The Welfare Cost of Macroeconomic Uncertainty in the Post–War Period

João Victor Issler, Afonso Arinos de Mello Franco, Osmani Teixeira de Carvalho Guillén

Setembro de 2006
Os artigos publicados são de inteira responsabilidade de seus autores. As opiniões neles emitidas não exprimem, necessariamente, o ponto de vista da Fundação Getulio Vargas.
The Welfare Cost of Macroeconomic Uncertainty in the Post-War Period*

João Victor Issler†
Graduate School of Economics - EPGE
Getulio Vargas Foundation
Praia de Botafogo 190 s. 1100
Rio de Janeiro, RJ 22253-900
Brazil

Afonso Arinos de Mello Franco
Graduate School of Economics - EPGE
Getulio Vargas Foundation
Praia de Botafogo 190 s. 1100
Rio de Janeiro, RJ 22253-900
Brazil

Osmani Teixeira de Carvalho Guillén
Banco Central do Brasil and IBMEC
Av. Presidente Vargas, 730 - Centro
Rio de Janeiro, RJ 20.071-001
Brazil

Keywords: Welfare costs of business cycles, Beveridge-Nelson decomposition.

JEL Codes: E32; C32; C53.

Abstract

With standard assumptions on preferences and a fully-fledged econometric model we computed the welfare costs of macroeconomic uncertainty for post-war U.S. using the Beveridge-Nelson decomposition. Welfare costs are about 0.9% per-capita consumption ($175.00) and marginal welfare costs are about twice as large.

*We gratefully acknowledge the comments of an anonymous referee, Luís Braido, Larry Christiano, Wouter den Haan, Robert F. Engle, Daniel Ferreira, Pedro C. Ferreira, Antonio Fiorencio, Clive Granger, Soren Johansen, Rodolfo Manuelli, Samuel Pessoa and Octavio Tourinho on earlier versions of this paper. All remaining errors are ours. We thank CNPq-Brazil, PRONEX and CAPES for financial support. João Victor Issler thanks the hospitality of NYU-Stern, U. of Cérgy-Pontoise, and of UCSD, where parts of this paper were written.

†Corresponding author. E-mail: jissler@fgv.br.
1. Introduction

Lucas (1987, 3) calculates the amount of extra consumption a rational consumer would require in order to be indifferent between the sequence of observed consumption under uncertainty and a cycle-free sequence with no uncertainty. For 1983 figures, using post-WWII data, extra consumption is about $8.50 per person in the U.S. (or 0.04% of personal consumption per-capita), a surprisingly low amount. Subsequent work have either changed the environment of the problem or relaxed its basic assumptions. For example, Imrohoroglu (1989) recalculated welfare costs under incomplete markets. Obstfeld (1994), Van Wincoop (1994), Pemberton (1996), Dolmas (1998) and Tallarini (2000) have either changed preferences or relaxed expected utility maximization. Alvarez and Jermann (2004) have extended the initial framework proposed by Lucas to include what they have labelled the marginal cost of business cycles, where, in a more realistic exercise, observed consumption is compared with a convex combination of observed consumption and consumption with no uncertainty.

There are two points to note about previous research. First, the whole literature basically uses calibration-oriented methods, although the computation of welfare costs can be performed using econometric models. Second, in some of the subsequent papers, welfare costs reached up to 25% of per-capita consumption, a surprisingly high amount. As argued by Otrok (2001), “it is trivial to make the welfare cost of business cycle as large as one wants by simply choosing an appropriate form for preferences,” since, when time separability of the utility function is lost, consumers treat economic fluctuations as changes in growth rates.

We depart from the original exercise in Lucas and from the above literature in two different ways. First, we keep preferences as in the original exercise avoiding the critique by Otrok. Second, we base our welfare-cost computations on an fully-fledged econometric model. We employ the Beveridge and Nelson (1981) decomposition making the trend of the log of consumption to be a random walk\(^1\), which is extracted considering the joint behavior of consumption and income, where the possibility of cointegration is entertained. A natural way to implement this is by using a cointegrated vector autoregressive (VAR) model.

Choosing consumption to be difference-stationary is consistent with the applied econometric literature on consumption, e.g., Hall (1978), Nelson and Plosser (1982), Campbell (1987), King et al. (1991), Cochrane (1994), Vahid and Engle (1997), Issler and Vahid (2001), Mulligan (2004), and it is also suggested by Lucas (1987, pp. 22-23). It is potentially interesting because the unconditional variance of (the log of) consumption will be infinite, which may lead to a high payoff for eliminating consumption variability. As noted by Obstfeld, using a stochastic-trend model can also reduce the variability of the cyclical component making it non-trivial to determine its impact on welfare costs.

