Common agency with informed principals

David Martimort
Humberto Moreira

Junho de 2004
Abstract

We analyze a common agency game under asymmetric information on the preferences of the non-cooperating principals in a public good context. Asymmetric information introduces incentive compatibility constraints which rationalize the requirement of *truthfulness* made in the earlier literature on common agency games under complete information. There exists a large class of differentiable equilibria which are ex post inefficient and exhibit free-riding. We then characterize some interim efficient equilibria. Finally, there exists also a unique equilibrium allocation which is robust to random perturbations. This focal equilibrium is characterized for any distribution of types.

Keywords: Common agency, public goods, incentive mechanisms.

1 We thank Jean-Jacques Laffont, Michel Lebreton, Jerôme Pouyet and Jean Tirole for several useful discussions and seminar participants in Toulouse, WZB Berlin, Erasmus Rotterdam for comments. The second author thanks IDEI for its hospitality and CAPES of Brazil for financial support.

2 University of Toulouse, (IDEI, GREMAQ) and Institut Universitaire de France.

3 EPGE/FGV.
1 Introduction

Over the past twenty years and following the seminal contributions of Wilson (1979) and Bernheim and Whinston (1986a), the common agency literature has developed an analytical framework to tackle a variety of important problems such as menu auctions,\(^1\) public good provisions through voluntary contributions,\(^2\) or policy formation under the influence of competing lobbying groups.\(^3\) Given this broad range of applications, it is fair to say that the common agency model is by now viewed as a major piece of the toolkit of many economists, most noticeably within the field of political economy.

In our view, the tremendous success of the model relies both on the clear and simple underlying assumptions on which it is based but also on the very precise predictions it conveys. Common agency models are based on the fact that several principals design non-cooperatively contribution schedules \(t_i(q)\) for a common agent. This common agent in turn decides of the quantity \(q\) of public good on behalf of his principals. Players’ preferences are common knowledge and risk-neutrality is generally assumed. A priori, many equilibria of this two-stage game can emerge thanks to the freedom in specifying how contributions are designed off the equilibrium; some being possibly inefficient. The out of equilibrium behavior specified by each principal in the schedule he offers to the common agent acts as a threat to prevent deviations away from a particular equilibrium outcome. By imposing that contributions are \emph{truthful}, i.e., reflect the relative preferences of the principals among alternatives, Bernheim and Whinston (1986a) were able to significantly reduce this indeterminacy and to select equilibria which are essentially unique in terms of the level of public good provided.\(^4\) Truthfulness has an important consequence in terms of the efficiency of the equilibrium allocation. Since a principal’s marginal preferences among alternatives are fully reflected by his contribution, what this principal pays at the margin for inducing a change in the agent’s decision is exactly what it is worth to him. Modulo the truthfulness refinement, common agency games provide an efficient way of aggregating preferences in a world of complete information. The level of public good chosen out of the multilateral contractual process necessarily maximizes the aggregate payoff of the grand-coalition made of the contributing principals and their common agent.

The goal of this paper is to start extending the common agency literature to the case where principals have private information on their preferences for the public good. Clearly, this extension is necessary in a variety of circumstances. Voluntary contributions to a

\(^{3}\)Grossman and Helpman (1994) and Dixit, Grossman and Helpman (1997), among many others.

\(^{4}\)Multiplicity comes only from the possible flexibility in sharing the aggregate surplus among the contributing principals and their common agent. The feasible redistributions of the aggregate surplus can be fully described by means of a set of simple inequalities. See Bernheim and Whinston (1986a) and Laussel and Lebreton (2001).
public good are designed by donors with an eye on the information they convey on their willingness to pay. In the political arena, lobbying groups have private information on the benefits they withdraw from a given policy and much of their activity consists in conveying information to a less-well informed policy-maker.5 Introducing asymmetric information on the principals’ preferences imposes \textit{incentive compatibility constraints} which replace and give firmer foundations to the \textit{truthfulness} requirement imposed so far in the complete information literature.

One could a priori conjecture that this minor perturbation of the standard model would not modify its main insights. This is not true. Far from ensuring uniqueness of the equilibrium allocation and by contrast with truthfulness, incentive compatibility introduces a new reason for the multiplicity of equilibria. In a Bayesian setting, the strategy of each principal depends on his type and, at a best response, a given principal forms a conjecture on how the marginal contributions of others evolve with their own types. This flexibility leads to multiple equilibria. In a context with two symmetric principals, the set of symmetric equilibria is really \textit{large} in the following sense: starting from \textit{any} monotonically increasing equilibrium level of public good below the first-best along the 45 degree line where principals have the same willingness to pay (with no distortion at the top), we can reconstruct the whole marginal contributions and equilibrium output off this ray to complete the description of a symmetric differentiable equilibrium of the common agency game.

