ESTIMATING THE TERM STRUCTURE OF VOLATILITY
AND FIXED INCOME DERIVATIVE PRICING

Franklin de O. Gonçalves
João Victor Issler

Outubro de 1995
Estimating the Term Structure of Volatility and Fixed Income Derivative Pricing*

Franklin de O. Gonçalves
Banco da Bahia Investimentos S.A.
Rio de Janeiro.
and
João Victor Issler
EPGE, Fundação Getulio Vargas
Rio de Janeiro.
June, 1995; revised: September, 1995

Abstract

Estimating the parameters of the instantaneous spot interest rate process is of crucial importance for pricing fixed income derivative securities. This paper presents an estimation for the parameters of the Gaussian interest rate model for pricing fixed income derivatives based on the term structure of volatility. We estimate the term structure of volatility for US treasury rates for the period 1983 - 1995, based on a history of yield curves. We estimate both conditional and first differences term structures of volatility and subsequently estimate the implied parameters of the Gaussian model with non-linear least squares estimation. Results for bond options illustrate the effects of differing parameters in pricing.

*Please address correspondence to: Franklin de O. Gonçalves, Banco da Bahia Investimentos S.A., Praça Pio X, 98 6th floor, 20091-040 Rio de Janeiro, RJ., Brazil. Phone: (+55 21) 211-8340, Fax: (+55 21) 233-7069.
1. Introduction

The accuracy of valuation and risk of fixed-income derivatives are very dependent on the quality of the parameters involved in the modelling of the underlying interest rate dynamics. One way for estimating these parameters is through the theoretical and observed term structure of volatility (TSV) of interest rates. The theoretical TSV is determined based on a term structure model that relates analytical zero coupon bond prices to time to maturity.

Several interest rate models have been developed in the last fifteen years: Vasicek (1977), Cox, Ingersoll and Ross (1985), Hull and White (1990), Jamshidian (1991), Heath, Jarrow and Morton (1992) and more recently Duffie and Kan (1995). Either by arbitrage methods or general equilibrium conditions, all these models derive valuation equations for zero coupon bonds, that is, the term structure of interest rates, and for derivative securities dependent upon these analytical term structures.

In this paper the theoretical TSV is from the Gaussian interest rate model. This model was developed independently by Hull and White (1990) and Jamshidian (1991) and is an extension of the Vasicek (1977) model. It is an arbitrage model, and is the most tractable analytically and very widely used in practical financial applications. For this model there is available in closed form an expression for the TSV that should hold under a condition of no arbitrage in a bond market. With this formula and an estimate of the TSV for US treasury rates, using Non-Linear Least-Squares (NLS), we estimate the parameters of the instantaneous spot rate, its volatility and mean reversion speed. We discuss how this can be accomplished without knowledge of the TSV itself, but by using an unbiased estimate of it. Our estimate of the TSV for US treasury rates is based on quarterly data from a history of yield curves from the 2nd quarter of 1983 to the 1st quarter of 1995.

We illustrate the effects on fixed income derivative pricing with an application of options on bonds using the estimated parameters from a conditional and first differences TSV.

Koenigsberg, Showers, Streit (1991) also study the TSV and its effects on bond option valuation. Their interest is more in "calibrating" a model to some TSV rather than estimating fundamental parameters out of an observable TSV to be used in an analytical model. In our approach, the TSV that the model will imply will match the observable TSV by construction. There will be no need for model calibration.

In principle, calibration methods simply choose fundamental parameters setting them
to some pre-specified value. In this sense, the variance of these "estimates" is zero. This may be sub-optimal, since usually their mean-squared error is very high due to a large bias term. Estimation methods, on the other hand, may be chosen so that mean-squared error itself is minimized. Thus, unless one is certain to pick the right parameter values in calibration methods, estimation methods should be preferred, since the loss in bias may outweigh the reduction in variance for the former.

