the last sections we have the conclusions and an
Appendix.

2. Time-changed Lévy Processes

2.1 Lévy processes

A stochastic process X = {X1
t , . . . , X

d
t : t ≥ 0} with values in Rd, defined

on the probability space (Ω,F,P), is called a Lévy process,1 with respect to the
complete filtration F = {Ft, t ≥ 0}, if it satisfies the following conditions:

• X has right continuous paths and left limits.

• X0 = 0, and given 0 < t1 < t2 < ... < tn, the random variables

Xt1 , Xt2 −Xt1 , · · · , Xtn −Xtn−1

are independent.

• The distribution of the increment Xt+h−Xt is time-homogenous, that is, it
does not depend on t.

• X is stochastically continuous, i.e. ε > 0 : lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0

Observe that the first condition implies that the sample paths can present
discontinuities at random times.

1Named after the French mathematician Paul Lévy (1886-1971).
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A key result for Lévy processes is the Lévy-Khintchine formula, which gives us
the characteristic function of Xt:

φXt(z) ≡ Ee〈z,Xt〉 = exp(tψ(z))

where ψ is called the characteristic exponent and is given by:

ψ(z) = 〈a, z〉+
1
2
〈z,Σz〉+

∫
Rd

(
e〈z,y〉 − 1− 〈z, y〉1{|y|≤1}

)
Π(dy) (1)

where a = (a1, . . . , ad) is a vector in Rd, Π is a positive measure defined on Rd\{0}
such that

∫
Rd(|y|2 ∧ 1)Π(dy) is finite, and Σ is a symmetric nonnegative definite

matrix.
Interesting examples of Lévy processes are the multidimensional standard

Brownian motion, whose triplet is (0, Id, 0) and we only have continuous compo-
nent (here Id is the identity matrix in Rd), and the Poisson process with d = 1,
whose triplet is (0, 0, λδ(1)), where δ(1) means Dirac measure at 1 and λ is the
intensity parameter, this process has only a discontinuous component. For more
examples and details on Lévy processes, see Cont and Tankov (2004). We also
refer the reader to Fajardo and Mordecki (2006b) and Fajardo and Farias (2004)
for applications of Lévy processes to Brazilian data.

2.2 Time-changed Lévy processes

A random change time is an increasing càdlàg process {Tt : t ≥ 0}, such that

(i) for each fixed t, Tt is a stopping time with respect to F;

(ii) Tt is finite P− a.s., ∀t ≥ 0; and

(iii) Tt →∞ as t→∞.

Then, consider the process Yt defined by:

Yt ≡ XTt , t ≥ 0

this process is called time-changed Lévy process. Using different triplets for X
and different time changes Tt, we can obtain a good candidate for the underlying
asset return process. We know that if Tt is another Lévy process we have that Y
would be another Lévy process (see Appendix). A more general situation is when
Tt is modeled by a non-decreasing semimartingale:

Tt = bt +
∫ t

0

∫ ∞
0

yµ(dy, ds) (2)

where b is a drift and µ is the counting measure of jumps of the time change. Now
we can obtain the characteristic function of Yt:
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φYt(z) = E(ezXTt ) = E
(
E
(
ezXu/Tt = u

))
If Tt and Xt are independent, then:

φYt(z) = LTt(ψ(z)) =
∫ ∞

0

eψ(z)uλt(du) (3)

where λt(A) = (Tt ∈ A), and, correspondingly, LTt is the Laplace transform of Tt.
So if the Laplace transform of T and the characteristic exponent of X have closed
forms, we can obtain a closed form for φYt .

This way we can obtain the distribution of Yt for every t and then we can price
some derivatives.

2.3 Examples

2.3.1 Subordinators

We say that Tt is a subordinator if it is a positive Lévy process. Positivity is
a desired fact for a time change and the choice of a Lévy process will allow us to
obtain, as a result, a very good candidate to model asset returns.

Now let Tt be an α-stable with zero drift and α ∈ (0, 1), that is a Lévy process
with Lévy measure given by:

v(x) =
A

x1+α
, x > 0

and let Xt be a symmetric β−stable process, that is, using equation (1) we have

ψ(z) = −B|z|β

where A andB are positive constants. Then we can compute the Laplace transform
of Tt :

LTt(z) = A

∫ ∞
0

ezx − 1
xα+1

dx = −AΓ(1− α)
α

(−z)α

Using equation (3), we have that Yt = XTt has characteristic exponent given
by

φYt(z) = LTt(ψ(z)) = −C|z|βα

where C = ABαΓ(1−α)
α . That is Yt is a βα−stable symmetric process. If Xt is a

Brownian motion, i.e. β = 2, then Yt would be a 2α−stable symmetric process.
As α < 1, we have that Yt will be a process with heavy tails, which is a stylized
fact of the majority of the observed asset returns.
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2.3.2 Interest rate models

As in Carr and Wu (2004) we can take µ = 0 in (2) and just take locally
deterministic time changes, so we need to specify the local intensity ν:

Tt =
∫ t

0

ν(s−)ds (4)

where ν is the instantaneous activity rate, observe that ν must be non-negative.
Using equation (3) we have:

φYt(z) = LTt(ψ(z)) = E(e−ψ(z)
∫ t
0 ν(s−)ds) (5)

From here we can understand zν as an instantaneous interest rate, then we
can search in the bond pricing literature for a closed form for φYt .