To better understand this multiplicity, it is necessary to describe the behavior of each principal. When choosing how much to contribute at the margin for \(q \) units of the public good, each principal behaves as a monopsonist in front of a residual supply curve. This residual supply curve is obtained by substracting the \textit{expected} marginal contributions of other principals from the common agent’s marginal cost function of producing the public good. This principal chooses thus to increase his marginal contribution for \(q \) units up to the point where the marginal benefit he withdraws from all the inframarginal units produced at that price is just equal to the added supply that such an increase in contribution induces. When other principals contribute on average less at the margin, the residual supply is shifted downwards and, at a best response, a given principal chooses also to contribute less at the margin. This creates some form of complementarity among the principals which generates multiple equilibria.

5In this respect, it is striking to see that Grossman and Helpman themselves have stressed this point in their recent book (Grossman and Helpman (2001, Chapter 4)). The difficulty in extending their basic model of common agency with monetary contributions to a framework with asymmetric information led them to give up any monetary exchanges between principals (lobbying groups) and their common agent (the policy-maker) and to develop alternative models of cheap-talk à la Crawford and Sobel (1982). Our paper can be viewed as making a first step towards a more synthetic treatment with both monetary transfers and asymmetric information on the preferences of the lobbyists.
Given that particularly severe multiplicity problem, we first follow the tradition of the common agency literature under complete information in looking for equilibrium allocations which also satisfy some efficiency property. Ex post efficiency is by far too demanding concept. All equilibria are ex post inefficient. Downward distortions below the first-best come from the existing free-riding between principals who contribute less at the margin than what the good is worth to them.

The efficiency criterion must be relaxed and we turn to the weaker concept of interim efficiency. An equilibrium may be interim efficient under specific assumptions on the principals’ distribution of types. Nevertheless, not all equilibria of the common agency game are interim efficient. Common agency games are in fact less efficient ways of communicating information than a centralized mechanism organized by an uninformed mediator as usually postulated to find interim efficient allocations. Those allocations result instead from the interaction between decentralized mechanisms offered by non-cooperating principals. Interim efficient equilibria may nevertheless sometimes exist, in which case they can be characterized in terms of the social weights given to the different principals’ types in the welfare function that would be maximized by the mediator.

We then turn to another selection device: robustness to random perturbations. We introduce a non-observable shock on the common agent’s preferences. An equilibrium nonlinear schedule must go through all quantities corresponding to various realizations of that shock. This robustness requirement severely constrains nonlinear contributions at equilibrium. This criterion pins down a one-dimensional family of equilibria, reducing thereby the multiplicity problem by a tall order. Moreover, these focal solutions are Pareto-ranked. The Pareto-dominating robust equilibrium is solution to a first order partial derivative equation (PDE) involving the partial derivatives of the equilibrium output with respect to types and to the random shock. That PDE can be solved explicitly for any type distribution and agent’s cost function. Looking at the trace of the characteristic surface on the hyperplane corresponding to a null shock yields finally a unique equilibrium output for a model without shock.

Finally, our last contribution consists in proposing a mechanism design approach useful to find the subclass of so-called pointwise optimal equilibria of our common agency game. This approach helps understanding how each principal designs his contribution not only to convey information to the common agent on his own preferences but also to extract the information that this agent may learn on other principals when observing their mere offers. This double-sided role of a contribution in a common agency environment points at the

7Note that this mediator could be the uninformed agent himself.
8For instance, when principals’ types are independently and uniformly distributed, all types receive the same weight of one half in this social welfare function in one particular interim efficient equilibrium of the common agency game.
fact that “market information” has to be learned in equilibrium. Of course, the difficulty is that “market information” is by large endogenous: this is what other principals are revealing to the common agent in an equilibrium. Standard mechanism design techniques can still be used to compute those common agency equilibria.

Review of the literature: The results of the common agency literature developed in complete information environments have been viewed as so attractive that they were extended in many different directions. Dixit, Grossman and Helpman (1997) have relaxed the assumption of quasi-linear preferences made in Berheim and Whinston (1986a) to introduce redistributive concerns which may be quite relevant for political economy applications. Laussel and Lebreton (2001) have introduced uncertainty on the preferences of the common agent. Given that contribution schedules are offered at the ex ante stage, i.e., before principals and the agent learn the realization of the preference parameter, efficiency is preserved. Prat and Rustichini (2003) have allowed competition among principals trying to influence multiple agents. Finally, Bergemann and Välimäki (2003) consider the dynamics of common agency games. The main features of the solution remain.