There is an additional reason to consider estimation instead of calibration. In some instances, the latter may be unfeasible. For example, the parameters of a newly created derivative security cannot be determined by calibration, since there are no similar securities traded in that market. This will be particularly important for emerging market derivatives.

Amin and Morton (1993) estimate implied volatility functions and parameters for several interest rate models based on Eurodollar futures and futures options. Therefore, their approach is also one of calibrating constant parameters of a model to what current options prices imply rather than estimating these constant parameters from historical data that will be optimal in some statistical sense. The derivative prices given by Amin and Morton (1993) parameters will price well over short horizons and specific securities and not over any derivative that have as underlying the bond market in question. Backus, Foresi and Zin (1994) presents an analysis and critique of calibrating interest rate models parameters. They show that arbitrage opportunities may occur leading to mispricing of derivatives.

Aït-Sahalia (1995) presents a testing procedure based on nonparametric methods for the specification of the parameters, drift and volatility, of the instantaneous spot interest rate. He rejects most specifications for the short rate including the Gaussian case. The specification for the instantaneous rate that passes his test is a quite general parametric specification but no analytical results are yet available for zero coupon bonds and derivatives pricing. Thus, it is yet to be studied the effects on pricing that his model will imply.

The paper is organized as follows. Section 2 presents the estimation of the TSV based on a history of US treasuries yield curves, for the unconditional, conditional and first difference cases. Section 3 presents the Gaussian model results and the NLS estimation procedure and estimates for the parameters, mean reversion speed and volatility, of the instantaneous interest rate process. Section 4 presents derivative pricing based on the estimated parameters and parameter values available in the literature. Section 5 concludes the paper.
2. Term Structure of Volatility

We estimate two TSVs: the conditional and the unconditional. Usually the conditional TSV is estimated by computing the variance of the first difference of spot interest rates that define the term structure. However, we can also compute the conditional variance directly exploiting the dependency that exist in a history of yield curves.

This is because one of the basic properties of economic and financial time series is dependence, i.e., current data depend on the sigma-field generated by their past observations. In economics and finance there is a long tradition of using this property in either univariate or multivariate time-series models, e.g., AutoRegressive Integrated Moving Average (ARIMA) models and Vector AutoRegression (VAR) models for the conditional mean and Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models for the conditional variance.

We will make use of these methodologies for estimating the conditional TSV. The reason for this widespread use of "conditional models" is the belief that, by conditioning on a relevant information set, agents can estimate parameters of interest as well as forecast future events more precisely. This general principle applies to II-order Markov processes, where only a subset of the sigma-field generated by the past is needed to forecast the future. Of utmost importance is the forecasting improvement that conditional models deliver. To illustrate this point, we use here the simplest example possible, that of a weakly-stationary AR(1) process, $Y_t$:

$$Y_t = \rho Y_{t-1} + e_t$$

where $|\rho| < 1$ and $e_t$ is white noise. The conditional expectation of $Y_{t+k}$, denoted $E(Y_{t+k} \mid I_t)$, is given by $\rho^k Y_t$. Thus, the conditional forecast error is:

$$f_t^k = Y_t - E(Y_{t+k} \mid I_t) = e_{t+k} + \rho e_{t+k-1} + \ldots + \rho^{k-1} e_{t+1}$$

And, its mean-squared-error is simply:

$$\sigma^2_B(1 - \rho^{2k}) \frac{(1 + \rho^2 + \ldots + \rho^{2(k-1)}) \sigma^2_e}{(1 - \rho^2)}$$
The unconditional mean-squared-error of forecasting $Y_t$, is its own unconditional second moment, given by $\frac{\sigma^2}{(1-\rho^2)}$. Notice that, by using the conditional model, the forecast error is reduced, since $(1 - \rho^{2k}) < 1$ for $k$ finite. Thus, on average, using the conditional model allows for a reduction of the forecast error.

