"CREDIT RATIONING AND THE PERMANENT INCOME HYPOTHESIS"
Vicente Madrigal
Tommy Tan
Daniel Vicent
Sérgio Ribeiro da Costa Werlang
"CREDIT RATIONING AND THE PERMANENT INCOME HYPOTHESIS"

Vicente Madrigal(*)
Tommy Tan(*)
Daniel Vincent(**)
Sérgio Ribeiro da Costa Werlang(***)

(*) Graduate School of Business - University of Chicago.
(**) Kellogg Graduate School of Management - Northwestern University.
(***) This work was completed when this author was visiting the Department of Economics of the University of Pennsylvania.
Section I: Introduction

A persistent goal of empirical economists has been the search for evidence in favour of the permanent income/life-cycle hypothesis (PIHLC). An equally persistent result has been the failure of economic data to support this hypothesis.\(^1\) Strong evidence exists suggesting that a reason for this failure has been the presence of credit constraints.\(^2\) However, there is as yet, no formal framework describing precisely how these market imperfections interact with rational consumer behaviour. In order to test a revised PIHLC theory of consumption in the presence of credit-constraints, we need to discover the source of these constraints and to examine how they result from optimizing behaviour of lenders and borrowers.

Another goal of this paper involves the recent interest concerning the role of credit rationing in determining the severity of economic downturns.\(^3\) This requires an explanation of how changes in "exogenous" variables worsens credit constraints in an economy. Most of the previous, investment based theories\(^4\) do not provide a direct link between income (or other observable variables) and credit rationing. Our model develops a connection between (initial) income, credit rationing and (through the derived marginal propensity to consume) the subsequent feedback to income. This allows one to perform comparative static exercises yielding testable conclusions for the model.

A simple life-cycle model is examined in which consumers desire a particular intertemporal pattern of consumption which is not coincident with their income stream. Consumers need to use the credit market to achieve their desired consumption pattern. Banks must confront the inevitable difficulty of distinguishing among consumers with differing income streams.
The adverse selection problem which results even when banks are allowed to offer any possible form of loan contract leads to the need for credit rationing. We consider a T-horizon (where T is large and arbitrary) overlapping cohorts world. Consumers live for two periods while lenders exist for T periods. Consumers may differ in the level of their second period income (that is, high or low). Consumers borrow to increase first period consumption. Banks are profit maximizers and are allowed to compete for these loans by offering a broad range of contracts. Banks can appropriate payment from consumers (up to a bankruptcy level) provided consumers are able to pay. As long as there are significant proportions of both types of consumers and as long as their income levels are sufficiently different there is a unique subgame perfect equilibrium in pure strategies which entails credit rationing for the high income consumers.

This result has implications for the aggregate consumption function and the way it is affected by changes in income and prices. The empirical implications of the model are discussed in greater detail in Section IV. The most significant result is that there are configurations of income streams for which an outside observer could estimate a marginal propensity to consume of an individual much greater than one. This occurs because changes in income affect both desired consumption (on the demand side) and incentive constraints (on the supply side). A related result is that the consumption function will depend not only on the level of income but on the distribution of income as well. The more disparate the streams of income, the greater the adverse selection problem and, so, the greater the likelihood of credit rationing.

Another empirical implication is that an econometrician estimating an intertemporal substitution model disregarding credit constraints may predict a
nonconcave utility function even when consumers' utility functions are actually concave.

Section II: The Model

The dynamic economy lasts for T (T finite) periods and consists of two banks and $T-1$ generations of consumers. Banks exist for all T periods. Each consumer lives for two periods; the first is born in period one and each generation is comprised of N consumers.

There exist two types of consumers: a high (H) type and a low (L) type. Both types receive an income y in the first period of their lives. However, H receives an income y_H in the second period while L receives income y_L, $y < y_L < y_H$. The ex ante probability that a consumer is an H type is π, and an L type is $1 - \pi$. The probability for any individual is independent of the rest of the population. A consumer uses his income to purchase consumption goods and both types receive utility from the same underlying preferences represented by $U(c_1, c_2) = \log(a+c_1) + \delta \log(a+c_2)$, $a > 0, c_i \geq 0$. The variable a represents a lower limit on current period consumption below which no consumer can go.