\(^1\)Lucas (1987, pp. 22-23, footnote 1) explicitly considers the possibility that the trend in consumption is stochastic as in Nelson and Plosser (1982).
That would depend on the relative welfare-cost importance of short- versus long-term variability, which highlights the relevance of using a cointegrated VAR model. Finally, our econometric approach allows performing hypothesis testing on welfare costs. Since the latter are a non-linear function of VAR parameters, we apply the Delta Method to compute standard errors, testing whether welfare costs are statistically zero; see Duarte, Issler and Salvato (2005).

Sections 2 and 3 respectively provide the theoretical and statistical framework to compute welfare costs. Section 4 presents empirical results and Section 5 concludes.

2. The Problem

Lucas (1987) assumes that consumption \(c_t \) is log-Normally distributed about a deterministic trend:

\[
c_t = \alpha_0 (1 + \alpha_1 t) \exp \left(-\frac{1}{2} \sigma^2 \right) z_t,
\]

where \(\ln(z_t) \sim N(0, \sigma_z^2) \). Cycle-free consumption is defined as the sequence \(\{c^*_t\}_{t=0}^{\infty} \), where \(c^*_t = E(c_t) = \alpha_0 (1 + \alpha_1 t) \). Notice that \(c_t \) represents a mean-preserving spread of \(c^*_t \). Lucas proposed measuring the welfare cost of business cycles \(\lambda \) as a solution to:

\[
E_0 \sum_{t=0}^{\infty} \beta^t u((1 + \lambda) c_t) = \sum_{t=0}^{\infty} \beta^t u(c^*_t),
\]

where \(E_t(\cdot) \) is the conditional expectation operator, \(\beta \) is the discount factor, and \(u(\cdot) \) is the utility function.

Since Lucas modelled consumption trend as deterministic, eliminating all the cyclical variability in \(\ln(c_t) \) is equivalent to eliminating all its variability. Under difference stationarity this equivalence is lost, since uncertainty comes both in the trend and the cyclical component of \(\ln(c_t) \). Moreover, \(E(c_t) \) is not defined, which led Obstfeld (1994) to propose using \(E_0(\cdot) \) in defining welfare costs:

\[
E_0 \sum_{t=0}^{\infty} \beta^t u((1 + \lambda) c_t) = \sum_{t=0}^{\infty} \beta^t u(E_0(c_t)).
\]

Now, \(\lambda \) is the welfare cost associated with all the uncertainty in consumption. For that reason, we label it the welfare cost of macroeconomic uncertainty.

Alvarez and Jermann (2004) propose offering the consumer a convex combination of \(\{c^*_t\}_{t=0}^{\infty} \) and \(\{c_t\}_{t=0}^{\infty} \): \((1 - \alpha) c_t + \alpha c^*_t \), where \(c^*_t = E_0(c_t) \). They make the welfare cost to be a function of the weight \(\alpha \), \(\lambda(\alpha) \), which solves:

\[
E_0 \sum_{t=0}^{\infty} \beta^t u((1 + \lambda(\alpha)) c_t) = E_0 \sum_{t=0}^{\infty} \beta^t u((1 - \alpha) c_t + \alpha c^*_t).
\]
In this setup $\lambda(0) = 0$, and λ, as defined by Lucas, is obtained as $\lambda = \lambda(1)$. They label $\lambda(1)$ as the total cost of business cycles and define the marginal cost of business cycles, obtained after differentiating (2.3) with respect to α as:

$$
\lambda'(0) = \frac{E_0 \sum_{t=0}^{\infty} [\beta^t u'(c_t) \times E_0 (c_t)] - 1.}
(2.4)
$$