If Xt is a symmetric Lévy process, then it has ψ real and if we consider an
independent time change, then Yt has a symmetric distribution, that is φYt remains
real and can be computed by (5).

For example, take Xt = Wt a Brownian motion and the instantaneous activity
rate as:

dν(t) = (a− θν(t))dt+ η
√
ν(t)dBt

Where Bt is another Brownian motion independent of Wt. Then, we know
that ψ(z) = z2

2 and by Duffie et al. (2000), we know that the bond price for that
affine class of activity rates is given by

φYt(z) = LTt(ψ(z)) = E(e−
z2
2

∫ t
0 ν(s)ds) = e−b(t)ν(0)−c(t)

In this particular model we have an analytic expression for b(·) and c(·), given
by:

b(t) =
z2(1− e−δt)

(δ + θ) + (δ − θ)e−δt

and

c(t) =
a

η2

[
2 ln

(2δ − (δ − θ)(1− e−δt))
2δ

+ (δ − θ)t
]

with δ = θ2 + z2η2.
A way to model the correlation between X and T is to assume in this example

that Bt and Wt are correlated. We obtain an asymmetric distribution for Yt. Then,
φYt would be a complex number and we have to treat this case with a complex
change of measure and compute a generalized Laplace transform introduced by
Carr and Wu (2004). Since the purpose of this work is not to address all the
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properties of time-changed Lévy processes, we refer the interested reader to Carr
and Wu (2004) for more details and application to contingent claim valuation.

3. Market Model

Consider a time-changed Lévy market where we have a riskless asset that we
denote by B = {Bt}t≥0, with

Bt = ert, r ≥ 0

where we take B0 = 1 for simplicity, and a risky asset that we denote by S =
{St}t≥0,

St = S0e
Yt , S0 = ey > 0 (6)

Here Yt is a time-changed Lévy process with independent increments.2 Also,
we assume that the stock pays dividends, with constant rate δ ≥ 0, and we assume
that the probability measure is the chosen equivalent martingale measure. In other
words, prices are computed as expectations with respect to, and the discounted
and reinvested process {e−(r−δ)tSt} is a P–martingale.

In order for this condition be satisfied, we need that

E
[
e−(r−δ)tSt

]
= S0,∀t (7)

In other words, E(eYt) = e(r−δ)t. That means that the characteristic exponent3

Ψ(1) = (r − δ)t

To avoid arbitrage opportunities we have to restrict our attention to the time-
changed Lévy process such that the exponential process eYt is a –martingale.

Let Ψ = (B,C, ν) denote also the characteristic triplet of Y . Then, by the
–martingale property, the drift characteristic B is completely determined by the
other characteristics:4

Bt = (r − δ)t− 1
2

∫ t

0

csds−
∫ t

0

∫
R

(ex − 1− x)ν(ds, dx)

In the market model considered we introduce some derivative assets. More
precisely, we consider call and put options of both European and American types.

Let us assume that τ is a stopping time with respect to the given filtration F ,
that is τ : Ω→ [0,∞] belongs to Ft for all t ≥ 0; and introduce the notation

2That is the case if Tt has independent increments.
3See Appendix.
4Here we assume that the moment generating function exists, which allows us to express the

characteristics as integrals over time.
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C(S0,K, r, δ, τ,Ψ) = Ee−rτ (Sτ −K)+ (8)

P(S0,K, r, δ, τ,Ψ) = Ee−rτ (K − Sτ )+ (9)

If τ = T , where T is a fixed constant time, then formulas (8) and (9) give the
price of the European call and put options, respectively.

3.1 Dual Martingale measure

As in Fajardo and Mordecki (2006b), we introduce the dual martingale measure
P̃ given by its restrictions P̃t to Ft by

dP̃t
dPt

= Zt

where Pt (resp. P̃) is the restriction of P (resp. P̃t) to Ft and the martingale5

Z = {Zt}t≥0 is given by

Zt = eYt−(r−δ)t, (t ≥ 0)

Following (ii) in Theorem 3.4 in Jacod and Shiryaev (1987), we know that the
fixed time can be replaced by any stopping time in τ ∈MT to give

dP̃τ
dPτ

= Zτ

where, similarly as before, Pτ (resp. P̃τ ) is the restriction of P (resp. P̃) to the
σ-algebra

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft}

With this dual martingale measure we can state and prove our main result.

