A RATIONAL EXPECTATIONS PARADOX

MARIO HENRIQUE SIMONSEN
A RATIONAL EXPECTATIONS PARADOX

Mario Henrique Simonsen

1) The inflationary tax equilibrium

A well known property of the Cagan's money demand function is that it yields a Laffer curve for the inflationary tax. Money market equilibrium is described by equation:

\[\frac{B}{P} = e^{-\alpha \pi^*} \quad (\alpha > 0) \quad (1) \]

where \(B \) stands for the monetary base, \(P \) for the general price level and \(\pi^* \) for the expected inflation rate. In steady state equilibrium the latter should coincide with the actual inflation rate:

\[\pi = \frac{\dot{\pi}}{P} \quad (2) \]

dots indicating time derivatives. Hence, for a constant inflation rate, the inflationary tax revenue will be given by:

\[T_{\text{inf}} = \frac{\dot{B}}{P} = \frac{d}{dt} \left(\frac{B}{P} \right) + \frac{B}{P} \pi = \frac{B}{P} \pi = \pi e^{-\alpha \pi} \quad (3) \]

increasing for \(\pi < 1/\alpha \) and decreasing thereafter, as indicated in figure 1. The inflationary tax revenue is bounded by its maximum:

\[T_{\text{inf}} \leq \frac{1}{\alpha} e^{-1} \quad (4) \]

Now, let us assume that the real public sector deficit is kept at a constant level \(k < \frac{1}{\alpha} e^{-1} \), being fully financed by the creation of high powered money. There is no other source of expansion or contraction of the monetary base, which implies:

\[\dot{B} = kP \quad (5) \]
The equilibrium inflation rate must equal the inflationary tax revenue to k. Now, as indicated in figure 1, because of the Laffer curve effect there are two different equilibrium inflation rates \(\pi_1 \) and \(\pi_2 \). Increasing the public sector deficit \(k \), i.e., moving up the straight line AB, increases the low equilibrium rate \(\pi_1 \) and decreases \(\pi_2 \), providing a priori support to the idea that stable equilibrium inflation rate should be \(\pi_1 \).

Hyperinflations are explained by \(k > \frac{1}{\alpha} e^{-1} \).

Dynamic hypotheses must be introduced to discuss the stability of the two possible equilibria. Assuming adaptative expectations according to Cagan's specification:

\[
\dot{\pi}^* = \beta (\pi - \pi^*) \quad (\beta > 0)
\]

one may easily prove that \(\pi_1 \) is the stable equilibrium inflation rate if and only if \(\alpha \beta < 1 \), namely, if and only if the Cagan's stability condition is met.

Now, let us turn to rational expectations. In the absence of stochastic disturbances this means perfect foresight, \(\pi^* = \pi \). In this case, taking time derivatives in both sides of equation (1)

\[
\dot{B} = e^{-\alpha \pi} (\dot{P} - \alpha \dot{P} \pi)
\]

combining with equations (2) and (5):

\[
\alpha e^{-\alpha \pi} \dot{\pi} = \pi e^{-\alpha \pi} - k
\]
This is to say that sign of $\dot{\pi}$ coincides with that of the right side of the above presented equation, that is nothing but the Laffer curve in figure 1 with the horizontal axis moved up to AB. As arrows indicate, the stable equilibrium inflation rate is now the high root π_2.

The conclusion appears to make the rational expectations hypothesis inconsistent with both empirical evidence and common sense. In fact it implies that cutting the public sector deficit (which is assumed to be fully financed by money creation) leads to an acceleration of the inflation rate, since π_2 increases when k declines.

2) Solving the paradox

What is wrong in the preceding analysis? Simply the phase diagram technique in figure 1 implicitly treats the inflation rate as a backward looking variable, as in case of adaptative expectations. The conclusion that π_2 is the stable inflation rate equilibrium assumes that the inflation rate is subject to initial condition contraints. Now, in rational expectations models both the price level and the inflation rate are forward looking variables. Since they keep no links with the past, their initial levels will jump, depending on expectations. Hence, in a rational expectations framework, the phase diagram in figure 1 can only be understood as a guide to forecasters. It simply tells that economic agents may foresee either $\pi = \pi_1$, $\pi = \pi_2$ or some variable inflation rate path either converging to π_2 or tending to minus infinity.