There is a government bond which pays a risk free rate of interest in every period. Without loss of generality, we take this rate to be zero. Either the banks or the consumers may buy bonds for redemption in future periods. Only banks may borrow from the government and they may do so at this same rate of zero. Banks borrow from and lend to consumers. They are free to propose any profile of borrowing and lending contracts from the following class. Let b be the amount of consumption of a consumer (in excess of a) in
period 1, then b-y represents the amount of a loan (if this is negative, the bank is borrowing from the consumer). A bank may offer in period t to lend to a young consumer i, the quantity b-y and demand repayment (1+r(b))(b-y) in period t+1. In the event of a loan, a bank has the right to appropriate in the beginning of t+1 all the assets of the consumer up to \(\min\{(1+r(b))(b-y), Y_i\} \). The bank may never leave a consumer with less than a dollars in any period. Banks offer a profile of contracts simultaneously. A profile can be represented symbolically by the set \{((b, r(b)))\}, that is, the set of loans, b-y a bank is willing to make and the corresponding interest rate applied to the loan.

An adverse selection problem occurs when a bank has less accurate information about a consumer's future income than the consumer. We consider the extreme case in which the consumer is perfectly informed about his future earning stream while the bank knows only the ex ante probabilities (and whether or not the individual is old or young).

Consumers may borrow from or lend to banks according to the profile of offered contracts. (Only banks can offer contracts.) Or consumers may choose not to accept any bank offers at all and either purchase government bonds or simply consume his income. Consumers do not observe the actions of their contemporaries but he knows his own type and the profile of contracts offered by the banks in the period.

The model thus defines a finitely 'repeated' game with two banks and (T-1)N consumers. We allow all agents (banks and consumers) to condition actions on all previous observable actions. Strategies and Nash and subgame perfect equilibria of the game are defined in the standard way. A question which immediately arises is whether there exists equilibria in which banks
(non-cooperatively) collude. The following section shows that this is not possible in this set-up.

Section Three: The Equilibrium

This section illustrates the fact that when asymmetric information about the ability to pay back a loan exists, credit rationing may occur in a competitive loan market. Proofs of all lemmas and theorems are in the appendix.

Consider the one cohort model as described in Section Two. Lemma One shows that in any pure strategy equilibrium, any loan offered is offered at a zero interest rate. If any separating occurs, therefore, it must be through differing loan amounts.

Let \(\{ (b_1, r(b_1)), (b_2, r(b_2)) \} \) be a profile of first period consumption/interest rate contracts offered by the banks in some pure strategy equilibrium.

Lemma One: For any \(b > 0 \), \(r(b) = 0 = \rho(b) \). That is, all loans offered and accepted in equilibrium are at zero interest rate.

The next step is to show that for a wide enough second period income spread, \((y_H - y_L) \), high types must be credit rationed.

First, we compute the optimal loan contract for either type under full information. This yields\(^5\) \(c^i_1 = \frac{1 - \delta}{1 + \delta} a + \frac{1}{1 + \delta} (y + y_i) \), for \(i = L, H \). The optimal contract results in a first period consumption which is linear in total income. Note that the marginal propensity to consume out of income is the same for both types and is less than \(\frac{1}{(1 + \delta)} \). Also, the response of consumption to a
transitory shock (only y is affected) is less than to a permanent shock (both y and y_i are affected). For example, a shock which results in an \(\varepsilon \) rise in y only, induces a \(\varepsilon/(1+\delta) \) rise in first period consumption while a shock resulting in an \(\varepsilon \) rise in both y and y_i induces a \(2\varepsilon/(1+\delta) \) rise in first period consumption.

Consider, now, the situation where only the borrower knows his future income. If the full information, low income contract is available, low-income types gain utility \(U^* = \log\left((1/(1+\delta))^{1-\delta} \delta^\delta\right) + (1+\delta)\log(2a + y + y_L) \). If the high type loan \(c^{H}_1 \) - y is less than \(y_L \) and L chooses the \((0, c^{H}_1)\) contract, then L would not default in the second period and would gain a strictly lower utility than his optimal contract. Since \(c^{H}_1 - c^{L}_1 = (y_H - y_L)/(1+\delta) \), if \(y_H \) is close enough to \(y_L \), both the high and the low types' optimal contracts can be offered in equilibrium with no fear of default.

