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Abstract

Vector autoregressive models are often used in Macroeconomics to draw conclusions about
the effects of policy innovations. However, those results depend on the researcher’s priors
about the particular ordering of the variables. As an alternative, this paper presents a
very simple rule based on the maximum entropy principle that can be used to find the
“most likely” ordering. The proposal is illustrated in the case of a VAR model of the U.S.
economy. It is found that monetary policy shocks are better represented by innovations
in the federal funds rate rather than in non-borrowed reserves.
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1. Introduction

After the pioneering work by Sims (1980), vector autoregressive models (VARs)
have become quite popular among practitioners. In particular, they are often used
by macroeconomists to draw conclusions about the effects of policy innovations
by means of orthogonalized impulse-response functions (IRFs). That inference
exercise depends, however, on the particular orthogonalization being used, a fact
that undermines the confidence with which those results are received by others.

Structural vector autoregressive models were introduced in the mid-1980s to
remedy that defect. The idea is to impose structural restrictions on the model
to allow for the identification of the correct ordering of the variables. Although
there are several ways in which those restrictions are brought to light (see Stock
and Watson (2001)), the oldest procedure, and by far the most common, is the
identification of causal links among the variables using observed correlations. A
second approach taken by other structural VAR modelers has been to solve such an
identification problem by imposing restrictions on the IRFs themselves. The ways
in which that has been done range from the imposition of zero long-run responses
to some particular shocks, as in Blanchard and Quah (1989), to restrictions on
the sign of the responses at some periods following the shocks, as in Uhlig (2005).
There are other equally ingenious procedures in the literature. For instance, Lippi
and Reichlin (1994) attempt to identify the trend component of real output by
assuming a particular shape of the IRF; namely, an S-shaped pattern resembling
the process that drives the diffusion of technical change.

In this work we propose to discriminate among all possible IRFs by also looking
at their shapes. To be more precise, this paper presents a back-of-the-envelope
criterion, based on the maximum entropy (MaxEnt) principle, which can be used
to find the “most likely” orthogonalization. The idea is straightforward: the re-
searcher should first impose all prior knowledge that he may have about the correct
positions of the variables in the VAR model. After that, and only if there is some
uncertainty left, he should complete the ordering by choosing the IRF that maxi-
mizes an entropy measure, herein referred to as the varimin criterion.

As a preliminary step, the next section reviews the main theoretical issues in-
volved in the construction of orthogonalized IRFs. The third section then presents
the way in which the MaxEnt principle could be applied to deal with the inde-
terminacy problem. The fourth section illustrates the criterion in the case of a
benchmark VAR model for the U.S. economy. The rule is used to find out which
innovations might be better viewed as representing monetary policy shocks, the
ones in the federal funds rate or the ones in non-borrowed reserves. A final remark
is given in the fifth section.
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2. Setting

We briefly review here the concept of impulse-response functions (see (Hamil-
ton, 1994, p. 318–323), for a detailed presentation). Consider a pth-order vector
autoregressive model, VAR(p), for the n× 1 time series vector yt:

yt = c+ Θ1yt−1 + · · ·+ Θpyt−p + εt

where c is a vector of constants, Θj is an n×n matrix of coefficients (j = 1, ..., p),
and εt is a zero mean independent white-noise process with covariance matrix Ω.1

If the process is covariance-stationary, the VAR(p) model has the Wold moving
average representation

yt = µ+ Ψ0εt + Ψ1εt−1 + Ψ2εt−2 + · · ·

where Ψ0 is the n× n identity matrix, and the rest of the matrices of coefficients
can be computed recursively as:

Ψs =
p∑

k=1

ΘkΨs−k s = 1, 2, · · ·

Since the matrix Ψs corresponds to the partial derivative of vector yt+s with re-
spect to the transpose of vector εt, the (i, j) element of such a matrix describes the
response of the scalar variable yi,t+s to an impulse in yj,t due to an innovation εj,t.
However, given that all the elements of εt are contemporaneously correlated, any
pretense of using that representation to trace out the effects of a macroeconomic
policy would be incorrect.