The diagram shows that forecasters face an indeterminacy problem as often occurs in rational expectations models. In fact, since forward looking variables are not constrained by fixed initial conditions, difference or differential equation systems usually yield infinitely many rational expectations paths. Indeterminacies are
usually removed by introducing boundness requirements on the expected paths of the variables (or their time derivatives). The problem of the inflationary tax equilibrium requires an additional assumption, as will be shown in section 3. It emerges naturally once the problem is solved according to the rational expectations methodology, namely, once the inflation rate is expressed as a function of the anticipated path of money supply.

It should be noted that a large group of rational expectations difference or differential equation systems have no stable solutions. There are privileged solutions in terms of boundness or convergence, usually the meaningful ones from the economic theory standpoint, but they are also unstable. Forward looking variables are supposed to jump whenever necessary so as to meet these solutions, disconnecting rational expectations from stability analysis.

As an example, let us take Cagan's monetary equation expressed in logs and assuming perfect foresight:

\[b-p = -\alpha \dot{p} \] (6)

where \(b=\ln B, p=\ln P \) and, as a consequence, \(\dot{p} = \tau \). The price level, according to the rational expectations hypothesis, is determined by solving forward equation (6):

\[p(t) = \frac{1}{\alpha} \int_{t}^{\infty} e^{\frac{t-\tau}{\alpha}} b(\tau) d\tau + ce^{\frac{t}{\alpha}} \] (7)

where \(c \) is a constant. If the monetary base expands at a constant rate \(b = \alpha \), then \(b(\tau) = b(t) + \alpha (t-t) \). Introducing this expression in the right side of (7) and calculating the integral:

\[p(t) = b(t) + \alpha r + ce^{\frac{t}{\alpha}} \] (8)

Taking time derivatives, the inflation rate will be given by:

\[\dot{p} = r + \frac{1}{\alpha} ce^{\frac{t}{\alpha}} \] (9)
The usual indeterminacy problem is displayed, since there are infinitely many perfect foresight paths for the inflation rate, one for each value of c. It is removed by adding a boundary condition, the expected rate of price change cannot race to infinity. This forces c=0, yielding \(\dot{p} = r \). The inflation rate equals the constant rate of expansion of the monetary base, a sensible economic result. Taking c=0 in equation (8) leads to an important conclusion: if r changes, the price level will jump.

Now, it should be made clear that \(\dot{p} = r \) is an unstable inflation rate equilibrium, as shown in figure 2. In fact, taking time derivatives in (6) and assuming \(\dot{b} = r \):

\[
\begin{align*}
r - \pi &= -\alpha \dot{\pi} \\
\end{align*}
\]

a differential equation that has no stable solution:

\[r - \pi = -\alpha \dot{\pi} \]

![Figure 2](image)

Another example is provided by the popular 2x2 saddle-point convergence models, where backward looking variable \(X_1 \) interacts with the forward looking \(X_2 \) according to the linear dynamic system:

\[
\begin{align*}
\dot{X}_1 &= a_{11}X_1 + a_{12}X_2 + b_1 \\
\dot{X}_2 &= a_{21}X_1 + a_{22}X_2 + b_2 \\
E_t X_2 &= a_{21}X_1 + a_{22}X_2 + b_2 \\
\end{align*}
\]

where \(\dot{X}_1 \) and \(\dot{X}_2 \) stand for the right side time derivatives of \(X_1 \) and \(X_2 \) and \(E_t \) for conditional expectation at time t. Equations (11) read as follows: i) \(X_2 \) is determined by its expected right side time derivative and by \(X_1 \) (this is possible, since \(a_{22} \neq 0 \)); ii) \(X_1 \) is a linear function of \(X_1 \) and \(X_2 \). The forward looking variable is supposed to
influence the path of the backward looking one, which requires $a_{12} \neq 0$.

