A note on Cole and Stockman

Paulo Barelli, Samuel de Abreu Pessoa

Abri de 2003

URL: http://hdl.handle.net/10438/675
Os artigos publicados são de inteira responsabilidade de seus autores. As opiniões neles emitidas não exprimem, necessariamente, o ponto de vista da Fundação Getulio Vargas.

ESCOLA DE PÓS-GRADUAÇÃO EM ECONOMIA
Diretor Geral: Renato Fragelli Cardoso
Diretor de Ensino: Luís Henrique Bertolino Braido
Diretor de Pesquisa: João Victor Issler
Diretor de Publicações Científicas: Ricardo de Oliveira Cavalcanti

Barelli, Paulo
A note on Cole and Stockman/ Paulo Barelli, Samuel de Abreu Pessoa – Rio de Janeiro : FGV,EPGE, 2010 (Ensaios Econômicos; 479)

Inclui bibliografia.
A note on Cole and Stockman

Paulo Barelli
Samuel de Abreu Pessoa

Abril de 2003
A Note on Cole and Stockman

Paulo Barelli∗ Samuel de Abreu Pessôa†

March, 2003

1 Introduction

Cole and Stockman (1992) develop a differentiated product model with endogenous specialization and money, and contrast its results with the usual cash-in-advance models’ results, where specialization is exogenous. In their derivation of the first order conditions, they overlook a necessary discontinuity on the consumption profile and, consequently, get non-accurate results. In this note we redo their derivation and show where their results fail. In particular, the equation determining the degree of specialization (equation 24, page 290) misses several important terms. Their equation is only accurate in the limit case of zero interest rate (and full specialization), which is the only case where the consumption profile is not discontinuous.

The reason why we found the problem just mentioned is that one proposition, reported in Pessôa (2003), that we believe is quite general, was not valid for Cole and Stockman’s model. We therefore show that the proposition is indeed valid once one uses the corrected version of Cole and Stockman’s equations. The proposition is that the welfare cost of inflation is given by the area below the compensated money demand function (that is, it is a formalization of Bailey’s rule). In addition, we also show that any distortion that locally increase the money demand is welfare improving, regardless of any other effect it may cause. A straightforward consequence of this result, once we consider the extension of their model with the inclusion of an alternate transaction technology (ATT), is a necessary and sufficient condition for overbanking in their model. That is, there is too much ATT (or too much banking) from a welfare perspective if and only if a tax on

∗Department of Economics, Columbia University, 420 W 118th Street, New York, NY 10027, USA. Email Address: pb230@columbia.edu
†Graduate School of Economics (EPGE), Fundação Getulio Vargas, Praia de Botafogo 190, 1125, Rio de Janeiro, RJ, 22253-900, Brazil. Fax number: (+) 55-21-2553-8821. Email address: pessoa@fgv.br
ATT increase the money demand. Given that such a tax necessarily decreases ATT demand, one can expect the overbanking result.

2 The Problem

Cole and Stockman’s model is as follows. There is a continuum of agents and a continuum of goods. One individual can either produce any given good, or buy it from someone else using money. Hence the cash-in-advance restriction only applies to a subset of the goods, the ones the individual purchases. Given the assumption of gains to specialization, inflation reduces efficiency as it induces individuals not to fully specialize (they would rather produce some of the goods to avoid the opportunity cost of having to hold money to buy those goods).

Formally, for a given individual, \(C_t(i) = c_t(i) + c^*_t(i) \) is his consumption on good \(i \in [0, 1] \) at time \(t \), where \(c_t(i) \) represents the consumption of a home produced good \(i \) and \(c^*_t(i) \) represents the consumption of a purchased good \(i \). Also, \(L_t(i) \) represents his labor effort to produce good \(i \) at time \(t \). His preferences are then given by

\[
\sum_{t=0}^{\infty} \beta^t [\int_0^1 U(C_t(i)) di - h(\int_0^1 L_t(i) di)] ,
\]

where \(U(\cdot) \) is strictly concave and satisfies Inada conditions, and \(h(\cdot) \) is strictly convex. All individuals are assumed identical. The degree of specialization is denoted by \(\alpha_t \) where

\[
\alpha_t = \int_0^1 1_{\{L_t(i) > 0\}} di,
\]

that is, it is the range of goods produced by the individual. Gains to specialization are captured by having the output of one’s labor effort given by

\[
y_t(i) = f(\alpha_t)L_t(i)
\]

with \(f(\cdot) \) decreasing and concave.

