Show simple item record

dc.contributor.advisorPinto, Afonso de Campos
dc.contributor.authorCuri, Leonardo Zago
dc.date.accessioned2010-04-20T21:00:06Z
dc.date.available2010-04-20T21:00:06Z
dc.date.issued2008-02-07
dc.identifier.citationCURI, Leonardo Zago. Aplicação de redes neurais na precificação de debêntures. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2008.
dc.identifier.urihttp://hdl.handle.net/10438/2046
dc.description.abstractEstudos anteriores mostraram que a técnica de redes neurais tem sido mais bem sucedida que os modelos tradicionais em vários assuntos relacionados ao mercado de debêntures, tais como modelar a probabilidade de default e em explicar os ratings de agências classificadoras de risco, como Standard & Poors e Moodys. O objetivo deste trabalho é testar a técnica de redes neurais para precificar debêntures no Brasil e comparar os resultados obtidos com regressões lineares. Para isso, utilizaram-se como variáveis explicativas dados contábeis, características específicas das emissões, tais como prazo para vencimento e cláusulas de recompra antecipada. Em relação às variáveis dependentes, optou-se por utilizar as taxas divulgadas diariamente pela ANDIMA como valor de mercado para as debêntures. As variáveis acima foram testadas em diversos modelos pelo método dos mínimos quadrados ordinários e o modelo que apresentou o melhor resultado foi testado em redes neurais com duas camadas intermediárias. Os resultados obtidos com redes neurais com seis e oito neurônios apresentaram resultados superiores aos modelos estimados por mínimos quadrados ordinários tanto na fase de treinamento como na fase de testes. No entanto, ainda há bastante espaço para melhorias nos modelos dado que o tamanho da base de dados disponível para este tipo de testes no Brasil ainda não é a ideal e as taxas divulgadas pela ANDIMA são médias de um grupo pequeno de instituições e não necessariamente refletem o valor de mercado de uma debênture.por
dc.description.abstractPrevious studies on pricing of Corporate Bonds have shown that prices for these securities in Brazil cannot be explained only by credit risk, but also by other factors, such as liquidity risk. On the other hand, other studies also have shown that neural networks models have been more successful than traditional models in explaining issues related to corporate bonds, such as modeling default probabilities and ratings from agencies such as Standard & Poors and Moodys. The purpose of this study is to test neural networks technique in pricing corporate bonds in Brasil and compare the results obtained with the ones obtained through linear regressions. To accomplish this, accounting variables and specific features of a bond such as time to maturity and calllable features were used as independent variables. Regarding dependent variables, ANDIMA’s daily rates were used as a reference for market value for corporate bonds. The variables described above were tested in several models through ordinary least squares and the model which presented the best result was also tested in neural networks with two hidden layers. The neural networks with six and eight neurons presented better results than models estimated through pooling and ordinary least squares both in the training stage as in the testing one. Nonetheless, there’s still much room for improvement in the models considering the size of the database available is still small and the rates published by ANDIMA are averages of a small group of financial institutions and may not reflect the true market value of a corporate bond.eng
dc.language.isopor
dc.subjectFinançaspor
dc.subjectDebênturespor
dc.subjectCréditospor
dc.subjectRedes neurais (Computação)por
dc.subjectAvaliação de riscospor
dc.titleAplicação de redes neurais na precificação de debênturespor
dc.typeDissertationeng
dc.subject.areaEconomiapor
dc.contributor.unidadefgvEscolas::EESPpor
dc.subject.bibliodataDebênturespor
dc.subject.bibliodataCréditos - Avaliação de riscospor
dc.subject.bibliodataRedes neurais (Computação)por
dc.contributor.memberRochman, Ricardo Ratner
dc.contributor.memberCipparrone, Flavio Almeida de Magalhães


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record