What to do then? Sims (1980) proposes to orthogonalize recursively the im-
pulses by means of the Cholesky decomposition of the covariance matrix Ω. To be
more precise, since Ω is a real symmetric positive definite matrix, there exists a
unique n× n lower triangular matrix (with ones in the diagonal) A and a unique
n × n diagonal matrix D such that Ω = ADA′. If C is defined as AD1/2, then
the components of the vector of new disturbances vt = C−1εt are uncorrelated
with each other. After estimating the model, if we denote by r

(j)
t+s the vector of

estimated consequences for yt+s of a one-unit increase in vj,t, then

r
(j)
t+s = Ψ̂sĉj (1)

where ĉj is the jth column vector of Ĉ. An orthogonalized impulse-response
function is a plot of (1) as a function of s. The IRF shows the effects over time on

1For the purposes of the MaxEnt criterion to be given later, the model might be extended to
include exogenous variables. Furthermore, the rule would also apply to vector error correction
models in which the IRFs do not die out to zero, as well as to VARMA systems and even nonlinear
systems.
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all variables of a policy intervention in variable yj,t (as represented by the one-unit
increase in vj,t).2

As noted earlier, given that each IRF depends on the ordering of the compo-
nents of the time series vector yt, Sims’s method can yield quite different profiles
depending on which array is used. There are a good number of procedures avail-
able in the literature to solve that indeterminacy problem, some of which were
reviewed in the introduction. The next section present ours, which may be distin-
guished by its simplicity, and by the fact that it is based on a principle that has
proved to be useful in several sciences.

3. The Varimin Criterion

The criterion to be presented in this section is based on the maximum entropy
principle which, in a nutshell, simply states that “in making inferences on the
basis of partial information we must use that probability distribution which has
maximum entropy subject to whatever is known” (Jaynes, 1957, p. 623). To
be more precise, let us consider Shannon’s entropy, which is the most basic and
natural measure of entropy (Kapur, 1989), and let us also consider the universe
of the simplest distributions, the finite and discrete probability measures. The
MaxEnt principle establishes that if nothing is known about a distribution, then
the “most likely” one is found by maximizing the entropy subject to the assumed
fact that it is indeed a probability distribution:

maxH (q1, · · · , qn) = −
n∑

i=1

qi ln qi subject to
n∑

i=1

qi = 1, 0 ≤ qi ≤ 1 (2)

(where we replace 0 ln 0 by 0). After inserting the binding constraint in the ob-
jective function and equating the partial derivatives to zero, one can find that
Shannon’s entropy reaches its maximum value at q1 = . . . = qn = 1/n. Thus, the
principle establishes that, if nothing is known a priori, the most likely distribution
is the uniform, which is the distribution with the simplest appearance. Indeed, H
may be simply viewed as a function that measures how far a distribution departs
from the uniform (for which the entropy equals lnn the Hartley function).

In our context, the MaxEnt principle would suggest that, once the researcher’s
priors are imposed in the ordering of some of the variables, the “most likely” array
of the remaining components would be the one that gives the IRFs the simplest
appearance. But, which criterion should be used to find the “simplest” graphs?
Some possible rules will be given below, but it is interesting to note in passing that

2As Cooley and LeRoy (1985) forcefully argue, unless variable j is also assumed to be pre-
determined, the IRF plots depict the dynamic effects of conditional correlations rather than of
causal interventions. Our identification procedure, just as all the others mentioned earlier, can-
not address this issue. The only way in which the researcher can solve this problem is by making
a prior predeterminedness assumption.
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analogous approaches have been used to solve for other models where some kind
of indeterminacy is also present. In particular, a similar MaxEnt criterion is used
to solve the so-called deconvolution problem.3 As (Donoho, 1981, p. 566) states,
“the eye, using a judgment of simplicity, can identify the correct solution to the
deconvolution problem even though correlation/spectrum technologies could not”.

Such a “judgment of simplicity” might be sharpened in our context by using
one of the criteria to be introduced next. Let ϑ be a particular ordering of the
components of yt, the n×1 vector of variables to be modeled as a VAR(p). Clearly,
we can index each array by an integer that runs from 1 to n!, the total number
of possible orderings. Typically, the researcher knows a priori the positions in the
ordering that some variables should occupy, so that the total number of alternatives
may be reduced substantially. Now suppose that the IRFs have been derived for
each of the orderings that have not been discarded a priori. Let the sample size be
denoted by T , and let the integer S denote the horizon of the plots. Finally, using
(1), let r(j)

i,T+s be the estimated response of the ith-component of vector yT+s due
to a one-unit increase in vj,T .