The individual maximizes (1) subject to the following constraints

\[
c_t(i) \leq y_t(i)
\]

\[
\int_0^1 p_t(i)c^*_t(i) di \leq M_t
\]

\[
(B_t - (1 + R_{t+1})B_{t-1} + M_t - (M_{t-1} + \tau_t))/p_t \leq \int_0^1 (y_t(i) - C_t(i)) di,
\]
where \(p_t(i) \) is the price of good \(i \) at time \(t \), \(M_t \) and \(B_t \) are the individual money and bond holdings at time \(t \), \(R_t \) is the interest rate at time \(t \) and \(\tau_t \) is a transfer of money that the individual receives at the beginning of the period (\(\tau_t \) equals \(M_t - M_{t-1} \), and the money supply \(M_t \) is assumed to follow an exogenous stochastic process). Constraint (3) is self-explanatory, constraint (4) is the cash-in-advance restriction, and (5) is the budget constraint (symmetry ensures that \(p_t(i) = p_t \) for all \(i \in [0, 1] \)).

Inada conditions and (3) imply that

\[
[c_t(i), c_t^*(i), C_t(i)] = \begin{cases}
[\alpha, 0, \alpha] & \text{for } i \in [0, \alpha], \\
[0, c_t^*, c_t^*] & \text{for } i \in (\alpha, 1),
\end{cases}
\]

i.e., that goods indexed by \(i \in [0, \alpha] \) are self-produced and the remaining are purchased (cash) goods. It follows that the consumption profile \(c(i) \) is discontinuous at \(i = \alpha \). Hence, the optimization problem above is not entirely standard. Denoting the multipliers associated with (3)-(5) by \(\theta_t(i), \delta_t \) and \(\Gamma_t \), we can write the following Lagrangian

\[
\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \left\{ \int_0^{\alpha_t} U(C_t(i))di + \int_{\alpha_t}^1 U(C_t(i))di - h(\alpha_t L_t) + \int_0^{\alpha_t} \theta_t(i) [f(\alpha_t) L_t - c_t(i)] di \\
+ \int_{\alpha_t}^1 \theta_t(i) c_t(i) di + \Gamma_t \left[f(\alpha_t) \alpha_t L_t - \int_0^{\alpha_t} C_t(i) di - \int_{\alpha_t}^1 C_t(i) di \\
- (B_t - (1 + R_{t-1}) B_{t-1} + M_t - M_{t-1} - \tau_t) \frac{1}{p_t} \right] \\
+ \delta_t \left[\frac{M_{t-1} + \tau_t}{p_t} - \int_0^{\alpha_t} c_t^*(i) di - \int_{\alpha_t}^1 c_t^*(i) di \right] \right\},
\]

from which we get that the first order condition for the choice of \(\alpha_t \) is given by

\[
0 = \lim_{i \to \alpha_t^-} U(C_t(i)) - \lim_{i \to \alpha_t^+} U(C_t(i)) - L_t h'(\alpha_t L_t) + \int_0^{\alpha_t} \theta_t(i) f'(\alpha_t) L_t di \\
+ \lim_{i \to \alpha_t^-} \theta_t(i) [f(\alpha_t) L_t - c_t(i)] - \lim_{i \to \alpha_t^+} \theta_t(i) c_t(i) \\
+ \Gamma_t \left[\alpha_t f'(\alpha_t) L_t + f(\alpha_t) L_t - \lim_{i \to \alpha_t^-} C_t(i) + \lim_{i \to \alpha_t^+} C_t(i) \right] \\
- \delta_t \left(\lim_{i \to \alpha_t^-} c_t^*(i) - \lim_{i \to \alpha_t^+} c_t^*(i) \right).
\]