4. Put-Call Duality and Symmetry

In this section we obtain the put-call duality and symmetry relationships.
The following proposition presents a relationship that we have called put-call

duality.

Proposition 4.1. Consider a Time-changed Lévy market with driving process
Y with characteristic triplet Ψ = (B,C, ν) and with a independent time change.
Then, for the expectations introduced in (8) and (9) we have

C(S0,K, r, δ, τ,Ψ) = P(K,S0, δ, r, τ, Ψ̃) (10)
5See Equation (7).
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where Ψ̃(z) = (B̃, C̃, ν̃) is the characteristic triplet (of a certain semimartingale)
that satisfies:


B̃t = (δ − r)t− 1

2

∫ t
0
csds−

∫ t
0

∫
R
(
ex − 1− x1{|x|≤1}

)
ν̃(ds, dx)

C̃ = C,

ν̃(dy) = e−yν(−dy)
(11)

Proof. In this market the martingale Z = {Zt}t≥0 defined by

Zt = eYt−(r−δ)t (t ≥ 0) (12)

As we have done in the latter section we introduce the dual martingale measure
P̃ given by its restrictions P̃t to Ft by

dP̃t
dPt

= Zt

where Pt is the restriction of P to Ft. Now

C(S0,K, r, δ, τ,Ψ) = Ee−rτ (S0e
Yτ −K)+ = E

[
Zτe

−δτ (S0 −Ke−Yτ )+
]

= Ẽe−δτ (S0 −KeỸτ )+

where Ẽ denotes expectation with respect to P̃, and the process Ỹ = {Ỹt}t≥0 given
by Ỹt = −Yt (t ≥ 0) is the dual process. In order to conclude the proof, that is, in
order to verify that

Ẽe−δτ (S0 −KeỸτ )+ = P(K,S0, δ, r, τ, Ψ̃)

we must verify that the dual process Ỹ is a semimartingale with characteristic
triplet defined by (11). To this end, take u = (−1, 0, 1) and v = (0, 0 − 1) in
Proposition A.1 in Appendix. This concludes the proof. �

As in Fajardo and Mordecki (2006b), Proposition 4.1 motivates us to consider
the following market model. Given a time-changed Lévy market with driving pro-
cess characterized by Ψ, consider a market model with two assets, a deterministic
savings account B̃ = {B̃t}t≥0, given by

B̃t = eδt, r ≥ 0

and a stock S̃ = {S̃t}t≥0, modeled by

S̃t = KeỸt , S0 = ex > 0
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where Ỹ = {Ỹt}t≥0 is a semimartingale with local characteristics under˜given by
Ψ̃. This market is the auxiliary market in Detemple (2001), and the dual market
in Fajardo and Mordecki (2006b) and we call the relation (10), put-call duality as
in Fajardo and Mordecki (2006b). It must be noticed that Peskir and Shiryaev
(2001) propose the same denomination for a different relation. Finally, observe
that in the dual market (i.e. with respect to P̃), the process {e−(δ−r)tS̃t} is a
martingale.

4.1 Symmetric markets

It is interesting to note that in a market with no jumps, the distribution (or
laws) of the discounted (and reinvested) stocks in both the given and dual Lévy
markets coincide. It is then natural to define a market to be symmetric when this
relation holds, i.e. when

L
(
e−(r−δ)t+Yt | P

)
= L

(
e−(δ−r)t−Yt | P̃

)
(13)

meaning equality in law. In view of (11), and to the fact that the characteris-
tic triplet determines the law of a time-changed Lévy process, a necessary and
sufficient condition for (13) to hold is

ν(dy) = e−yν(−dy) (14)

This ensures ν̃ = ν, and it follows that b− (r− δ) = b̃− (δ− r), giving (13), as
we always have C̃ = C.

When this symmetry condition is satisfied, our put-call duality is called put-call
symmetry, which has been used to price and obtain static hedging for exotic op-
tions, as the path-dependent ones. This way we can use a very simple instrument,
as European options, to analyze sophisticated instruments, as Barrier options. For
more details, see Bowie and Carr (1994) and Carr et al. (1998).

4.2 Bates’ x% rule

An important fact from option prices is that relative prices of out-of-the-money
calls and puts can be used as a measure of symmetry or skewness of the risk-neutral
distribution. Bates (1991) called this diagnosis skewness premium. He obtained a
relationship called Bates’x%-rule that, under a symmetry condition, can perfectly
explain that premium. As is shown in the following corollary.