GARCH models, introduced by Bollerslev(1986) as an extension of Engle(1982), represent another class of models for which there is a decrease in the variance forecast error by conditioning on the past. To illustrate this result, consider $\Delta X_t = u_t$, where $u_t \mid I_{t-1} \sim N(0, h_t)$, and:

$$h_t = \alpha_0 + \alpha_1 u_{t-1} + \beta h_{t-1} \quad (4)$$

i.e., $\Delta X_t$ is a GARCH(1,1) process, where we impose $\alpha_1 + \beta < 1$. Using the Law of Iterated Expectations, it can be shown that:

$$E(h_{t+k} \mid I_{t-1}) = \frac{\alpha_0}{(1 - \alpha_1 - \beta)} (1 - (\alpha_1 + \beta)^k) + h_t(\alpha_1 + \beta)^k \quad (5)$$

thus, as $k$ increases, the conditional expectation converges to the unconditional expectation of $\Delta X_t$, given by $\frac{\alpha_0}{(1 - \alpha_1 - \beta)}$.

We estimate the TSV from a history of US yield curves available at the Bloomberg Financial Markets. The data set, based on quarterly observations, covers the period from the 2nd quarter of 1983 to the 1st quarter of 1995. The interest rates used are the continuously compounded spot rates for the following maturities: 6 months, 1 year, 2 years, 3 years, 5 years, 10 years and 30 years. The frequency of observation was chosen to be quarterly since our interest is on the estimation of constant parameters. Figure 1 presents a plot of these rates.

Three TSV are estimated. For the conditional, which is estimated with a VAR model, unconditional and first differences case. Table 1 below presents the estimated values.
Table 1: Annual Spot Interest Rate Volatility in %

<table>
<thead>
<tr>
<th>Maturity, Years</th>
<th>Conditional</th>
<th>Unconditional</th>
<th>First Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.37</td>
<td>4.18</td>
<td>1.43</td>
</tr>
<tr>
<td>1.0</td>
<td>1.54</td>
<td>4.28</td>
<td>1.55</td>
</tr>
<tr>
<td>2.0</td>
<td>1.50</td>
<td>4.16</td>
<td>1.48</td>
</tr>
<tr>
<td>3.0</td>
<td>1.49</td>
<td>4.05</td>
<td>1.47</td>
</tr>
<tr>
<td>5.0</td>
<td>1.44</td>
<td>3.98</td>
<td>1.41</td>
</tr>
<tr>
<td>10.0</td>
<td>1.35</td>
<td>3.80</td>
<td>1.32</td>
</tr>
<tr>
<td>30.0</td>
<td>1.24</td>
<td>3.19</td>
<td>1.24</td>
</tr>
</tbody>
</table>

The unconditional values are shown here for illustration purposes. We will use the theoretical conditional TSV of the Gaussian model for parameter estimation.

3. The Gaussian Model and Parameter Estimation

Below some major steps and results of the Gaussian interest rate model are presented. For the complete derivation reference is made to Vasicek (1977), Hull and White (1990) and Jamshidian (1991).

In the Gaussian interest rate model the dynamics of the instantaneous spot rate is given by the stochastic differential equation:

\[ dr = (\theta(t) - a\bar{r})dt + \sigma dZ \quad (6) \]

Where \( r \) is the instantaneous spot interest rate, \( \theta(t) \) is a time dependent long term rate, that is, the mean rate that the instantaneous rate is converging to, \( a \) is the speed of mean reversion, \( \sigma \) the volatility parameter and \( dZ \) is a Brownian motion. The last two parameters are the objective of our estimation.