\(^1\)They assume that \(L_t(i) = L_t \) and get rid of the second integral on (1).
The other first order conditions are the ones reported in Cole and Stockman. In particular, we can use
\[\Gamma_t = U'(c_t) \text{ and } \Gamma_t(1 + R_t) = U'(c_t^*), \]
and substitute (6) into (8) to get:
\[0 = U(c_t) - U(c_t^*) - L_t h'(\alpha_t L_t) + \int_0^{\alpha_t} \theta_t(i)f'(\alpha_t)L_tdi + \lim_{i \to \alpha_t} \theta_t(i) [f(\alpha_t)L_t - c_t] - 0 \]
\[+ \Gamma_t [\alpha_t f'(\alpha_t)L_t + f(\alpha_t)L_t - c_t + c_t^*] - \delta_t (0 - c_t^*). \]

(10)

Also, the first order conditions imply that
\[\theta_t(i) = \begin{cases}
0 & \text{for } i \in [0, \alpha_t] \\
\delta_t = \Gamma_t R_t & \text{for } i \in (\alpha_t, 1),
\end{cases} \]
so that we can rewrite (10) as
\[0 = U(c_t) - U(c_t^*) - L_t h'(\alpha_t L_t) + \Gamma_t [\alpha_t f'(\alpha_t)L_t + f(\alpha_t)L_t - c_t + c_t^*] + \Gamma_t R_t c_t^*, \]
or
\[0 = U(c_t) - U(c_t^*) - L_t h'(\alpha_t L_t) + \Gamma_t [\alpha_t f'(\alpha_t)L_t + f(\alpha_t)L_t - c_t + (1 + R_t)c_t^*]. \]

(11)

The equivalent to (11) in Cole and Stockman is their equation 24 at page 290, which we reproduce here
\[\theta(\alpha_t)f(\alpha_t)L_t + \Gamma_t \alpha_t f'(\alpha_t)L_t = 0. \]
(CS-24)

Clearly, several terms included in (11) are missing in their equation. Still, the interpretation of (11) is straightforward. A marginal increase in the range of goods produced by the household from \(\alpha_t \) to \(\alpha_t + \alpha_t \) has the following net impact on instantaneous utility:
\[\int [U(c_t) - U(c_t^*) - L_t h'(\alpha_t L_t)] \, d\alpha_t. \]

There is an increase in utility of \((U(c_t) - U(c_t^*))d\alpha_t \) because of the increased consumption of the home produced good, and also a decrease in utility of \(L_t h'(\alpha_t L_t)d\alpha_t \) due to higher labor effort, for a given per good labor effort \(L_t \). On the other hand, the same marginal increase in the range of goods
produced by the household has the following net impact on the household’s budget constraint:

\[[\alpha_t f'(\alpha_t)L_t + f(\alpha_t)L_t - c_t + (1 + R_t)c^*_t] \, d\alpha_t. \]

The term \(f(\alpha_t)L_t \, d\alpha_t \) captures the increase in production and the term \(\alpha_t f'(\alpha_t)L_t \, d\alpha_t \) captures the decrease in production, due to the reduction in specialization, so that \([\alpha_t f'(\alpha_t)L_t + f(\alpha_t)L_t] \, d\alpha_t \) is the net impact on production. In addition, \([-c_t + (1 + R_t)c^*_t] \, d\alpha_t \) is the net impact on purchases. The household saves \((1 + R_t)c^*_t \, d\alpha_t \) and increases consumption by \(c_t \, d\alpha_t \). Equation (11) sets the net impact on instantaneous utility equal to the net impact on the budget constraint.