As a first attempt to develop a MaxEnt rule, let us try to mimic the problem
given in (2) above. In order to find the most likely ordering, one could then
consider the following criterion:

max
ϑ

E(ϑ) =
n∑

j=1

n∑
i=1

E
(j)
i (ϑ) (3)

where the maximization is over the orderings that are left after imposing all prior
restrictions, and where, given a one-unit increase in vj,T , the simplicity of the
impulse-response graph of the ith component is measured by

E
(j)
i (ϑ) = −

S∑
s=0

[
r

(j)
i,T+s

]2
ln
([
r

(j)
i,T+s

]2)
(4)

Although this rule would be the closest, in terms of its functional form, to (2),
it has two drawbacks. First, since the estimated responses do not fulfill the role of
probability mass points, we had to square them in (4) to transform the problem
into one in which we have at least positive quantities. But, even then, they do
not constitute a probability distribution, a key feature in the way in which all
measures of entropy are derived. For instance, for the extreme case of an IRF
that was always equal to zero (the simplest possible graph!), equation (4) would
simply discard it. A second drawback is that the objective E(ϑ) is not scale-
invariant, since it would change if all estimated responses were multiplied by the

3A typical deconvolution problem may be stated as follows: If z is the filtered version of a
white noise w after using an unknown filter f , find a filter g which recovers w from the observed
series z.
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same constant. This is an awkward property given that most economic time series
are frequently rescaled.

Thus, instead of following literally the maximization problem given in (2),
we should look for an alternative scale-invariant criterion that respects the spirit
of the MaxEnt principle. More specifically, and somewhat mimicking the solution
given to a similar indeterminacy problem that arises in the deconvolution literature
mentioned earlier (Donoho, 1981, Wiggins, 1978), what we would like to have is
a rule that favors the IRFs that are flat over the ones that are “spike-like”. In
that regard, we now propose the following varimin criterion: After discarding all
the orderings that are in conflict with the researcher’s priors, he should choose the
one that minimizes the following objective function:

min
ϑ
K(ϑ) =

n∑
j=1

n∑
i=1

K
(j)
i (ϑ) (5)

where the plainness of each individual IR graph is assessed by the following mea-
sure:

K
(j)
i (ϑ) =

1
(S + 1)

S∑
s=0

(
r

(j)
i,T+s

)4/( 1
(S + 1)

S∑
s=0

(
r

(j)
i,T+s

)2
)2

(6)

That is, the simplicity of each plot is assessed by the normalized square of the
variance of the responses of the ith-component of vector yT+s; this is so because,
as is easily shown,

1
(S + 1)

S∑
s=0

((
r

(j)
i,T+s

)2

− 1
(S + 1)

S∑
s=0

(
r

(j)
i,T+s

)2
)2

=
1

(S + 1)

S∑
s=0

(
r

(j)
i,T+s

)4

−

(
1

(S + 1)

S∑
s=0

(
r

(j)
i,T+s

)2
)2

(7)

The varimin criterion given in (5)-(6) is similar to the one first proposed by Wiggins
(1978) to obtain optimal deconvolutions based on the MaxEnt principle.4 It also
resembles the norm that is routinely employed to compute a varimax rotation in
factor analysis, still another model where there is an inherent indeterminacy.5

4In that literature an objective similar to (5)-(6) is maximized, rather than minimized. Since,
in order to recover a signal with a simple appearance, one has to use a filter that maximizes the
spike-like character of the traces.