From a non-arbitrage condition for bonds with distinct maturities, theoretical zero coupon bond prices at time \( t \) maturing at time \( T \) \((t \leq T)\), are derived as:

\[ P(t, T) = A(t, T)e^{-B(t,T)r} \quad (7) \]
Where:

\[ B(t, T) = \frac{1 - e^{-a(T-t)}}{a} \]  \hspace{1cm} (8)

\[ \log A(t, T) = \log \frac{P(0, T)}{P(0, t)} - B(t, T) \frac{\partial \log P(0, t)}{\partial t} - \frac{1}{4a^3} \sigma^2 (e^{-aT} - e^{-at})^2 (e^{2at} - 1) \]  \hspace{1cm} (9)

The price at time \( t \) of a call option maturing at time \( T \) on a pure discount bond maturing at time \( s \) \((t \leq T \leq s)\) is given by:

\[ P(t, s) N(h) - X P(t, T) N(h - \sigma_P) \]  \hspace{1cm} (10)

And the respective put option price:

\[ X P(t, T) N(-h + \sigma_P) - P(t, s) N(-h) \]  \hspace{1cm} (11)

Where:

\[ N(.) : \text{Cumulative normal distribution.} \]

\[ \sigma_P = \nu(t, T) B(T, s) \]  \hspace{1cm} (12)

\[ h = \frac{1}{\sigma_P} \log \frac{P(t, s)}{P(t, T)} + \frac{\sigma_P}{2} \]  \hspace{1cm} (13)

\[ \nu(t, T)^2 = \frac{\sigma^2 (1 - e^{-2a(T-t)})}{2a} \]  \hspace{1cm} (14)

The conditional volatility at time \( t \), for a bond maturing at time \( T \):

\[ \sigma_B(t, T) = \frac{\sigma}{a} (1 - e^{-a(T-t)}) \]  \hspace{1cm} (15)

And the conditional volatility of a spot rate at time \( t \) maturing at time \( T \):
\[
\sigma_s(t, T) = \frac{\sigma}{a(T-t)}(1 - e^{-a(T-t)}) \quad (16)
\]

Estimation of the speed of mean reversion \(a\) and the short rate volatility \(\sigma\) of the instantaneous rate given by (6) can be performed using NLS. We start by assuming that the TSV can be written as:

\[
TSV(t, T) = f(a, \sigma, (T - t)) + u_{(T-t)} \quad (17)
\]

Where \(f(a, \sigma, (T - t))\) is the conditional theoretical TSV for spot rates given by (16) above and \(u_{(T-t)}\) represents an i.i.d. measurement error, which can assume different values depending on the spot rate with time to maturity \((T - t)\). If \(u_{(T-t)}\) is i.i.d., \(a\) and \(\sigma\) could be estimated directly from (1) by NLS. However, we do not observe \(TSV(t, T)\), but we can construct an unbiased estimator for it as follows:

\[
TSV(t, T) = \overline{TSV}(t, T) + v_{(T-t)} \quad (18)
\]

Where \(v_{(T-t)}\) is a zero mean error, uncorrelated with \((T - t)\) and \(\overline{TSV}(t, T)\) is an unbiased estimate of \(TSV(t, T)\). Combining (17) and (18), we can write:

\[
\overline{TSV}(t, T) = f(a, \sigma, T - t) + u_{(T-t)} - v_{(T-t)} \quad (19)
\]

From (19) we can finally estimate \(a\) and \(\sigma\) using NLS, since \(u_{(T-t)} - v_{(T-t)}\) are uncorrelated with \((T - t)\). These estimates will be consistent if (17) is the true Data Generating Process for TSV. Moreover, with enough restrictions on \(u_{(T-t)} - v_{(T-t)}\), they will also be the Maximum Likelihood (ML) estimates of \(a\) and \(\sigma\), with all the desirable properties of the ML class of estimators.

A crucial step on the estimation procedure is obtaining unbiased estimates of \(TSV(t, T)\). This can be accomplished in several ways, but we opted to do it using a VAR, where spot rates for different maturities are stacked into a vector \((X_t)\), which has its dynamics explained by a truncation of its own past plus a vector white noise measurement error; see Sims(1980). Under this framework, the conditional variance of \(X_t\) is given by the unconditional variance of the measurement error. Its unbiased estimate, which is corrected for degrees of freedom, is readily available in standard econometric software.