If \(R_t = 0 \), then there would be no discontinuity in \(c(i) \) and, consequently, the first order conditions derived in Cole and Stockman would be correct. Indeed, (11) above would reproduce their equation 24. But this would be a limit situation, not the generic one.

3 Applications

3.1 Welfare Cost of Inflation

As mentioned above, we came upon the mistake in Cole and Stockman’s paper while trying to show one result, which is stated in the Claim 1 below. We state and prove it, using our equation (11). We have not been able to show it using their equation 24.

Claim 1 Defining the welfare cost of perfect foreseen inflation as the income that should be given to the household in order to compensate her for the harm caused by inflation, then if inflation is the unique distortion in the economy, the welfare cost of inflation is exactly equal to the area under the inverse compensated money demand function.

This result is shown to be very general in Pessôa (2003). In fact, it is shown that the result holds for a broad variety of monetary models, including the Sidrauski and the cash-in-advance models.

Proof. Considering a constant nominal interest rate, one can write the indirect intertemporal utility function as

\[V(R) = \sum_{t=0}^{\infty} \beta^t \left[\alpha_t u(c_t) + (1 - \alpha_t)u(c^*_t) - h(\alpha_t L_t) \right], \]
from which we get

\[
\frac{dV(R)}{dR} = \sum_{t=0}^{\infty} \beta^t \left[\alpha_t u'(c_t) \frac{dc_t}{dR} + (1 - \alpha_t)u'(c_t^*) \frac{dc_t^*}{dR} + (u(c_t) - u(c_t^*)) \frac{d\alpha_t}{dR}
\right. \\
- h'(\alpha_t L_t) \left(\alpha_t \frac{dL_t}{dR} + L_t \frac{d\alpha_t}{dR} \right).
\] (12)

From the market equilibrium equation we know that

\[
\alpha_t c_t + (1 - \alpha_t) c_t^* - \alpha_t f(\alpha_t) L_t - e_t = 0,
\]

where \(e_t\) is an endowment that is going to be the measure of the welfare cost of inflation (that is, if inflation increases this endowment has to increase in order to compensate the household for the harm caused by inflation).

Consequently

\[
0 = -\sum_{t=0}^{\infty} \beta^t u'(c_t) \left[\alpha_t \frac{dc_t}{dR} + (1 - \alpha_t) \frac{dc_t^*}{dR} - \alpha_t f(\alpha_t) \frac{dL_t}{dR}
\right. \\
+ (c_t - c_t^* - f(\alpha_t) L_t - \alpha_t f'(\alpha_t) L_t) \frac{d\alpha_t}{dR} - \frac{de_t}{dR} \right].
\] (13)

Adding (12) and (13)

\[
\frac{dV(R)}{dR} = \frac{dV(R)}{dR} + 0 = \sum_{t=0}^{\infty} \beta^t \left[(1 - \alpha_t) \left[u'(c_t^*) - u'(c_t) \right] \frac{dc_t^*}{dR}
\right. \\
+ \left[u(c_t) - u(c_t^*) - h'(\alpha_t L_t) L_t
\right. \\
- u'(c_t)(c_t - c_t^* - f(\alpha_t) L_t - \alpha_t f'(\alpha_t) L_t) \right] \frac{d\alpha_t}{dR} \\
- \left. \alpha_t \left[h'(\alpha_t L_t) - u'(c_t) f(\alpha_t) \right] \frac{dL_t}{dR} + u'(c_t) \frac{de_t}{dR} \right].
\] (14)

Substituting (11) into (14), and using

\[
h'(\alpha_t L_t) - u'(c_t) f(\alpha_t) = 0
\]

\[
u'(c_t^*) - u'(c_t) = Ru'(c_t),
\]
it follows that

\[
\frac{dV(R)}{dR} = \sum_{t=0}^{\infty} \beta_t \left\{ (1 - \alpha_t)u'(c_t) R \frac{dc^*_t}{dR} - Rc^*_t u'(c_t) \frac{d\alpha_t}{dR} \right\} + \sum_{t=0}^{\infty} \beta^t u'(c_t) \frac{de_t}{dR}.
\]