Suppose, instead, that \(y_H \) is large enough that \(c^{H}_1 - y > y_L \) and that the utility L gets from borrowing \(c^{H}_1 \) - y and then defaulting exceeds what he would gain from his optimal, full information contract \(U^* = \log(a+c^{H}_1) + \delta\log a \). In this case, offering a profile of contracts \(((0, c^{L}_1), (0, c^{H}_1)) \) would necessarily lose money since low types would also choose \((0, c^{H}_1)\) and then default. Define \(b^* \) such that

\[
U^* = \log(a+b^*) + \delta\log a.
\]

Let \(b^{**} = \min(b^*, c^{H}_1) \).
Lemma Two: There exists a $\pi^* < 1$ such that for all $\pi < \pi^*$, the unique pure strategy equilibrium is a profile of contracts $\{(0, c^L_1), (0, b^{**})\}$ where L types accept the first contract and high types accept the second.

Consider, now, the full model with overlapping cohorts. Recall that our economy consists of T generations and $2T+1$ periods. Theorem 1 states that the one generation, two period model has a unique Nash equilibrium (call it the one-shot equilibrium). Backward induction implies that the unique subgame perfect equilibrium in the T-fold repetition of this two period equilibrium. It is obvious that in period $2T$ (the penultimate period), banks will offer to the young agents the loan contracts specified by the one-shot equilibrium. That is, the one-shot equilibrium is the unique equilibrium of the subgame comprised of the last two periods. But this implies that in period $2T-1$, banks will also offer the one-shot equilibrium contracts. Since the contract offered by a bank does not affect its profits in the final two periods, a bank will offer the contract which is a best-response to the contract offered by the other bank. This best response pair is by the above proof, again, unique. Proceeding backward, we can establish that the unique subgame perfect equilibrium involves offering the one-shot equilibrium contracts to the young in periods 1, 2, 3, ..., T. In any period, on average, the aggregate consumption function is given by

$$\pi N(b^{**}) + (1-\pi) N(c^L_1) + \pi N(y_H - b^{**}) + (1-\pi) N(y_L - c^L_1)$$

Comments: Note that when y_H is significantly larger than y_L, the incentive compatibility constraint on L types binds and H types are credit constrained in that the marginal utility of first period consumption is strictly greater than the
marginal utility of second period consumption at zero interest rate. The actual amount of credit rationing is given by \(c^H_1 - b^{**} \). The consequences for measured marginal propensity to consume is discussed in the next section.

Section IV: Implications

An economy in which credit constraints limit agents' abilities to smooth consumption will exhibit some distinctive features. Some of these features involve testable implications, others have strong implications for government policy.

1) The obvious empirical implications of a credit rationing model is its effects on the marginal propensity to consume (MPC). For a large class of instantaneous utility functions in the pure life-cycle model, the MPC out of permanent income is a constant less than one. The MPC out of 'transitory' incomes as noted by many authors should be substantially lower yet. With credit rationing restricting the ability to smooth consumption, however, these conclusions no longer hold. Observe, first, that in the model of Section II, the MPC of a person with higher permanent income should also be higher. Further, this MPC could potentially be much higher, in fact, possibly even greater than one. In addition, the effects of 'transitory' and 'permanent' income shocks on consumption for these people can in some cases be expected to be exactly the same.

To derive these conclusions explicitly, consider the effects of the following income shock: an economy-wide shock increases current period
income by y. Low income consumers are not credit-constrained. Their consumption is a linear function of income.

$$c^L_1 = \frac{1 - \delta}{1 + \delta} a + \frac{1}{1 + \delta} (y + y_L).$$

Consumption in the first period rises by $1/(1+\delta) y.$

The high income consumers may be credit-constrained, however. The marginal utility of first period consumption strictly exceeds the marginal utility of second period consumption. Given this, we would certainly expect their MPC to be at least one. To see that it could exceed one, note that the level of first period consumption of high-types under credit-constraints is completely determined by IC, the incentive compatibility constraint. This is, after manipulation,

$$c^H_1 = (2 + \frac{y + y_L}{a})^\delta \delta(1+\delta)^\delta - a \text{ so that}$$

$$\text{MPC} = \frac{\delta(1+\delta)(2 + \frac{y + y_L}{a})^\delta}{\delta(1+\delta)^\delta(2 + \frac{y + y_L}{a})^\delta}.$$

This exceeds one if $\delta > a/(a+y+y_L)$. The reason that consumption may rise more than one for one with income is that the income of low types affects the constraint binding the high-types' ability to borrow. An economy-wide rise in income relaxes that constraint as well as providing direct liquidity to the high-income consumers. Of course, if the income shock affects only the high-types we would expect the IC constraints to remain the same and the expected MPC $= 1$ would obtain.