5Obviating subscripts and dimensions, the simplest factor model can be written as z = Λf +u
where z is a vector of standardized observable random variables, Λ is a matrix of constants
representing the unobservable factor loadings, f is the vector of unobserved factors, and u is a
vector of uncorrelated errors. The indeterminacy of the model arises because it is not altered if
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The next section illustrates the use of the varimin criterion to identify atheo-
retical VARs. But, before concluding this section, it is also worth mentioning that
a more general scale-invariant objective may be stated as follows:

min
Θ

G(Θ) =
n∑

j=1

n∑
i=1

G
(j)
i (Θ) (8)

where the simplicity of each IR graph is now more generally assessed by

G
(j)
i (ϑ) =

1
(S + 1)

S∑
s=0

∣∣∣r(j)
i,T+s

∣∣∣a/( 1
(S + 1)

S∑
s=0

∣∣∣r(j)
i,T+s

∣∣∣b)a/b

(9)

with a and b being two different and positive integers (exogenously given). Our
criterion is obtained when (a, b) = (4, 2). Among the other possible combinations
(that is, among other possible measures), it is interesting to note that when (a, b) =
(2, 1) the resulting rule produces rankings of the IRFs very similar to ours in the
exercise to which we turn next.

4. An Example

We illustrate the varimin criterion using a VAR model, first introduced by
Christiano et al. (1998), which has become a benchmark in all the assessments
of the impact of a monetary shock on the U.S. economy. It consists of seven
variables: the log of real GDP (Y ), the log of the GDP deflator (P ), the log of
an index of commodity prices (PC), the federal funds rate (FF ), the negative of
the log of non-borrowed reserves (NB), the log of total reserves (TR), and the
log of M1 (M); all seasonally adjusted except for FF . The model was estimated
using quarterly data over the period 1960:Q1-2005:Q4, using the series reported
in FRED, the economic database maintained by the Federal Reserve Bank of St.
Louis.6

In order to study the impact of a monetary shock to the economy, Christiano
et al. (1998) entertain two possible monetary policy instruments. Following Mc-
Callum (1983) and Sims (1992), they first consider the federal funds rate as the
policy instrument used by the monetary authorities. In that case the authors posit
the following ordering in the VAR model: ϑ1 = {Yt, Pt, PCt, FFt, NBt, TRt,Mt}.
On the other hand, following Eichenbaum (1992), and Christiano et al. (1996),

one replaces the matrix of loadings with ΛM and the vector of factors with M−1f , where M is
any nonsingular matrix. Kaiser (1958) proposes to choose the matrix M for which the sum of the
variances of the squared loadings of all factors is maximized (using for each factor an expression
similar to (7) above).

6The series have the following IDs in FRED (keeping the same ordering as in the text):
GDPC1, GDPDEF, PPICRM, FEDFUNDS, BOGNONBR, TRARR and MISL. In the case
of the last five variables, the quarterly observations were calculated as simple averages of the
monthly figures.
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they also consider the possibility that the amount of non-borrowed reserves is
the policy instrument. In this second case the authors choose the ordering ϑ2 =
{Yt, Pt, PCt, NBt, FFt, TRt,Mt}.

Which of the two possible policy instruments, the federal funds rate or the
amount of non-borrowed reserves, seems more likely to be so according to the
MaxEnt principle? After running the VAR model using four lags of all variables
in the system, and setting S = 15 as the horizon for the two IRFs, these were the
values obtained using the varimin criterion: K(ϑ1) = 86.48 and K(ϑ2) = 91.28.
Thus, according to our rule, the most likely policy instrument is the federal funds
rate.

Figures 1 and 2 provide more evidence in favor of the federal funds rate. Figure
1 presents the IRFs obtained after a shock in the federal funds rate using ordering
ϑ1, the FF model. Inside of each graph, one can find the varimin value that
corresponds to that particular plot, a value that is obtained using (6). In a similar
fashion, Figure 2 shows the IRFs obtained after a shock in non-borrowed reserves
using ordering ϑ2, the NB model. As is easily seen, and as can be checked by
comparing the individual varimin values for each case, most of the plots in the FF
model have a simpler appearance than their counterparts.