8
Table 2 below presents the estimated results.

**Table 2: N L S Parameter Estimation**

<table>
<thead>
<tr>
<th>Conditional TSV</th>
<th>First Differences TSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a=0.0125$</td>
<td>$a=0.0139$</td>
</tr>
<tr>
<td>$\sigma=0.0148$</td>
<td>$\sigma=0.0148$</td>
</tr>
<tr>
<td>t-stat $a=3.08$</td>
<td>t-stat $a=48.27$</td>
</tr>
<tr>
<td>t-stat $\sigma=48.27$</td>
<td>t-stat $\sigma=57.48$</td>
</tr>
<tr>
<td>Adj. $R^2=0.63$</td>
<td>Adj. $R^2=0.75$</td>
</tr>
</tbody>
</table>

Both sets of parameters are statistically significant with good adjusted $R^2$ values. Figures 2 and 3 present plots of the estimated and theoretical Gaussian TSV for the conditional and first difference parameter estimation, respectively.

Hull (1993) (page 407) uses the values of $\sigma=0.014$ and $a=0.1$ as parameters for the Gaussian model. However, he does not specify how these parameters were estimated\(^1\). His volatility parameter is close to ours but the speed of mean reversion is about ten times greater. Next section we show the effects on derivative prices that these parameters generate.

**4. Effects on Derivative Pricing**

We apply the above parameters in the pricing of at-the-money European options on pure discount bonds given above for the Gaussian model (equations (10) and (11)). We consider 1 year, 2 years and 3 years options on 10 and 20 years pure discount bonds for August 16, 1995.

The pure discount bonds prices are computed with the US term structure model developed by Duarte and Werlang (1995). Spot interest rates and bond prices are given at table 3 below.

\(^1\)Apparently, similar numbers are use in practical financial applications.
Table 3: Spot Interest Rates and Bond Prices for US Market

<table>
<thead>
<tr>
<th>Maturity in years</th>
<th>Spot Interest Rate in %/year (semi-annual compounded)</th>
<th>Bond Price in US$ (par=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.80</td>
<td>94.443</td>
</tr>
<tr>
<td>2</td>
<td>6.05</td>
<td>88.762</td>
</tr>
<tr>
<td>3</td>
<td>6.26</td>
<td>83.117</td>
</tr>
<tr>
<td>10</td>
<td>6.66</td>
<td>51.936</td>
</tr>
<tr>
<td>20</td>
<td>7.27</td>
<td>23.974</td>
</tr>
</tbody>
</table>

Below option prices are computed using the conditional, first differences and Hull (1993) parameters. Substantial differences, ranging from 5 to 580%, in call and put option prices and ranging from 40 to 110% in underlying bond volatility are observed between ours and Hull's parameter values. Notice that the main reason for these observed differences is the estimate of the mean-reversion coefficient $a$. Ours is about a tenth of Hull's, although volatility estimates are very similar.

Call and put options prices are given at table 4 below.
Table 4: Bond Option Prices\(^2\), US$