Using difference-stationary consumption, we maintain Lucas' assumption that the utility function is in the CES class and time separable, with relative risk-aversion coefficient ϕ:

$$
u(c_t) = \frac{c_t^{1-\phi} - 1}{1 - \phi}.
(2.5)
$$

As shown in Beveridge and Nelson (1981), every difference-stationary process can be decomposed as the sum of a deterministic term, a random walk trend, and a stationary cycle (ARMA process):

$$
\ln(c_t) = \ln(\alpha_0) + \ln(1 + \alpha_1) \cdot t - \frac{\omega^2}{2} + \sum_{i=1}^{t} \xi_i + \sum_{j=0}^{t-1} b_j \zeta_{t-j}
(2.6)
$$

where $\ln[\alpha_0 (1 + \alpha_1) \cdot \exp(-\omega_t^2/2)]$ is deterministic given past information, $\sum_{i=1}^{t} \xi_i$ is the pure random-walk trend component, $\sum_{j=0}^{t-1} b_j \zeta_{t-j}$ is the $MA(\infty)$ representation of the stationary part (cycle), and $\omega^2 = \sigma_{11} + 2 \sigma_{12} \sum_{j=0}^{t-1} b_j + \sigma_{22} \sum_{j=0}^{t-1} b_j^2$ is the conditional variance of $\ln(c_t)$. The permanent and transitory shocks, ξ_t and ζ_t respectively, obey:

$$
\begin{pmatrix}
\xi_t \\
\zeta_t
\end{pmatrix}
\sim IN
\begin{pmatrix}
0 \\
0
\end{pmatrix} ,
\begin{pmatrix}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{pmatrix}
(2.7)
$$

i.e., shocks are Normal and independent across time but may be contemporaneously correlated if $\sigma_{12} \neq 0^2$.

If $\beta (1 + \alpha_1)^{1-\phi} \exp[-(1-\phi) \phi \sigma_{11}] < 1$ and $\beta (1 + \alpha_1)^{1-\phi} < 1$, the total welfare cost of macroeconomic uncertainty is:

$$
\lambda(\beta, \phi) = \exp \left[\frac{\phi (2 \tilde{\sigma}_{12} + \tilde{\sigma}_{22})}{2} \right] \left\{ \frac{1 - \beta (1 + \alpha_1)^{1-\phi} \exp[-(1-\phi) \phi \sigma_{11}]^{1/(1-\phi)}}{1 - \beta (1 + \alpha_1)^{1-\phi}} \right\} - 1,
(2.8)
$$

if we replace $\sigma_{12} \sum_{j=0}^{t-1} b_j$ and $\sigma_{22} \sum_{j=0}^{t-1} b_j^2$ by their respective unconditional counterparts3, $\tilde{\sigma}_{12} = \sigma_{12} \sum_{j=0}^{\infty} b_j$ and $\tilde{\sigma}_{22} = \sigma_{22} \sum_{j=0}^{\infty} b_j^2$. For the sake of simplicity, this is the way we chose to estimate $\lambda(\beta, \phi)$ in this

2In the scalar version of the Beveridge-Nelson representation ξ_t and ζ_t are perfectly correlated, which does not hold in general in a multivariate framework as ours.

3Notice that $\tilde{\sigma}_{12}, \tilde{\sigma}_{22} < \infty$ from Wold’s representation.
paper. The marginal cost of macroeconomic uncertainty
\[\frac{\partial \lambda(\alpha, \beta, \phi)}{\partial \alpha} \bigg|_{\alpha=0} \equiv \lambda'(0, \beta, \phi) \]
is:
\[\lambda'(0, \beta, \phi) = \exp(\phi (2\tilde{\sigma}_{12} + \tilde{\sigma}_{22})) \left[1 - \beta (1 + \alpha_1)^{1-\phi} \exp\left(\frac{\phi(1+\phi)}{2} \sigma_{11}\right) \right] - 1; \]
(2.9)
similar formulas apply when \(\phi = 1 \) in both cases.

Consumption non-stationarity leaves it imprint on welfare-cost formulas. Indeed, looking at convergence conditions for equations (2.8) and (2.9) shows a very different role for \(\sigma_{11} \) (variance of the permanent shock) than for \(\tilde{\sigma}_{12} \) and \(\tilde{\sigma}_{22} \) (both related to transitory shocks). Although it would be interesting to isolate the effects of permanent and transitory shocks, computing their respective welfare-cost importance, this entails dealing with degenerate processes and performing counter-factual exercises in a much larger scale than done here, being the reason why we leave it for future research.