The differing effects of permanent versus transitory income shocks also depends on whether the shock is personal or economy-wide. In this model, a
transitory shock is implied by a change in this period's income only, \(y \) becomes \(y + h \) and the high type is that given above. A permanent shock is reflected by an expected change in future income as well: for example, \(y + y_L \) becomes \(h + y + y_L + h \), say. For an economy-wide permanent shock, an observed current increase of \(y \) would lead to an MPC (with respect to \(y \)) of
\[
\frac{2}{1 + \delta} \left(\frac{y + y_L}{1 + \delta} \right)
\]
for the high types. An economy wide permanent shock leads to a stronger MPC than an economy-wide transitory shock.

On the other hand, personal income shocks to high-types whether transitory or permanent will generate an MPC of one in either case -- the only effect due to the direct increase in liquidity.

These conclusions point to potential tests for the presence of credit constraints. Life-cycle data which indicate significant differences in MPCs between future high-income earners and future low-income earners should be observed in the presence of these constraints. Differing reactions to economy-wide and personal shocks would also be evidence either in terms of its effects on permanent income or on transitory income.

A recent paper by Campbell (1988) suggests another test of the presence of credit constraints. Campbell notes that an implication of the PIH is that current savings behaviour is a good predictor of future income streams -- the feature he terms, 'saving for a rainy day'. Lower future income was signalled by an increase in saving and higher income by current dissaving. Our model suggests that there may be an asymmetry of response if dissaving is made up in part by borrowing. Credit constrained agents may not increase their borrowing if their expected increase in income cannot be verified. The
reverse behaviour, of course, is not similarly constrained and we might expect longitudinal panel data to reflect this asymmetric response. In the aggregate, one might expect this presence to weaken the predictive power of savings. Disaggregated data might, then, lead Campbell's conclusions to be even stronger.

A final test is suggested by the qualitative features of the model. A society with a relatively equal distribution of income will be expected to encounter fewer problems of credit-constraints than one with greater disparity of income. The same is true for a high-income country vis-a-vis a low-income country. This is simply because the IC constraints are only binding if the first-best solution for the high-types involves a substantially higher degree of consumption shifting than for the low-types. If high-types are relatively similar to low-types the latter always prefer their first-best, full-information outcome to borrowing like a high-type and suffering the penalties of default. The institutional restrictions on interstate banking might lead this effect to be discernible among different states in the U.S. Drawing on the earlier analysis, we might expect that those states with more unequal distributions of income to exhibit greater MPCs in the aggregate.

The model also has implications concerning the possible divergence of observed with predicted intertemporal substitution. Consider the following very simple case. Let P_1 be the current period price for consumption goods and let P_2 be the perfectly predicted price for consumption goods tomorrow. If we ignore borrowing constraints, consumers will consume according to

\[
\frac{\delta(a+c_2)}{(a+c_1)} = \frac{P_1}{P_2}, \quad P_1c_1 + P_2c_2 = y + y_i, \tag{1}
\]
where c_1 is consumption today and c_2 is consumption tomorrow. Consider an increase in tomorrow's price to $P' = P_2 + k$. Neoclassical demand theory predicts a shift from future to current consumption expenditure by the amount (normalizing $P_1 = 1$).

$$c_1' - c_1 = P_2 c_2 - P_2 c_2 = [(a+y)/\delta D - aP_2/D] - [(a+y)/\delta D - aP_2'/D]$$

$$= a(P_2' - P)/D, \text{ where } D = \delta/(1+\delta).$$

However, if consumers are credit constrained under the configuration of prices (P_1, P_2) then under (P_1, P_2') a first period consumer will not be able to raise first period expenditure (he is already at the boundary of his expenditure possibilities set, given the credit constraints). Thus with credit constraints, $(c_1' - c_1) = 0$.