<table>
<thead>
<tr>
<th>Bond Option</th>
<th>Conditional Call or Put (a=0.0125,\sigma=0.0148)</th>
<th>First Differences (a=0.0139,\sigma=0.0148)</th>
<th>Hull (1993) (a=0.1,\sigma=0.014)</th>
<th>Difference Conditional-Hull in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C10B</td>
<td>4.225</td>
<td>4.210</td>
<td>3.436</td>
<td>22.96</td>
</tr>
<tr>
<td>3C10B</td>
<td>9.322</td>
<td>9.310</td>
<td>8.851</td>
<td>5.32</td>
</tr>
<tr>
<td>1P10B</td>
<td>1.337</td>
<td>1.322</td>
<td>0.548</td>
<td>143.98</td>
</tr>
<tr>
<td>2P10B</td>
<td>0.998</td>
<td>0.983</td>
<td>0.269</td>
<td>271.00</td>
</tr>
<tr>
<td>3P10B</td>
<td>0.553</td>
<td>0.541</td>
<td>0.081</td>
<td>582.72</td>
</tr>
<tr>
<td>1C20B</td>
<td>3.036</td>
<td>3.006</td>
<td>1.851</td>
<td>64.02</td>
</tr>
<tr>
<td>2C20B</td>
<td>4.531</td>
<td>4.495</td>
<td>3.105</td>
<td>45.93</td>
</tr>
<tr>
<td>3C20B</td>
<td>5.753</td>
<td>5.714</td>
<td>4.317</td>
<td>33.26</td>
</tr>
<tr>
<td>1P20B</td>
<td>1.703</td>
<td>1.674</td>
<td>0.518</td>
<td>228.76</td>
</tr>
<tr>
<td>2P20B</td>
<td>1.837</td>
<td>1.800</td>
<td>0.411</td>
<td>346.96</td>
</tr>
<tr>
<td>3P20B</td>
<td>1.706</td>
<td>1.667</td>
<td>0.270</td>
<td>531.85</td>
</tr>
</tbody>
</table>

\(^2\)The notation is: first digit, time to maturity of the option in years; first letter, whether call C or put P; next two digits, maturity of bond; last letter B, means bond. Thus "1C10B" means: 1 year call option on a 10 years bond.
The underlying bonds theoretical volatility are given in table 5 below.

### Table 5: Underlying Bond Volatility Annual %

<table>
<thead>
<tr>
<th>Bond Volatility for P(t,T)</th>
<th>Conditional $a=0.0125$, $\sigma=0.0148$</th>
<th>First Differences $a=0.0139$, $\sigma=0.0148$</th>
<th>Hull (1993) $a=0.1$, $\sigma=0.014$</th>
<th>Difference Conditional-Hull in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_B(1,10)$</td>
<td>12.614</td>
<td>12.536</td>
<td>8.308</td>
<td>51.83</td>
</tr>
<tr>
<td>$\sigma_B(2,10)$</td>
<td>11.281</td>
<td>11.219</td>
<td>7.709</td>
<td>46.34</td>
</tr>
<tr>
<td>$\sigma_B(3,10)$</td>
<td>9.932</td>
<td>9.884</td>
<td>7.048</td>
<td>40.92</td>
</tr>
<tr>
<td>$\sigma_B(1,20)$</td>
<td>25.062</td>
<td>24.749</td>
<td>11.906</td>
<td>110.50</td>
</tr>
<tr>
<td>$\sigma_B(2,20)$</td>
<td>23.886</td>
<td>23.603</td>
<td>11.686</td>
<td>104.40</td>
</tr>
<tr>
<td>$\sigma_B(3,20)$</td>
<td>22.695</td>
<td>22.440</td>
<td>11.442</td>
<td>98.35</td>
</tr>
</tbody>
</table>

5. Concluding Remarks

Most of the literature in applied finance uses calibration as an intermediate step for derivative pricing. These methods have well-known shortcomings. First, they are likely to be sub-optimal in the mean-squared error sense due to a large bias term. Second, they may be unfeasible, since it requires the existence of a liquid market for similar securities. The latter is especially the case in emerging markets.

Using the Gaussian interest rate model with estimated parameters, we illustrate the fact that derivative security prices are greatly dependent on underlying model parameters values. NLS estimates for the interest rate model are obtained from the conditional observed and theoretical term structure of volatility. They are unbiased, and the resulting theoretical TSV will match, by construction, the observed TSV for the US treasury bond market. This is of particular importance for market makers when pricing novel over-the-counter fixed income derivatives since there will be no traded security in the "neighborhood" (in effect, the market maker is "completing the market") for "calibrating" the model.