3. Reduced Form and Long-Run Constraints

Denote by \(y_t = (\ln(c_t), \ln(I_t))^\prime \) a 2 x 1 vector containing respectively the logarithms of consumption and disposable income per-capita. We assume that both series contain a unit-root and are possibly cointegrated as in \([−1,1]^\prime y_t\) because of the Permanent-Income Hypothesis (Campbell(1987)). A vector error-correction model (VECM\((p-1)\)) is:
\[\Delta y_t = \Gamma_1 \Delta y_{t-1} + \ldots + \Gamma_{p-1} \Delta y_{t-p+1} + \gamma [-1,1]^\prime y_{t-p} + \varepsilon_t. \]
(3.1)

Proietti(1997) shows how to extract trends and cycles from the elements in \(y_t \) using a state-space representation. Jumping to our results, system (3.1) is well described by a VECM\((1)\), with state-space form:
\[\Delta y_{t+1} = Z f_{t+1}, \]
(3.2)
\[f_{t+1} = T f_t + Z^\prime \varepsilon_{t+1}, \]
where,
\[f_{t+1} = \begin{bmatrix} \Delta y_{t+1} \\ \Delta y_t \\ \alpha' y_{t-1} \end{bmatrix}, \]
\[T = \begin{bmatrix} \Gamma_1 - \gamma \alpha' - \gamma \\ I_2 \\ 0 \end{bmatrix}, \]
\[Z = [I_2 \ 0 \ 0], \]
and \(\alpha \) is the cointegrating vector. Labelling the random-walk trend and the cyclical component of \(y_t \) respectively by \(\mu_t \) and \(\psi_t \), the Beveridge and Nelson(1981) trends and cycles are:
\[\psi_t = -\lim_{l \to \infty} \sum_{i=1}^{l} E_t [\Delta y_{t+i}] = -Z [I - T]^{-1} T f_t, \]
and,
\[\mu_t = y_t - \psi_t. \]
Apart from an irrelevant constant, the trend innovation in consumption \(\xi_t \) is simply \([1,0] \times \Delta \mu_t \), because the trend is a random walk. Its variance \(\sigma_{11} \) equals \(\text{VAR} ([1,0] \times \Delta \mu_t) \). Notice that:

\[
\ln(c_t) - E_{t-1}(\ln(c_t)) = [1,0] \times \varepsilon_t = \xi_t + \zeta_t
\]

identifies \(\zeta_t \) up to an irrelevant constant using \([1,0] \times (\varepsilon_t - \Delta \mu_t) = \zeta_t \), which allows computing \(\sigma_{12} \) and \(\sigma_{22} \). A similar approach allows computing \(\tilde{\sigma}_{12} \) and \(\tilde{\sigma}_{22} \) using the cycle in consumption.

Using the Delta Method we can compute the standard errors of the estimates of \(\lambda(\cdot) \) and of \(\lambda'(\cdot) \) in (2.8) and (2.9). We apply a standard Central-Limit Theorem for VAR estimates (e.g., Hamilton(1994)) coupled with the Delta Method to test the hypotheses that welfare costs are statistically zero; see Duarte, Issler and Salvato(2005).

4. Empirical Results

Annual data for U.S. consumption of non-durables and services, U.S. real GNP, and U.S. population, were obtained from DRI during 1947-2000. We fitted a bivariate VAR for the logs of consumption and income. Lag-length selection indicated a \(\text{VAR}(2) \) containing a restricted time trend and an unrestricted constant; see Johansen(1991). Choosing one lag would have lead to serially correlated residuals. Cointegration test results (Johansen) show overwhelming evidence that income and consumption cointegrate using the \text{trace} and the \(\lambda_{\text{max}} \) statistics. Further, testing that \([-1,1]' \) is the cointegrating vector generated a p-value of 0.1089. Hence, we used a cointegrated VAR imposing \(\alpha = [-1,1]' \).

The total welfare cost of macroeconomic uncertainty are presented in Table 1; see also results using a linear trend and a Hodrick and Prescott(1997) filter to extract trends and cycles. For the Beveridge-Nelson decomposition they are about 0.9% of per-capita consumption, which amounts to $175.77 per person in 2000 US$. Although this is more than 20 times the benchmark value suggested by Lucas, it is still not very high. Compared to the linear time trend and the Hodrick and Prescott(1997) filter, we find that using the Beveridge-Nelson decomposition produces welfare costs three times bigger than those of the former and that the Hodrick-Prescott filter produces much smaller numbers matching those found by Lucas.

Table 2 presents estimates of the marginal welfare cost of macroeconomic uncertainty. They are about 1.9% of per-capita consumption using the Beveridge-Nelson decomposition – twice as big as total welfare costs. This result can be compared to those found by Alvarez and Jermann(2004). For the 1954-97 period, they find about 0.20% when an 8-year low-pass filter is used to extract cycles, about 0.30% when a one-sided filter is used, and about 0.77% and 1.40% when a geometric and a linear filter are used respectively. As we have argued in Section 2, we are computing the welfare costs of eliminating all consumption variation. Since the method used in Alvarez and Jermann
eliminates only uncertainty that occurs at business-cycle frequencies it is not surprising that our estimates are higher than theirs.