Corollary 4.1. Take r = δ and assume (14) holds, we have

C(F0,Kc, r, τ,Ψ) = x P(F0,Kp, r, τ,Ψ)

where Kc = xF0 and Kp = F0/x, with x > 0.
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Proof. Follows directly from Proposition 4.1. Since r = δ and Ψ = Ψ̃. �

From here, calls and puts at-the-money (x = 1) should have the same price.
This x%−rule, in the context of Merton’s model was obtained by Bates (1997).
That is, if the call and put options have strike prices x% out-of-the money relative
to the forward price, then the call should be priced x% higher than the put. Also,
he studied the empirical evidence of that rule in Bates (1996).

4.3 Example

Consider that r = δ = 0 and the following business clock

Tt =
∫ t

0

ν(s)ds (15)

where ν is the CIR process, i.e. a positive process, given by

dν(t) = (a− θν(t))dt+ η
√
ν(t)dBt

where Bt is a Brownian motion.
Now consider Xt to be a pure jump Lévy process, independent of T , with Lévy

measure ρ. Then, we know that the pure jump process XTt has characteristic
triplet (B, 0, κ), where:

κ(ds, dx) = ν(s)ρ(dx) and Bt = −
∫ t

0

∫
(ex − 1− 1{|x|≤1}(x))κ(ds, dx)

Then, by applying Proposition 1, we have that in a market where St = S0e
XTt ,

call and put prices are related by

C(S0,K, r, δ, τ,Ψ) = P(K,S0, δ, r, τ, Ψ̃)

where Ψ = (B̃, 0, κ̃), with

κ̃(ds, dx) = e−xν(s)ρ(−dx)B̃t = −
∫ t

0

∫
(ex − 1− 1{|x|≤1}(x))κ̃(ds, dx)

If furthermore

κ = κ̃

the symmetry condition is satisfied, we obtain the Bates’ x% rule.
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Remark 4.1. It is important to notice that the time-changed Lévy process allows
for a huge class of combinations of Levy processes with random clocks; this way,
Lévy processes are a particular case, since we can take only a fixed clock. So we
expect that the fit with real data we improved when we use time-changed Lévy pro-
cesses.

Remark 4.2. From an option pricing point of view, there are a lot of improve-
ments, since we allow for stochastic volatility and leverage effect, a work that can
not be done with Lévy processes, since they do not have memory and are ho-
mogeneous in time. For an empirical analysis and comparison of many possible
combinations of Lévy processes and random clocks we refer the reader to Huang
and Wu (2004).

5. Conclusions

In a time-changed Lévy market we have derived a put-call relation that we call
put-call duality, which allowed us to obtain the put–call symmetry relation as a
particular case and to obtain the Bates’ x% rule.

An interesting extension is to analyze the duality relationship for Asian and
Lookback options. Another important problem is to price bidimensional deriva-
tives in a time-changed Lévy process context as is done by Fajardo and Mordecki
(2006a) for the case of Lévy processes.
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Appendix

A.1 Girsanov theorem for semimartingales

Let Y = (Y 1, · · · , Y d) be an additive process with finite variation, that is, a
semimartingale, the Law of Y is described by its characteristic function:

E
[
e〈z,Yt〉

]
= eΨ(z)

where

Ψ(z) =
∫ t

0

[
〈z, bs〉+

1
2
〈z, csz〉+

∫
Rd

(
ei〈z,x〉 − 1− 〈z, x〉

)
λs(dx)

]
ds

where bt ∈ Rd, ct is a symmetric nonnegative definite d×d matrix and λt is a Lévy
measure on Rd, i.e. it satisfies λ({0}) = 0 and

∫
Rd min{1, |x|2}λt(dx) <∞, for all

t ≤ T . Under some technical conditions we know that the local characteristics of
the semimartingale are given by:

Bt =
∫ t

0

bsds, Ct =
∫ t

0

csds, ν([0, t]×A) =
∫ t

0

∫
A

λs(dx)ds

where A ∈ Rd, the triplet (B,C, ν) completely characterizes the distribution of Y .
Now a Girsanov type theorem for semimartingales (Jacod and Shiryaev (1987)

Ch. 3 Theorem 3.24).

Proposition A.1. Let Y be a d-dimensional additive process with finite variation
with triplet (B,C, ν) under P, let u, v be vectors in Rd.

Moreover let P̃ ∼ P, with density

dP̃

dP
=

e〈v,YT 〉

E[e〈v,YT 〉]

Then the process Y ∗ := 〈u, Y 〉 is a P̃− semimartingale with characteristic
triplet (B∗, C∗, ν∗) with:
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b∗s = 〈u, bs〉+
1
2

(〈u, csv〉+ 〈v, csu〉) +
∫

Rd
〈u, x〉(e〈v,x〉 − 1)λs(dx)

c∗s = 〈u, csu〉
λ∗s = Λ(κs)

where Λ is a mapping λ : Rd → R such that x 7→ Λ(x) = 〈u, x〉 and κs is a measure
defined by;

κ(A) =
∫
A

e〈v,x〉λs(dx)
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