This result has two empirical implications. First, tests of the equations in (1), assuming (correctly) an intertemporal, logarithmic utility function may reject the intertemporal substitution hypothesis. Second, if using equation (1) we try to estimate the value of γ in the utility function

$$U(c_1, c_2) = c_1^{1-\gamma/(1-\gamma)} + \delta c_2^{1-\gamma/(1-\gamma)}$$

we will predict that γ is non-positive; that is, we will predict that U is not concave. This observation is relevant to the results presented in Mankiw, Rotemberg and Summers (1986).

2) Policy Implications: The policy implications of the constraints on consumption shifting are well-known and are mentioned here only for completeness. The obvious point is that an economy with credit-constraints of
the type described above will exhibit higher MPCs than a pure life-cycle/permanent income hypothesis model suggests, either out of permanent income or out of transitory income. As a result, the possibilities for demand management via consumption-directed policies are greater. Furthermore, Ricardian equivalence arguments which claim that deficit spending has no real effect since it has no effect on permanent income may no longer hold. Deficit spending which is successful in shifting income from future periods to the current period will have a real and positive effect insofar as it allows high-types to mitigate the borrowing constraints imposed by the presence of low-types. Permanent income for either types may remain unchanged: the deficit spending, by altering the income stream, reduces the need for consumption shifting.

The larger MPCs implied by the presence of credit constraints also has implications for the stability of an economy with respect to real shocks. The analysis above has shown that the MPC of consumers may be very large. A sudden fall in per capita income reduces immediate liquidity and tightens access to credit markets as well. The breakdown in credit markets in the early 1930's may have been a reflection of this effect. In any economy where demand shocks are important because of sticky prices for example the resulting fall in consumption could have reinforcing effects.
APPENDIX

Proof: Note that any any point in the \((r,b)\) plane, the slope of the indifference curve of a high type which passes through \((r,b)\), \(\frac{dr}{db}\), is greater than that of the low type for all \((r,b)\) such that \((1+r)(b-y) \leq y_L\). (No default). From the profile of contracts, choose the contract which yields the highest profits per high type. Call it \(A = (r_A, b_A)\). Suppose \(r_A > 0\).

Case I: \((1+r_A)(b_A-y) \leq y_L\). Since

\[
\frac{dr}{db} \big|_{H, (r,b)} > \frac{dr}{db} \big|_{H, (r_A, b_A)},
\]

there is a point \(A'\) in the neighbourhood of \(A\) which \(H\) types prefer to \(A\) and \(L\) types do not. It can be chosen arbitrarily close to \(A\) to yield arbitrarily close to the same profits per high type. Consider the firm which is attracting at most than half of the \(H\) types at \(A\). Suppose it continues to offer the same contract profile as before but also offers \(A'\). By assumption, all types weakly prefer their current contracts to \(A\) and only \(H\) types strictly prefer \(A'\) to \(A\). The firm, by offering and attracting all \(H\) types, increases its profits on those types and, thus, its total profits. This would break the equilibrium.

Case II: \((1+r_A)(b-y) > y_L\). If at the current profile \(L\) types strictly prefer other contracts to \(A\), a deviating firm only need to offer \(r'\) slightly lower than \(r_A\) to attract all the \(H\) types to its loans. So suppose some \(L\) types would buy \(A\) (and hence, default). Note that at \(A\), \(L\) types indifference curves are locally flat in \(r\).
That is, \(\frac{dr}{db} \mid_{(r,b)} = 0 \). (For any \(b \), a higher \(r \) is irrelevant since they will default anyway). For \(H \) types, \(\frac{dr}{db} \mid_{(r,b)} \) is finite so there exists a slightly lower \(b \) and \(r \) which \(H \) types strictly prefer to \(A \) and again the same argument as in Case I holds. Cases I and II show that there is no contract which can make a positive profit from the \(H \) types, that is \(H \) types gain loans at an interest rate of zero. Suppose some contract makes a positive profit on the \(L \) type. Standard undercutting arguments apply to show that this can not be an equilibrium outcome either (the lowest profiting firm would offer the same loan at a slightly lower rate). Thus, loans for each type must make zero profits which implies that each type must gain loans with an interest rate of zero.