If the household is compensated, then we must have \(\frac{dV(R)}{dR} = 0 \), which means that

\[
\sum_{t=0}^{\infty} \beta^t u'(c_t) \left\{ (1 - \alpha_t) R \frac{dc^*_t}{dR} - Rc^*_t \frac{d\alpha_t}{dR} \right\} = -\sum_{t=0}^{\infty} \beta^t u'(c_t) \frac{de_t}{dR}.
\]

Since there is no capital in this economy, there is no dynamics after a change in the nominal interest rate either. Consequently, we can drop the index \(t \) and calculate explicitly the infinite sum:

\[
\frac{de}{dR} = -R \left[(1 - \alpha) \frac{dc^*_t}{dR} - c^* \frac{d\alpha}{dR} \right]
\]

\[
= -R \frac{dm}{dR},
\]

where \(m = (1 - \alpha)c^* \) due to the cash-in-advance constraint. Integrating \(\frac{de}{dR} \) gives

\[
\text{Welfare Cost of Inflation} = e = -\int_{-\rho}^{R} x \frac{dm}{dx} dx = \int_{m(R)}^{m(-\rho)} x(m) dm
\]

where \(1 + \rho = \frac{1}{\beta} \). Since \(x(m) \) is the compensated money demand, we are done. ■

3.2 Overbanking

Cole and Stockman also extend their model to include an alternative transactions technology (ATT), which captures any form of payment other than money (like credit cards for instance). We can think of it as representative of the services provided by a banking sector to help the individuals cope with inflation. There is a cost \(\sigma(x) \) of acquiring \(x \) units of output through ATT, where \(\sigma(0) = 0 \) and \(\sigma \) is strictly increasing and convex. Let \(z_t(i) \) be the number of goods of type \(i \) that the individual acquires through ATT. The only equations that change are (1) and (5) which become

\[
E_0 \sum_{t=0}^{\infty} \beta^t \left[\int_{0}^{1} U(C_t(i) + z_t(i)) di - h(\alpha_t L_t + \sigma(\int_{0}^{1} z_t(i) di)) \right]
\]
and

\[
(B_t - (1 + R_{t+1})B_{t-1} + M_t - (M_{t-1} + \tau_t))/pt \leq f(\alpha_t)\alpha_tL_t - \int_0^1 (C_t(i) + z_t(i))di.
\]

The first-order conditions reported in their paper for the extended model also overlook the discontinuity in the consumption profile. It is possible to redo their computations, and then follow the steps in the proof of Claim 1 above to show that

\[
\frac{dV}{d\tau} \bigg|_{\tau=0} = \sum_{t=0}^{\infty} \beta^t \frac{dm_t}{d\tau} \bigg|_{\tau=0},
\]

where \(\tau\) is any purchase tax. In particular, if \(\tau\) is a tax on the ATT and if the introduction of this tax increases money demand equation (15) says that there is overbanking. A tax discouraging ATT increases utility by increasing money demand. Note that this result does not depend on the nature of the impact of \(\tau\) on variables other than money demand. It is likely that the introduction of \(\tau\) generates other distortions that affect welfare. Equation (15) shows that these effects are negligible at first-order.

References

441. TESTING PRODUCTION FUNCTIONS USED IN EMPIRICAL GROWTH STUDIES – Pedro Cavalcanti Ferreira; João Victor Issler; Samuel de Abreu Pessôa – Março de 2002 - 28 págs.

444. A ROBUST POVERTY PROFILE FOR BRAZIL USING MULTIPLE DATA SOURCES – Francisco H. G. Ferreira; Peter Lanjouw; Marcelo Neri – Abril de 2002 – 38 págs.

446. SPECULATIVE ATTACKS ON DEBTS, DOLLARIZATION AND OPTIMUM CURRENCY AREAS – Aloisio Araujo; Marcia Leon – Maio de 2002 – 74 págs.