Using our estimates of standard errors of welfare costs presented in Tables 1 and 2, we conclude that welfare costs are not statistically zero. As far as we know, this is the first time that this hypothesis is actually tested using U.S. data.

One of the main contributions of this paper is to propose a proper and richer econometric model for non-stationary consumption in computing welfare costs. Therefore, it is interesting to compare our results in Tables 1 and 2 with those that would have been obtained considering a simpler model for non-stationary consumption. For example, Obstfeld(1994) and Tallarini(2000) model log consumption as a random walk with drift, while Dolmas(1998) models consumption growth about a constant mean as an \(AR(1) \) process.

Using the utility function in equation (2.5), the models of Obstfeld and Tallarini and of Dolmas were re-estimated using our own data set. Welfare costs were then computed in both cases and results compared to those in Tables 1 and 2. The random-walk model of Obstfeld and Tallarini yields total welfare costs of macroeconomic uncertainty that are less than half of those obtained in Table 1. Moreover, as a rule, the difference between results is more than 20 times our estimate of the standard deviation of welfare costs, making it quantitatively large. When Dolmas’ \(AR(1) \) model is used, total welfare costs are about 55% of those obtained in Table 1. Again, differences are quantitatively large – about 15 times the standard deviation of total welfare costs. An almost identical pattern emerges when the same comparisons are made using the results of Table 2. Overall, it seems that using a proper econometric model for non-stationary consumption yields much higher welfare costs than previously found.

We can conjecture why we observe these increases in welfare costs. Here, a more elaborate model increases the dependence of the growth rate of consumption on the agent’s information set. This can be illustrated when we move from the pure trend model of Obstfeld and Tallarini – with no cycle at all – to Dolmas’ model, where the Beveridge-Nelson cyclical component is an \(AR(1) \) process:
\[
\frac{1}{1-\phi} (\Delta \ln c_t - \mu),
\]
where \(\phi \) is the first-order autoregressive coefficient in consumption growth and \(\mu \) is its mean. The introduction of a cycle in this case serves to amplify the effects of macroeconomic uncertainty, increasing welfare costs. Indeed, we observe an increase in total welfare costs of at least 32% and in marginal welfare costs of at least 50% when we move from the random-walk model to the \(AR(1) \) process in differences. By the same token, the multivariate model used in the paper (\(VECM(1) \)) has a much richer dynamics than the \(AR(1) \) process used by Dolmas, which may explain the increase in welfare costs we have observed in our previous comparison.
5. Conclusions

Using only standard assumptions on preferences and an econometric approach for modelling consumption we computed the welfare costs of macroeconomic uncertainty for the post-WWII period using the Beveridge and Nelson (1981) decomposition. We found that the post-WWII era is a relatively quiet one, with total and marginal welfare costs being respectively about 0.9% and 1.9% of consumption. Although the benchmark values computed by Lucas are about 1/20 of our total-cost estimate, our basic conclusion is that deepening counter-cyclical policies is futile. Despite of these small welfare-cost values, we found them to be statistically significant.

The way we have proposed measuring welfare costs here can be interpreted as the cost of eliminating macroeconomic uncertainty. The challenge for future research is to find a suitable way of measuring welfare costs of business cycles when the trend function is credible and not deterministic. Notice that these remarks are similar to the closing remarks in Alvarez and Jermann (2004). If one accepts a permanent-transitory categorization for shocks, then a possible path is to use the Beveridge-Nelson decomposition for measuring the importance of these shocks separately. As we noted above, this is time- and space-consuming exercise, being the reason why we leave it for future research.