Moreover, the IRFs in the case of the FF model are more convincing from a
theoretical point of view than the ones in the case of the NB model. As shown in
Figure 1, a positive shock in the federal funds rate leads to an output contraction,
and an eventual reduction in both prices (the initial increase in prices is another
example of the well-documented “price puzzle”). The positive shock also leads
to a persistent rise in the federal funds rate, a persistent drop in non-borrowed
reserves (remember that NB was made to be negative), and an eventual fall in
total reserves and M1. Thus, the IRFs seem quite reasonable in the case of the
FF model. The NB model, on the other hand, gives predictions that are rather
anomalous: As shown in Figure 2, a contractionary monetary shock is supposed
to bring an eventual output expansion, as well as increases in prices. In sum, both
theory and the varimin criterion would suggest the superiority of the FF model.
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Figure 1
Responses to monetary policy shocks in the FF model
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Figure 2
Responses to monetary policy shocks in the NB model
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The exercise above covers a long period during which the Federal Reserve
had five different chairmen: Martin (who in 1960 was already the chairman and
remained so until February 1970), Burns (February 1970 – January 1978), Miller
(March 1978 – August 1979), Volcker (August 1979 – August 1987), and Greenspan
(August 1987 – January 2006). That diversity suggests in turn that over the entire
period there were a good number of different procedures for monetary policy im-
plemented at the Federal Reserve. In fact, even if we restrict the years under study
to the ones corresponding to Volcker’s and Greenspan’s chairmanships, differing
procedures can be identified. As (Lindsey et al., 1997, p. 24) note:

“Operating procedures [...] evolved from a nonborrowed reserve
operating target tied to an M1 intermediate target from October 1979
to the fall of 1982, to an operating target for borrowed reserves from
the discount window until just after the stock market break in October
1987, to an internally specified, fairly narrow range for the funds rate to
accompany a borrowed reserves operating allowance until August 1989,
to an internally specified point operating objective for the funds rate
until February 1994, to a publicly announced point operating objective
for the funds rate after then.”

Thus, since the main result of the exercise given above is that the most likely
policy instrument for the entire period is the federal funds rate, it would be in-
teresting to check the robustness of that result by restricting the attention to the
subperiod 1989:Q4 – 2005:Q4 during which the funds rate was indeed the declared
instrument. For that end, we run again the FF and NB models for that subpe-
riod using, as before, four lags of all variables in the system and setting S = 15
as the horizon for the two IRFs. Since the overall varimin values are this time
K(ϑ1) = 92.29 and K(ϑ2) = 92.85, the federal funds rate is again preferred as the
most likely policy instrument, albeit with a very small margin. But this conclusion
can be made more robust by restricting our attention to the case of the IRFs that
corresponds to the monetary policy shocks (in a similar fashion as in Figures 1
and 2 for the entire period). Adding up the seven varimin values for the case of
the FF model we obtain a value of 13.55, while the same sum for the case of the
NB model is 17.06. This rather significant difference suggests once again that the
funds rate is the most likely policy instrument.

Before concluding this section, it may be also of interest to point out that Uhlig
(2005) has also used an “agnostic” procedure to identify monetary VAR models.
As opposed to ours, his method depends on establishing a priori the shapes for
different IRFs, and then identifying the VAR model that satisfies those constraints.
Interestingly enough, in his particular exercise for the U.S. economy he establishes
the following priors following a monetary shock: the commodity price index is
restricted not to be positive, and the non-borrowed reserves and the federal funds
rate not to be negative for the first six periods (months in his case). As can be
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appreciated from Figures 1 and 2, the FF model turns out to be somewhat closer
to his priors.

5. Final Comments

This paper has presented the varimin criterion, a rule that can be used to find
the “most likely” orthogonalized impulse-response functions in a VAR model. It
should be stressed that, to be true to the MaxEnt principle, all prior information
about the positions of some of the variables should be incorporated before using the
criterion. For instance, since by definition total reserves are made of borrowed and
non-borrowed reserves, it would not make sense to prefer an ordering in which total
reserves precede non-borrowed reserves just because the varimin rule indicates so.
Furthermore, if the researcher has a prior knowledge about the shape of some of
the IRFs, then he should reduce the application of the varimin criterion only to
the remaining cases (if there are any left). In sum, all prior knowledge regarding
the ordering of the variables or the shapes of the IRFs should be respected, and the
criterion should only be used if there is some indeterminacy left. As the Chinese
philosopher Lao Tsu wrote 26 centuries ago: “Knowing ignorance is strength.
Ignoring knowledge is sickness” (Klir and Folger, 1988, p. 214).
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