447. VINTAGE CAPITAL, DISTORTIONS AND DEVELOPMENT – Samuel de Abreu Pessoa; Rafael Rob – Maio de 2002 – 43 págs.

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>451</td>
<td>LENDER LIABILITY IN THE CONSUMER CREDIT MARKET</td>
<td>Elisabetta Iossa; Giuliana Palumbo</td>
<td>20</td>
</tr>
<tr>
<td>452</td>
<td>DECISION RULES AND INFORMATION PROVISION: MONITORING VERSUS MANIPULATION</td>
<td>Elisabetta Iossa; Giuliana Palumbo</td>
<td>37</td>
</tr>
<tr>
<td>453</td>
<td>ON CERTAIN GEOMETRIC ASPECTS OF PORTFOLIO OPTIMISATION WITH HIGHER MOMENTS</td>
<td>Gustavo M. de Athayde; Renato G. flores Jr.</td>
<td>21</td>
</tr>
<tr>
<td>454</td>
<td>MENSURANDO A PRODUÇÃO CIENTÍFICA INTERNACIONAL EM ECONOMIA DE ESQUISSADORES E DEPARTAMENTOS BRASILEIROS</td>
<td>João Victor Issler; Tatiana Caldas de Lima Aché Pillar</td>
<td>39</td>
</tr>
<tr>
<td>455</td>
<td>FOREIGN DIRECT INVESTMENT SPILLOVERS: ADDITIONAL LESSONS FROM A COUNTRY STUDY</td>
<td>Renato G. Flores Jr; Maria Paula Fontoura; Rogério Guerra Santos</td>
<td>30</td>
</tr>
<tr>
<td>456</td>
<td>A CONTRACTIVE METHOD FOR COMPUTING THE STATIONARY SOLUTION OF THE EULER EQUATION</td>
<td>Wilfredo L. Maldonado; Humberto Moreira</td>
<td>14</td>
</tr>
<tr>
<td>457</td>
<td>TRADE LIBERALIZATION AND THE EVOLUTION OF SKILL EARNINGS DIFFERENTIALS IN BRAZIL</td>
<td>Gustavo Gonzaga; Naércio Menezes Filho; Cristina Terra</td>
<td>31</td>
</tr>
<tr>
<td>458</td>
<td>DESEMPENHO DE ESTIMADORES DE VOLATILIDADE NA BOLSA DE VALORES DE SÃO PAULO</td>
<td>Bernardo de Sá Mota; Marcelo Fernandes</td>
<td>37</td>
</tr>
<tr>
<td>459</td>
<td>FOREIGN FUNDING TO AN EMERGING MARKET: THE MONETARY PREMIUM THEORY AND THE BRAZILIAN CASE, 1991-1998</td>
<td>Carlos Hamilton V. Araújo; Renato G. Flores Jr.</td>
<td>46</td>
</tr>
<tr>
<td>460</td>
<td>REFORMA PREVIDENCIÁRIA: EM BUSCA DE INCENTIVOS PARA ATRAIR O TRABALHADOR AUTÔNOMO</td>
<td>Samantha Taam Dart; Marcelo Côrtes Neri; Flavio Menezes</td>
<td>28</td>
</tr>
<tr>
<td>461</td>
<td>DECENT WORK AND THE INFORMAL SECTOR IN BRAZIL</td>
<td>Marcelo Côrtes Neri</td>
<td>115</td>
</tr>
<tr>
<td>462</td>
<td>POLÍTICA DE COTAS E INCLUSÃO TRABALHISTA DAS PESSOAS COM DEFICIÊNCIA</td>
<td>Marcelo Côrtes Neri; Alexandre Pinto de Carvalho; Hessia Guilhermo Costilla</td>
<td>67</td>
</tr>
<tr>
<td>463</td>
<td>SELETIVIDADE E MEDIDAS DE QUALIDADE DA EDUCAÇÃO BRASILEIRA 1995-2001</td>