Moreover, matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

is assumed to have a negative determinant. Hence, its eigenvalues are $r_1 < 0 < r_2$. Since $a_{12} \neq 0$, there are two corresponding eigenvectors $y_1 = (1; k_1)$, $y_2 = (1; k_2)$, where $k_1 \neq k_2$.

In the absence of stochastic disturbances, $E_t X_2 = X_2$, i.e., rational expectations yield perfect foresight, leading to the conventional linear system:

$$\dot{X} = AX + b \quad (12)$$

where $X = (X_1, X_2)$ and $b = (b_1, b_2)$. The system is solved by:

$$X = c_1 e^{r_1 t} y_1 + c_2 e^{r_2 t} y_2 - A^{-1}b \quad (13)$$

where constants c_1 and c_2 meet the initial condition constraint:

$$X_0 = c_1 y_1 + c_2 y_2 - A^{-1}b$$

or equivalently, if $-A^{-1}b = (h_1; h_2)$:

$$X_{10} = c_1 + c_2 + h_1$$

$$X_{20} = c_1 k_1 + c_2 k_2 + h_2 \quad (14)$$

In the above equations X_{10} is given by history, but X_{20} can jump to any level, since X_2 is a forward-looking variable. To remove the indeterminacy, that allows for infinitely many perfect foresight paths, one for each X_{20}, the conventional extra assumption is added, that of boundness of the anticipated time derivatives: economic agents
are supposed to rule out the possibility of any component of \(E_t X = X = r_1 c_1 e^{r_1 t} y_1 + r_2 c_2 e^{r_2 t} y_2 \) racing to infinity. This requires \(c_2 = 0 \), locating the initial value of the forward looking variable at:

\[
X_{20} = k_1 (X_{10} - h_1) + h_2 \tag{15}
\]

and leading to the unique perfect foresight convergent path:

\[
X = (X_{10} - h_1) e^{r_1 t} y_1 - A^{-1} b \tag{16}
\]

where \(X \) converges to the saddle-point \(-A^{-1} b\), since \(r_1 < 0 \).

Now, once again, it should be stressed that all solutions of the differential equation system (12) are unstable, including the perfect foresight convergent path. In fact, any slight deviation between \(X_{20} \) and the expression in the right side of equation (15) will move \(X \) indefinitely away from the convergent path.

Economic literature often refers to stationary or convergent perfect foresight paths as "stable paths". The semantic confusion provides, perhaps, the heuristic explanation for the rational expectations paradox under discussion.

3) The inflationary tax equilibrium reconsidered

Let us now provide the correct rational expectations solution to the problem discussed in section 1. All economic agents share the same informations, that can be summarized by equations:

\[
b - p = -\alpha \dot{p} \tag{6}
\]

\[
b = k e^{\alpha \dot{p}} \tag{17}
\]

Equation (6) is the already presented log-linear translation of Cagan's monetary equilibrium constraint under perfect foresight.
Equation (17) was obtained dividing (5) by (1) and also assuming perfect foresight.

The price level will be a function of the projected path of the monetary base. This involves eliminating \(p \) and \(\dot{p} \) from equations (6) and (17). Simple and tedious calculations yield:

\[
\frac{\dot{b}}{b} + \dot{b} = \frac{1}{a} \ln \frac{\dot{b}}{k}
\]

or, indicating by \(\dot{r} = \dot{b} \) the rate of expansion of the monetary base:

\[
\frac{\dot{r}}{r} = \frac{1}{a} \ln \frac{\dot{r}}{k} - r \tag{18}
\]

or equivalently:

\[
\frac{\dot{r}}{r} = f(r) - \frac{1}{a} \ln k \tag{19.a}
\]

where:

\[
f(r) = \frac{1}{a} \ln r - r \tag{19.b}
\]