References

A. Tables

Table 1: Total Cost of Macroeconomic Uncertainty %

<table>
<thead>
<tr>
<th></th>
<th>(\phi = 1)</th>
<th>(\phi = 5)</th>
<th>(\phi = 10)</th>
<th>(\phi = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Lucas Benchmark Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 0.950, 0.971, 0.985)</td>
<td>0.008 0.042 0.08 0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Beveridge-Nelson Decomposition 1947-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 0.950)</td>
<td>0.45 0.76 0.79 0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 0.971)</td>
<td>(0.012) (0.020) (0.020) (0.019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 0.985)</td>
<td>0.80 0.92 0.89 0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 1)</td>
<td>(0.022) (0.024) (0.023) (0.021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 5)</td>
<td>1.59 1.06 0.96 0.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 10)</td>
<td>(0.043) (0.028) (0.025) (0.022)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 20)</td>
<td>(0.05) (0.042) (0.038) (0.034)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Hodrick-Prescott Filter 1947-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 0.950, 0.971, 0.985)</td>
<td>0.01 0.04 0.08 0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 1)</td>
<td>(0.0002) (0.0011) (0.0022) (0.0043)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) Linear Time Trend 1947-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 0.950, 0.971, 0.985)</td>
<td>0.05 0.27 0.54 1.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 1)</td>
<td>(0.001) (0.007) (0.014) (0.029)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta = 20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Panel (a) is extracted from Lucas(1987). (2) Panel (b) is a direct application of equation (2.8) under difference stationary log consumption. (3) For constructing Panels (c) and (d) we assumed that \(c_t = \alpha_0 (1 + \alpha_1)^t \exp \left(-\frac{1}{2} \sigma_z^2 \right) z_t \), where the trend in consumption is \(c^*_t = E(c_t) = \alpha_0 (1 + \alpha_1)^t \), and \(\ln (z_t) \sim N(0, \sigma_z^2) \). For Panel (c), \(\ln (1 + \alpha_1) \) is the estimated growth rate of HP-filtered log consumption. For Panel (d) \(\ln (1 + \alpha_1) \) is the estimated growth rate of log consumption. With this structure, we employed equation (2.1) to compute total welfare costs.
Table 2: Marginal Cost of Macroeconomic Uncertainty \%

Standard Errors in Parenthesis

(a) Lucas Benchmark Values

<table>
<thead>
<tr>
<th>β Equivalent in a Yearly Basis</th>
<th>$\phi = 1$</th>
<th>$\phi = 5$</th>
<th>$\phi = 10$</th>
<th>$\phi = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 0.950, 0.971, 0.985$</td>
<td>0.008</td>
<td>0.042</td>
<td>0.08</td>
<td>0.17</td>
</tr>
</tbody>
</table>

(b) Beveridge-Nelson Decomposition 1947-2000

<table>
<thead>
<tr>
<th>β Equivalent in a Yearly Basis</th>
<th>$\phi = 1$</th>
<th>$\phi = 5$</th>
<th>$\phi = 10$</th>
<th>$\phi = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 0.950$</td>
<td>0.91</td>
<td>1.58</td>
<td>1.70</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.042)</td>
<td>(0.047)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>$\beta = 0.971$</td>
<td>1.63</td>
<td>1.92</td>
<td>1.92</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.052)</td>
<td>(0.054)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>$\beta = 0.985$</td>
<td>3.26</td>
<td>2.22</td>
<td>2.08</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td>(0.061)</td>
<td>(0.059)</td>
<td>(0.064)</td>
</tr>
</tbody>
</table>

(c) Hodrick-Prescott Filter 1947-2000

<table>
<thead>
<tr>
<th>β Equivalent in a Yearly Basis</th>
<th>$\phi = 1$</th>
<th>$\phi = 5$</th>
<th>$\phi = 10$</th>
<th>$\phi = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 0.950, 0.971, 0.985$</td>
<td>0.02</td>
<td>0.08</td>
<td>0.16</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

(d) Linear Time Trend 1947-2000

<table>
<thead>
<tr>
<th>β Equivalent in a Yearly Basis</th>
<th>$\phi = 1$</th>
<th>$\phi = 5$</th>
<th>$\phi = 10$</th>
<th>$\phi = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 0.950, 0.971, 0.985$</td>
<td>0.11</td>
<td>0.54</td>
<td>1.08</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.014)</td>
<td>(0.029)</td>
<td>(0.059)</td>
</tr>
</tbody>
</table>

Notes: (1) Panel (a) is extracted from Lucas(1987). (2) Panel (b) is a direct application of equation (2.9) under difference stationary log consumption. (3) For constructing Panels (c) and (d) we assumed that $c_t = \alpha_0 (1 + \alpha_1)^t \exp \left(-\frac{1}{2} \sigma_z^2 \right) z_t$, where the trend in consumption is $c_t^* = E(c_t) = \alpha_0 (1 + \alpha_1)^t$, and $\ln(z_t) \sim N(0, \sigma_z^2)$. For Panel (c), $\ln(1 + \alpha_1)$ is the estimated growth rate of HP-filtered log consumption. For Panel (d) $\ln(1 + \alpha_1)$ is the estimated growth rate of log consumption. With this structure, we employed equation (2.4) to compute marginal welfare costs.
Últimos Ensaios Econômicos da EPGE