Proof: Define

\[
P = \{(r, b) \mid \log(a+b) + \delta \log(a+y_H - (1+r)(b-y) \geq \log(a+b^**) + \delta \log(a+y_H - (b^**-y)) \text{ and } (1+r)(b-y) \leq y_H \},
\]

the set of \((r, b)\) pairs which are weakly preferred by \(H \) to \((0, b^**)\). Define \(\pi^* \) so that

\[\pi^* = \inf \{ \pi | \pi r' (b'-y) - (1-\pi)(y_L - (b'-y)) \leq 0, \text{ for all } (r', b') \in P \} \] \[\text{Note that if } b^** < c_H^1, \text{ then } P \text{ is non-empty and that for any } r' > 0, \text{ since } b' - y > y_L, \text{ there always exists a } \pi' \text{ such that } \pi r' (b'-y) - (1-\pi')(y_L - (b'-y)) < 0. \text{ Therefore, } 0 < \pi^* \text{ is always defined. (Note that for } b^** < c_H^1, \pi^* < 1 \text{ can also be shown).}

Observe also that if \(b^** < c_H^1, P = \emptyset \).

Assume a pure strategy equilibrium exists. Lemma One shows that it must be of the form \((b, 0)\), i.e. all loans must offer an interest rate equal to the government rate.
Step One: Case I: $b^{**} = c^H_1$. Suppose one bank offers a profile of contracts which does not include c^L_1. Find the contract offered which is closest to, say, c^L_1, call it L, $|c^L_1 - L| > 0$. Since c^L_1 represents a unique maximum, for L types, the rival bank could offer a loan with a slightly positive interest rate and a consumption amount between L and c^L_1 and make strictly positive profits. But this violates Lemma One. The similar argument is made for c^H_1.

Case II: $b^{**} = b^*$. Suppose a bank offers a profile which does not include $(0, b^*)$. (The case for c^L_1 is the same as in Case I). If it offers a contract with $L > b^*$, both L and H types accept. Since L types will default, this contract loses money and is sub-optimal. If the highest loan contract is at a consumption amount $L < b^*$, the rival company can always offer a pair (r', L') with $r' > 0$ such that H are better off than at $(0, L)$ and L types still prefer at least the $(0, L)$ pair. Such a contract would be profitable and thus violates Lemma One.

Step Two: Step One shows that if a pure-strategy profile of contracts exist, the profile must include $\{(0, c^L_1), (0, b^{**})\}$. If $b^{**} = b^*$, then no consumption amount greater than b^* is offered. We now show that for $\pi < \pi^*$, any such profile of contracts offered by both firms is, in fact, an equilibrium.

Suppose a rival bank is offering $\{(0, c^L_1), (0, b^{**})\}$ as part of its profile of contracts. If a deviating bank offers some other contract which is weakly preferred (r', b') then
i) If \(b^{**} = c_1^H \), then the only reason any type would weakly prefer the contract to the current profile is because they would default and so the contract would lose money. Therefore suppose \(b^{**} = b^* \). (i.e., H is constrained).

ii) If \(L \) weakly prefers any contract to \(c_1^L \), it is because \(L \) defaults, therefore all such contracts lose money on \(L \) types.

iii) If \(b^{**} = b^* \), so that \(L \) types are just indifferent between \(c_1^L \) and choosing the default loan \(b^* \), any \((r', b')\) which is weakly preferred by the \(H \) types to \((0, b^*)\) is strictly preferred by the \(L \) types. (Since \(b' > b^* \) and because they are defaulting anyway, the interest rate \(r' \) is irrelevant.) Therefore any deviating contract which attracts high types always attracts all the low types.

Points i), ii), and iii) imply that any deviating contract \((r', b')\) attracts \(H \) and \(L \) types in proportion \(\rho : 1-\rho \) with \(\pi < \pi^* \) and the contract loses money on \(L \) types. For the deviation to be profitable, then, some \(H \) types must be attracted or in other words, \((r', b')\), must be an element of \(P \).

But \(\pi \) satisfies \(\pi r' (b' - y) - (1 - \pi) (y_L - (b' - y)) \leq 0 \). Since the left-side is increasing in \(\pi \) and since \(\pi < \pi^* \), any deviating contract must lose money. Therefore the profile \([(0, c_1^L), (0, b^{**})]\) is a best response to itself and any profile which includes those pairs of contracts and any other contracts \((r, b)\) such that no type prefers \((r, b)\) to either \((0, c_1^L)\) or \((0, b^{**})\) is an equilibrium profile.
Footnotes

4 See Stiglitz and Weiss (1981), Jaffee and Russell (1976), and Mankiw (1987), for example. See Bernanke and Gertler (1987), Jacklin (1985), and Greenwald and Stiglitz (1987) for further discussions on alternative approaches to this problem.