The stationary values of \(r \) are the solutions of the equation:

\[
f(r) = \frac{1}{a} \ln r - r = \frac{1}{a} \ln k
\]

or equivalently:

\[
re^{-ar} = k \tag{20}
\]

the roots of which, as one might expect, are the same \(\pi_1 \) and \(\pi_2 \) of section 1. The phase diagram in figure 3, a linear transformation of that in figure 1, based on equations (19.a) and (19.b) is to be understood as a simple forecaster's chart, since the projected rate of growth of the monetary base is not bound to initial condition constraints.
The usual forecasting indeterminacy problem in rational expectations models emerges again. What is new, is that it can no longer be removed by a simple boundness assumption. An additional hypothesis is needed to solve the forecaster's dilemma. The most natural one is that the rate of growth of the monetary base should eventually become positively correlated with the public sector deficit. This requires \(\frac{\dot{b}}{b} < \frac{1}{\alpha} \), namely, that \(r \) should be projected in the increasing region of the \(f(r) \) curve, which corresponds to the increasing part of the Laffer curve in figure 1. Given the boundness assumptions, forecasters have no other choice except to locate \(b = r = \pi_1 \). The inflation rate, according to equation (17) will immediately jump to this low equilibrium root.
REFERENCES

Bruno, Michael and Stanley Fischer (1985) - "Expectations and the High Inflation Trap", unpublished, MIT.

1. ANÁLISE COMPARATIVAS DAS ALTERNATIVAS DE POLÍTICA COMERCIAL DE UM PAÍS EM PRO-CESSO DE INDUSTRIALIZAÇÃO - Edmar Bacha - 1970 (ESGOTADO)

2. ANÁLISE ECONÔMÉTRICA DO MERCADO INTERNACIONAL DO CAFÉ E DA POLÍTICA BRASILEIRA DE PREÇOS - Edmar Bacha - 1970 (ESGOTADO)

3. A ESTRUTURA ECONÔMICA BRASILEIRA - Mario Henrique Simonsen - 1971 (ESGOTADO)

4. O PAPEL DO INVESTIMENTO EM EDUCAÇÃO E TECNOLOGIA NO PROCESSO DE DESENVOLVIMENTO ECONÔMICO - Carlos Geraldo Langoni - 1972 (ESGOTADO)

5. A EVOLUÇÃO DO ENSINO DE ECONOMIA NO BRASIL - Luiz de Freitas Bueno - 1972

6. POLÍTICA ANTI-INFLACIONÁRIA - A CONTRIBUIÇÃO BRASILEIRA - Mario Henrique Simonsen - 1973 (ESGOTADO)

7. ANÁLISE DE SéRIES DE TEMPO E MODELO DE FORMAÇÃO DE EXPECTATIVAS - José Luiz Carvalho - 1973 (ESGOTADO)

8. DISTRIBUIÇÃO DA RENDA E DESENVOLVIMENTO ECONÔMICO DO BRASIL: UMA REAFIRMAÇÃO - Carlos Geraldo Langoni - 1973 (ESGOTADO)

9. UMA NOTA SOBRE A POPULAÇÃO ÓTIMA DO BRASIL - Edy Luiz Kogut - 1973

10. ASPECTOS DO PROBLEMA DA ABSORÇÃO DE MÃO-DE-OBRA: SUGESTÕES PARA PESQUISAS - José Luiz Carvalho - 1974 (ESGOTADO)

11. A FORÇA DO TRABALHO NO BRASIL - Mario Henrique Simonsen - 1974 (ESGOTADO)

12. O SISTEMA BRASILEIRO DE INCENTIVOS FISCAIS - Mario Henrique Simonsen - 1974 (ESGOTADO)

13. MOEDA - Antonio Maria da Silveira - 1974 (ESGOTADO)

14. CRESCIMENTO DO PRODUTO REAL BRASILEIRO - 1900/1974 - Cláudio Luiz Haddad - 1974 (ESGOTADO)
15. UMA NOTA SOBRE NÚMEROS ÍNDICES - José Luiz Carvalho - 1974 (ESGOTADO)