Estimates are given for parameters implied by conditional and first differences variances. They are very similar in value and no substantial price differences in call and put options.
on bonds are observed. However, when comparing to parameters known in the literature, substantial differences in option prices and underlying bond volatility are found. This illustrates how critical interest rate parameters estimation is for pricing.

In future research we will estimate TSVs with higher frequency data; monthly and weekly and the respective Gaussian parameters values. The possibility of applying GARCH models will also be considered.

6. References


Figure 1

Quartely US Interest Rates 1983 - 1995

Annual Spot Rates

Feb/82 Nov/84 Aug/87 May/90 Jan/93 Oct/95

- 6 months - 1 year - 2 years - 3 years
- 5 years - 10 years - 30 years

0.126

0.106

0.086

0.066

0.046

0.026
Term Structure of Conditional Volatilities U.S. Treasury Rates

Figure 2
Figure 3

Term Structure of Volatilities U.S. T Rates (First Diff.)

- Estimated TSV
- Analytical TSV (s = 0.0148, a = 0.0139)
ENSAIOS ECONÔMICOS DA EPGE


201. Hiperinflação: câmbio, moeda e âncoras nominais - Fernando de Holanda Barbosa - Novembro de 1992 - 10 pág. (esgotado)


205. The Ricardian vice and the indetermination of Senior - Antonio Maria da Silveira - Dezembro de 1992 - 35 pág. (esgotado)

206. Hiperinflação e a forma funcional da equação de demanda de moeda - Fernando de Holanda Barbosa - Janeiro de 1993 - 27 pág. (esgotado)

207. Reforma financeira - aspectos gerais e análise do projeto da lei complementar - Rubens Penha Cysne - Fevereiro de 1993 - 37 pág. (esgotado)


211. Os sistemas previdenciários e uma proposta para a reformulação do modelo brasileiro - Helio Portocarrero de Castro, Luiz Guilherme Schymura de Oliveira, Renato Fragelli Cardoso e Uriel de Magalhães - Março de 1993 - 43 pág. (esgotado)

212. The indetermination of senior (or the indetermination of Wagner) and Schmoller as a social economist - Antonio Maria da Silveira - Março de 1993 - 29 pág. (esgotado)


221. TOPOLOGIA E CÁLCULO NO Rn - Rubens Penha Cysne e Humberto Moreira - Setembro de 1993 - 106 pág. (esgotado)


225. FINANCIAL INTEGRATION AND PUBLIC FINANCIAL INSTITUTIONS - Walter Novaes e Sérgio Ribeiro da Costa Werlang - Novembro de 1993 - 29 pág


227. A ECONOMIA BRASILEIRA NO PERÍODO MILITAR - VERSÃO REVISADA - Rubens Penha Cysne - Janeiro de 1994 - 45 pág. (esgotado)

228. THE IMPACT OF PUBLIC CAPITAL AND PUBLIC INVESTMENT ON ECONOMIC GROWTH: AN EMPIRICAL INVESTIGATION - Pedro Cavalcanti Ferreira - Fevereiro de 1994 - 37 pág. (esgotado)

229. FROM THE BRAZILIAN PAY AS YOU GO PENSION SYSTEM TO CAPITALIZATION: BAILING OUT THE GOVERNMENT - José Luiz de Carvalho e Clóvis de Faro - Fevereiro de 1994 - 24 pág.