5 The idea that adverse selection in the credit market could lead to credit rationing is, of course, not a new one. Stiglitz and Weiss (1981), Bernanke and Gertler (1986), Mankiw (), Jaffee and Trussell (), incorporate this idea in their models. To our knowledge, however, no study has yet examined the explicit connection between adverse selection, consumption behaviour, and income.

6 Note that this equation is relatively robust to the choice of the instantaneous utility function. For any $u(.)$ such that $u(.)$ is homogeneous of any degree λ not equal to zero (positive or negative, first period consumption is a linear function of life-time income.

7 The requirement $\pi < \pi^*$ is needed for the same reason that a pure strategy equilibrium may not exist in the Rothschild-Stiglitz model. Even when this condition is violated, an application of a result by Dasgupta/Maskin (1986) can be used to show that a mixed strategy equilibrium with similar features exists.

8 It is straightforward to show that L accept only $(0, c^L_1)$ and H accept only $(0, b^{**})$.

9 Those of the population currently in their last period, of course, consume the whole of the increase, $c = y$.
Other observers have noted (Hall and Mishkin, Hayashi) that life-cycle models with borrowing constraints may explain the often-found phenomenon of a negative correlation of consumption changes with past income changes. This feature is apparent in the model. Second period consumption of those who are credit-constrained is (locally, at least) independent of changes in the first period income. These changes, of course, are translated directly into changes in the first period consumption. The result is that $c = c_2 - c_1$ will vary negatively with changes in first period income. This correlation will be weaker if the change in first period income relaxes the borrowing constraints occurs when the shock is economy-wide.
REFERENCES

ENSAIOS ECONÔMICOS DA EPGE
(a partir do nº 100)

100. JUROS, PREÇOS E DÍVIDA PÚBLICA VOLUME I: ASPECTOS TEÓRICOS
- Marco Antonio C. Martins e Clovis de Faro - 1987 (esgotado)

101. JUROS, PREÇOS E DÍVIDA PÚBLICA VOLUME II: A ECONOMIA BRASILEIRA - 1971/85
- Antonio Salazar P. Brandão, Clovis de Faro e Marco A. C. Martins - 1987 (esgotado)

102. MACROECONOMIA KALECKIANA - Rubens Penha Cysne - 1987

103. O PRÊMIO DO DÓLAR NO MERCADO PARALELO, O SUBFATURAMENTO DE
EXPORTAÇÕES E O SUPERFATURAMENTO DE IMPORTAÇÕES - Fernando de Holanda Barbosa - Rubens Penha Cysne e Marcos Costa Holanda - 1987 (esgotado)

104. BRAZILIAN EXPERIENCE WITH EXTERNAL DEBT AND PROSPECTS FOR GROWTH -
Fernando de Holanda Barbosa and Manuel Sanchez de la Cal - 1987 (esgotado)

105. KEYNES NA SEDIÇÃO DA ESCOLHA PÚBLICA - Antonio M. da Silveira - 1987 (esgotado)

106. O TEOREMA DE FROBENIUS-PERRON - Carlos Ivan Simonsen Leal - 1987

107. POPULAÇÃO BRASILEIRA - Jessé Montello - 1987 (esgotado)

108. MACROECONOMIA - CAPÍTULO VI: "DEMANDA POR MOEDA E A CURVA LM"
- Mario Henrique Simonsen e Rubens Penha Cysne - 1987 (esgotado)

109. MACROECONOMIA - CAPÍTULO VII: "DEMANDA AGREGADA E A CURVA IS"
- Mario Henrique Simonsen e Rubens Penha Cysne - 1987 - (esgotado)

110. MACROECONOMIA - MODELOS DE EQUILÍBRIO AGREGATIVO A CURTO PRAZO
- Mario Henrique Simonsen e Rubens Penha Cysne - 1987 (esgotado)

111. THE BAYESIAN FOUNDATIONS OF SOLUTION CONCEPTS OF GAMES - Sérgio Ribeiro da Costa Werlang e Tommy Chin-Chiu Tan - 1987 (esgotado)