16. ANÁLISE DE CUSTOS E BENEFÍCIOS SOCIAIS I - Edy Luiz Kogut - 1974 (ESGOTADO)

17. DISTRIBUIÇÃO DE RENDA: RESUMO DA EVIDÊNCIA - Carlos Geraldo Langoni - 1974 (ESGOTADO)

18. O MODELO ECONÔMETRICO DE ST. LOUIS APLICADO NO BRASIL: RESULTADOS PRELIMINA RES - Antonio Carlos Lemgruber - 1975

19. OS MODELOS CLÁSSICOS E NEOCLÁSSICOS DE DALE W. JORGENSON - Eliseu R. de Andrade Alves - 1975

20. DIVID: UM PROGRAMA FLEXÍVEL PARA CONSTRUÇÃO DO QUADRO DE EVOLUÇÃO DO ESTUDO DE UMA DÍVIDA - Clovis de Faro - 1974

21. ESCOLHA ENTRE OS REGIMES DA TABELA PRICE E DO SISTEMA DE AMORTIZAÇÕES CONSTANTES: PONTO-DE-VISTA DO MUTUÁRIO - Clovis de Faro - 1975

22. ESCOLARIDADE, EXPERIÊNCIA NO TRABALHO E SALÁRIOS NO BRASIL - José Julio Senha - 1975

23. PESQUISA QUANTITATIVA NA ECONOMIA - Luiz de Freitas Bueno - 1978

24. UMA ANÁLISE EM CROSS-SECTION DOS GASTOS FAMILIARES EM CONEXÃO COM NUTRIÇÃO, SAÚDE, FECUNDIDADE E CAPACIDADE DE GERAR RENDA - José Luiz Carvalho - 1978

26. A URBANIZAÇÃO E O CÍRCULO VICIOSO DA POBREZA: O CASO DA CRIANÇA URBANA NO BRASIL - José Luiz Carvalho e Uriel de Magalhães - 1979

27. MICROECONOMIA - Parte I - FUNDAMENTOS DA TEORIA DOS PREÇOS - Mario Henrique Simonsen - 1979

28. ANÁLISE DE CUSTOS E BENEFÍCIOS SOCIAIS II - Edy Luiz Kogut - 1979
29. CONTRADIÇÃO APARENTE - Octávio Gouveia de Bulhões - 1979

30. MICROECONOMIA - Parte 2 - FUNDAMENTOS DA TEORIA DOS PREÇOS - Mario Henrique Simonsen - 1980 (ESGOTADO)

32. MICROECONOMIA - Parte A - TEORIA DA DETERMINAÇÃO DA RENDA E DO NÍVEL DE PREÇOS - José Julio Senna - 2 Volumes - 1980

33. ANÁLISE DE CUSTOS E BENEFÍCIOS SOCIAIS III - Edy Luiz Kogut - 1980

34. MEDIDAS DE CONCENTRAÇÃO - Fernando de Holanda Barbosa - 1981

35. CRÉDITO RURAL: PROBLEMAS ECONÔMICOS E SUGESTÕES DE MUDANÇAS - António Salazar Pessôa Brandão e Uriel de Magalhães - 1982

36. DETERMINAÇÃO NUMÉRICA DA TAXA INTERNA DE RETORNO: CONFRONTO ENTRE ALGORITMOS DE BOULDING E DE WILD - Clovis de Faro - 1983

37. MODELO DE EQUAÇÕES SIMULTÂNEAS - Fernando de Holanda Barbosa - 1983

38. A EFICIÊNCIA MARGINAL DO CAPITAL COMO CRITÉRIO DE AVALIAÇÃO ECONÔMICA DE PROJETOS DE INVESTIMENTO - Clovis de Faro - 1983 (ESGOTADO)

39. SALÁRIO REAL E INFLAÇÃO (TEORIA E ILUSTRAÇÃO EMPÍRICA) - Raul José Ekerman - 1984

40. TAXAS DE JUROS EFETIVAMENTE PAGAS POR TOMADORES DE EMPRÉSTIMOS JUNTO A BANCOS COMÉRCIAIS - Clovis de Faro - 1984

41. REGULAMENTAÇÃO E DECISÕES DE CAPITAL EM BANCOS COMÉRCIAIS: REVISÃO DA LITERATURA E UM ENFOQUE PARA O BRASIL - Uriel de Magalhães - 1984