230. ESTUDOS SOBRE A INDETERMINAÇÃO DE SENIOR - vol. II - Brena Paula Magno Fernandez, Maria Tereza Garcia Duarte, Sergio Grumbach, Antonio Maria da Silveira (Coordenador) - Fevereiro de 1994 - 51 pág.(esgotado)

231. ESTABILIZAÇÃO DE PREÇOS AGRÍCOLAS NO BRASIL: AVALIAÇÃO E PERSPECTIVAS - Clovis de Faro e José Luiz Carvalho - Março de 1994 - 33 pág. (esgotado)

249. CUSTOS DE BEM ESTAR DA INFLAÇÃO - O CASO COM MOEDA INDEXADA E ESTIMATIVAS EMPÍRICAS PARA O BRASIL - Mario Henrique Simonsen e Rubens Penha Cysne - Novembro de 1994 - 28 pág. (esgotado)


251. INFRAESTRUTURA NO BRASIL: ALGUNS FATOS ESTILIZADOS - Pedro Cavalcanti Ferreira - Dezembro de 1994 - 33 pág.


256. A COMMENT ON "RATIONAL LEARNING LEAD TO NASH EQUILIBRIUM" BY PROFESSORS EHUD KALAI EHUD EHUR - Alvaro Sandroni e Sergio Ribeiro da Costa Werlang - Fevereiro de 1995 - 10 pág.

257. COMMON CYCLES IN MACROECONOMIC AGGREGATES (revised version) - João Victor Issler e Farshid Vahid - Fevereiro de 1995 - 57 pág.

258. GROWTH, INCREASING RETURNS, AND PUBLIC INFRASTRUCTURE: TIMES SERIES EVIDENCE (revised version) - Pedro Cavalcanti Ferreira e João Victor Issler - Março de 1995 - 39 pág. (esgotado)

259. POLÍTICA CAMBIAL E O SALDO EM CONTA CORRENTE DO BALANÇO DE PAGAMENTOS - Anais do Seminário realizado na Fundação Getulio Vargas no dia 08 de dezembro de 1994 - Rubens Penha Cysne (editor) - Março de 1995 - 47 pág. (esgotado)

260. ASPECTOS MACROECONÔMICOS DA ENTRADA DE CAPITAIS - Anais do Seminário realizado na Fundação Getulio Vargas no dia 08 de dezembro de 1994 - Rubens Penha Cysne (editor) - Março de 1995 - 48 pág. (esgotado)

261. DIFICULDADES DO SISTEMA BANCÁRIO COM AS RESTRIÇÕES ATUAIS E COMPULSÓRIOS ELEVADOS - Anais do Seminário realizado na Fundação Getulio Vargas no dia 09 de dezembro de 1994 - Rubens Penha Cysne (editor) - Março de 1995 - 47 pág. (esgotado)

262. POLÍTICA MONETÁRIA: A TRANSIÇÃO DO MODELO ATUAL PARA O MODELO CLÁSSICO - Anais do Seminário realizado na Fundação Getulio Vargas no dia 09 de dezembro de 1994 - Rubens Penha Cysne (editor) - Março de 1995 - 54 pág. (esgotado)

263. CITY SIZES AND INDUSTRY CONCENTRATION - Afonso Arinos de Mello Franco Neto - Maio de 1995 - 38 pág.

264. WELFARE AND FISCAL POLICY WITH PUBLIC GOODS AND INFRASTRUCTURE (Revised Version) - Pedro Cavalcanti Ferreira - Maio de 1995 - 33 pág.
265. PROFIT SHARING WITH HETEROGENEOUS ENTREPRENEURIAL PROWESS - Renato Fragelli Cardoso - Julho de 1995 - 36 pág.
266. A DINÂMICA MONETÁRIA DA HIPERINFLAÇÃO: CAGAN REVISITADO - Fernando de Holanda Barbosa - Agosto de 1995 - 14 pág.
269. ON LONG-RUN PRICE COMOVEMENTS BETWEEN PAINTINGS AND PRINTS - Renato Flôres - Setembro de 1995 - 29 pág.
270. CRESCIMENTO ECONÔMICO, RENDIMENTOS CRESCENTES E CONCORRÊNCIA MONOPOLISTA - Pedro Cavalcanti Ferreira e Roberto Ellery Junior - Outubro de 1995 - 32 pág.