112. PREÇOS LÍQUIDOS (PREÇOS DE VALOR ADICIONADO) E SEUS DETERMINANTES;
DE PRODUTOS SELECIONADOS, NO PERÍODO 1980/1º Semestre/1986 -
- Raul Ekerman - 1987

113. EMPRÉSTIMOS BANCÁRIOS E SALDO-MÉDIO: O CASO DE PRESTAÇÕES -
- Clovis de Faro - 1988 (esgotado)

114. A DINÂMICA DA INFLAÇÃO - Mario Henrique Simonsen - 1988 (esgotado)

115. UNCERTAINTY AVERSION AND THE OPTIMAL CHOICE OF PORTFOLIO -
James - Dow e Sérgio Ribeiro da Costa Werlang - 1988 (esgotado)

116. O CICLO ECONÔMICO - Mario Henrique Simonsen - 1988 (esgotado)

117. FOREIGN CAPITAL AND ECONOMIC GROWTH - THE BRAZILIAN CASE STUDY -
Mario Henrique Simonsen - 1988

118. COMMON KNOWLEDGE - Sérgio Ribeiro da Costa Werlang - 1988 (esgotado)

119. OS FUNDAMENTOS DA ANÁLISE MACROECONÔMICA - Prof. Mario Henrique Simonsen e Prof. Rubens Penha Cysne - 1988 (esgotado)

120. CAPÍTULO XII - EXPECTATIVASS RACIONAIS - Mario Henrique Simonsen - 1988 (esgotado)

121. A OFERTA AGREGADA E O MERCADO DE TRABALHO - Prof. Mario Henrique Simonsen e Prof. Rubens Penha Cysne - 1988 (esgotado)

122. INÉRCIA INFLACIONÁRIA E INFLAÇÃO INERCIAL - Prof. Mario Henrique Simonsen - 1988 (esgotado)

123. MODELOS DO HOMEM: ECONOMIA E ADMINISTRAÇÃO - Antonio Maria da Silveira - 1988

124. UNDERINVOICING OF EXPORTS, OVERINVOICING OF IMPORTS, AND THE
DOLLAR PREMIUM ON THE BLACK MARKET - Prof. Fernando de Holanda Barbosa,
Prof. Rubens Penha Cysne e Marcos Costa Holanda - 1988 (esgotado)
125. O REINO MÁGICO DO CHOQUE HETERODOXO - Fernando de Holanda Barbosa, Antonio Salazar Pessoa Brandão e Clovis de Faro - 1988 (esgotado)

126. PLANO CRUZADO: CONCEPÇÃO E O ERRO DE POLÍTICA FISCAL - Rubens Penha Cysne - 1988

127. TAXA DE JUROS FLUTUANTE VERSUS CORREÇÃO MONETÁRIA DAS PRESTAÇÕES: UMA COMPARAÇÃO NO CASO DO SAC E INFLAÇÃO CONSTANTE - Clovis de Faro - 1988

128. CAPÍTULO II - MONETARY CORRECTION AND REAL INTEREST ACCOUNTING - Rubens Penha Cysne - 1988

129. CAPÍTULO III - INCOME AND DEMAND POLICIES IN BRAZIL - Rubens Penha Cysne - 1988

130. CAPÍTULO IV - BRAZILIAN ECONOMY IN THE EIGHTIES AND THE DEBT CRISIS - Rubens Penha Cysne - 1988

132. MORATÓRIA INTERNA, DÍVIDA PÚBLICA E JUROS REAIS - Maria Silvia Bastos Marques e Sérgio Ribeiro da Costa Werlang - 1988

133. CAPÍTULO IX - TEORIA DO CRESCEMENTO ECONÔMICO - Mario Henrique Simonsen - 1988

135. AS ORIGENS E CONSEQUÊNCIAS DA INFLAÇÃO NA AMERICA LATINA - Fernando de Holanda Barbosa - 1988

137. A REVIEW ON THE THEORY OF COMMON KNOWLEDGE - Sérgio Ribeiro da Costa Werlang - 1989

138. MACROECONOMIA - Fernando de Holanda Barbosa - 1989 (esgotado)

139. TEORIA DO BALANÇO DE PAGAMENTOS: UMA ABORDAGEM SIMPLIFICADA - João Luiz Tenreiro Barroso - 1989

140. CONTABILIDADE COM JUROS REAIS - RUBENS PENHA CYSN - 1989