42. INDEXAÇÃO E AMBIÊNCIA GERAL DE NEGÓCIOS - António Maria da Silveira - 1984

43. ENSAIOS SOBRE INFLAÇÃO E INDEXAÇÃO - Fernando de Holanda Barbosa - 1984
44. SOBRE O NOVO PLANO DO BNH: "SIMC" - Clovis de Faro - 1984

45. SUBSÍDIOS CREDITÍCIOS À EXPORTAÇÃO - Gregório F.L. Stukart - 1984

46. PROCESSO DE DESINFLAÇÃO - Antonio C. Porto Gonçalves - 1984

47. INDEXAÇÃO E REALIMENTAÇÃO INFLACIONÁRIA - Fernando de Holanda Barbosa - 1984

48. SALÁRIOS MÉDIOS E SALÁRIOS INDIVIDUAIS NO SETOR INDUSTRIAL: UM ESTUDO DE DIFERENÇA SALARIAL ENTRE FIRMANAS E ENTRE INDIVIDUOS - Raul José Ekerman e Uriel de Magalhães - 1984

49. THE DEVELOPING-COUNTRY DEBT PROBLEM - Mario Henrique Simonsen - 1984

50. JOGOS DE INFORMAÇÃO INCOMPLETA: UMA INTRODUÇÃO - Sérgio Ribeiro da Costa Werlang - 1984

52. A INDETERMINAÇÃO DE MORGENSTERN - Antonio Maria da Silveira - 1984

53. O PROBLEMA DE CREDIBILIDADE EM POLÍTICA ECONÔMICA - Rubens Penha Cysne - 1984

54. UMA ANÁLISE ESTATÍSTICA DAS CAUSAS DA EMISSÃO DO CHEQUE SEM FUNDOS: FORMULAÇÃO DE UM PROJETO PILOTO - Fernando de Holanda Barbosa, Clovis de Faro e Aloísio Pessoa de Araujo - 1984

55. POLÍTICA MACROECONÔMICA NO BRASIL: 1964-66 - Rubens Penha Cysne - 1985

56. EVOLUÇÃO DOS PLANOS BÁSICOS DE FINANCIAMENTO PARA AQUISIÇÃO DE CASA PRÓPRIA DO BANCO NACIONAL DE HABITAÇÃO: 1964 - 1984 - Clovis de Faro - 1985

57. MOEDA INDEXADA - Rubens P. Cysne - 1985

58. INFLAÇÃO E SALÁRIO REAL: A EXPERIÊNCIA BRASILEIRA - Raul José Ekerman - 1985

FUNDAÇÃO GETULIO VARGAS

BIBLIOTECA MARIO HENRIQUE SIMONSE

60. MOEDA E PREÇOS RELATIVOS: EVIDÊNCIA EMPÍRICA - Antonio Salazar P. Brandão - 1985

61. INTERPRETAÇÃO ECONÔMICA, INFLAÇÃO E INDEXAÇÃO - Antonio Maria da Silveira - 1985

62. MACROECONOMIA - CAPÍTULO I - O SISTEMA MONETÁRIO - Mario Henrique Simonsen e Rubens Penha Cysne - 1985

63. MACROECONOMIA - CAPÍTULO II - O BALANÇO DE PAGAMENTOS - Mario Henrique Simonsen e Rubens Penha Cysne - 1985

64. MACROECONOMIA - CAPÍTULO III - AS CONTAS NACIONAIS - Mario Henrique Simonsen e Rubens Penha Cysne - 1985

67. CONTRATOS SALARIAIS JUSTAPOSTOS E POLÍTICA ANTI-INFLACIONÁRIA - Mario Henrique Simonsen - 1985

68. INFLAÇÃO E POLÍTICAS DE RENDAS - Fernando de Holanda Barbosa e Clovis de Faro - 1985

69. BRAZIL INTERNATIONAL TRADE AND ECONOMIC GROWTH - Mario Henrique Simonsen - 1986

70. CAPITALIZAÇÃO CONTÍNUA: APLICAÇÕES - Clovis de Faro - 1986

71. A RATIONAL EXPECTATIONS PARADOX - Mario Henrique Simonsen - 1986