<td>Marcelo Côrtes Neri; Alexandre Pinto de Carvalho</td>
<td>331</td>
</tr>
<tr>
<td>464</td>
<td>BRAZILIAN MACROECONOMICS WITH A HUMAN FACE: METROPOLITAN CRISIS, POVERTY AND SOCIAL TARGETS</td>
<td>Marcelo Côrtes Neri</td>
<td>61</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>465</td>
<td>POBREZA, ATIVOS E SAÚDE NO BRASIL</td>
<td>Marcelo Côrtes Neri; Wagner L. Soares</td>
<td>29</td>
</tr>
<tr>
<td>466</td>
<td>INFLAÇÃO E FLEXIBILIDADE SALARIAL</td>
<td>Marcelo Côrtes Neri; Maurício Pinheiro</td>
<td>16</td>
</tr>
<tr>
<td>467</td>
<td>DISTRIBUTIVE EFFECTTS OF BRAZILIAN STRUCTURAL REFORMS</td>
<td>Marcelo Côrtes Neri; José Márcio Camargo</td>
<td>38</td>
</tr>
<tr>
<td>468</td>
<td>O TEMPO DAS CRIANÇAS</td>
<td>Marcelo Côrtes Neri; Daniela Costa</td>
<td>14</td>
</tr>
<tr>
<td>469</td>
<td>EMPLOYMENT AND PRODUCTIVITY IN BRAZIL IN THE NINETIES</td>
<td>José Márcio Camargo; Marcelo Côrtes Neri; Maurício Cortez Reis</td>
<td>32</td>
</tr>
<tr>
<td>471</td>
<td>CUSTO DE CICLO ECONÔMICO NO BRASIL EM UM MODELO COM RESTRIÇÃO A CRÉDITO</td>
<td>Bárbara Vasconcelos Boavista da Cunha; Pedro Cavalcanti Ferreira</td>
<td>21</td>
</tr>
<tr>
<td>472</td>
<td>THE COSTS OF EDUCATION, LONGEVITY AND THE POVERTY OF NATIONS</td>
<td>Pedro Cavalcanti Ferreira; Samuel de Abreu Pessoa</td>
<td>31</td>
</tr>
<tr>
<td>473</td>
<td>A GENERALIZATION OF JUDD’S METHOD OF OUT-STEADY-STATE COMPARISONS IN PERFECT FORESIGHT MODELS</td>
<td>Paulo Barelli; Samuel de Abreu Pessoa</td>
<td>7</td>
</tr>
<tr>
<td>474</td>
<td>AS LEIS DA FALÊNCIA: UMA ABORDAGEM ECONÔMICA</td>
<td>Aloísio Pessoa de Araújo</td>
<td>25</td>
</tr>
<tr>
<td>475</td>
<td>THE LONG-RUN ECONOMIC IMPACT OF AIDS</td>
<td>Pedro Cavalcanti G. Ferreira; Samuel de Abreu Pessoa</td>
<td>30</td>
</tr>
<tr>
<td>476</td>
<td>A MONETARY MECHANISM FOR SHARING CAPITAL: DIAMOND AND DYBVIG MEET KIYOTAKI AND WRIGHT</td>
<td>Ricardo de O. Cavalcanti</td>
<td>16</td>
</tr>
<tr>
<td>477</td>
<td>INADA CONDITIONS IMPLY THAT PRODUCTION FUNCTION MUST BE ASYMPTOTICALLY COBB-DOUGLAS</td>
<td>Paulo Barelli; Samuel de Abreu Pessoa</td>
<td>4</td>
</tr>
<tr>
<td>478</td>
<td>TEMPORAL AGGREGATION AND BANDWIDTH SELECTION IN ESTIMATING LONG MEMORY</td>
<td>Leonardo R. Souza</td>
<td>19</td>
</tr>
<tr>
<td>479</td>
<td>A NOTE ON COLE AND STOCKMAN</td>
<td>Paulo Barelli; Samuel de Abreu Pessoa</td>
<td>8</td>
</tr>
</tbody>
</table>