Paralleling that part of the literature which does not stress at all any incentive problems, other authors have looked at the oligopolistic screening environments where different principals try to elicit a piece of information which is privately known by the common agent at the contracting stage. Stole (1991), Martimort (1992, 1996), Biais, Martimort and Rochet (2000) and Martimort and Stole (2002, 2003) among others have analyzed such models. The focus of these papers is on the inefficiency introduced by the lack of coordination under oligopolistic screening and its impact on the distribution of the agent’s information rent. Our focus is instead on asymmetric information on the principals’ side. The contract offered by a given principal has not only to signal his type to the common agent but also to screen the endogenous information that the latter learns, in equilibrium, on other principals’ preferences.

Our paper is also linked to the literature on voluntary contributions, most noticeably those papers which assume private information on the contributors’ side. Menezes, Monteiro and Temini (2001) and Laussel and Palfrey (2003) have both analyzed such games when the public good is a 0-1 decision and contributors have private information on their willingness to pay. Even though both papers stress the multiplicity of equilibria that arises in those environments, they do so only in a framework with a discrete 0-1 decision. Menezes, Monteiro and Temini (2001) highlight the strong ex post inefficiency of equilibria of the contribution game. Laussel and Palfrey (2003) are instead interested in the interim efficiency of some equilibrium allocations. We also derive simple Lindahl-Samuelson con-

9Borrowing an expression due to Epstein and Peters (1999) and Peters (2001). Those papers derive Revelation Principles for multiprincipal environments where principals’ preferences are common knowledge. Market information may then capture the endogenous randomness of mixed-strategy equilibria.
ditions characterizing the provision of a continuous public good and show that downward
distortions below the first-best exist in any equilibrium satisfying a simple monotonicity
condition. Working with a continuous level of public good yields also a more tractable
way of getting interim efficient equilibrium outcomes than in Laussel and Palfrey (2003).

Our techniques of selecting among Bayesian-Nash equilibrium allocations as being
robust to perturbations of the game is clearly reminiscent of Klemperer and Meyer (1989)'s
device for selecting among Nash equilibria in supply functions equilibria. Although similar
in spirit, our approach differs since it applies to a Bayesian setting and yields a closed
form expression of the equilibrium allocation for any type distribution and cost function.

Section 2 presents the model. Section 3 characterizes the equilibria of our common
agency game under asymmetric information. We give a special attention to what we call
pointwise optimal equilibria. We derive the Lindahl-Samuelson conditions in our frame-
work and give a few properties of the equilibrium nonlinear contributions and equilibria,
oticeably ex post inefficiency. Section 4 is devoted to the multiplicity problem. Section
5 focuses on interim efficiency. Section 6 introduces random perturbations to select a
unique equilibrium allocation which is characterized. Section 7 reinterprets the pointwise
optimal equilibria using a mechanism design approach. Section 8 briefly concludes. Proofs
are relegated to an Appendix. For completeness, we show there also how to construct
non-differentiable equilibria which are inefficient.

2 The Model

There are two risk-neutral principals P_i ($i = 1, 2$) who derive utility from consuming a
public good which is produced in non-negative quantity q.10 This public good may be an
infrastructure of variable size, a charitable activity, or it may also have a more abstract
interpretation as a policy variable in a lobbying game.

Principal i gets a utility $V_i = \theta_i v(q) - t_i$ from consuming q units of the good where $v(\cdot)$
is twice differentiable, increasing and strictly concave and t_i is the corresponding payment.
With a convenient renormalization of utils we set $v(q) \equiv q$ and adopt this formulation for
simplicity.11

Contributions are collected by a common agent A who produces at cost $C(q)$ the
public good. The function $C(\cdot)$ is twice differentiable, increasing and concave. To avoid
unnecessary technicalities due to corner conditions, the Inada condition $C''(0) = 0$ hold
except when stated explicitly.

10Extension to the case of $n > 2$ principals increases significantly complexity.
11This formulation is also convenient to interpret q in $[0, 1]$ as the probability of producing the public
good in the case of a discrete 0-1 project which costs nothing if not undertaken.
Principals are privately informed on their respective valuations θ_i. Those types are independently drawn from the same common knowledge and atomless distribution on $\Theta = [\bar{\theta}, \bar{\theta}]$ with c.d.f. $F(\cdot)$ and everywhere positive density $f = F'$ except, when needed, at $\bar{\theta}$ but then this extra assumption is made explicit.

The common agency game between principals unfolds as follows. First, principals learn their preferences. Second, they offer non-cooperatively contribution schedules $\{t_i(q, \hat{\theta}_i)\}_{\hat{\theta}_i \in \Theta}$ to the agent. Third, the agent accepts or refuses all those contracts at once. If he refuses, the game ends. Upon acceptance, the agent chooses to produce an amount of public good. Corresponding payments are then made.

We will be interested in characterizing various classes of Perfect Bayesian Equilibria (PBE) - or equilibria in short - of this game.

Even though the contexts are of course quite different, we follow the same strategy as when computing the equilibrium of a first-price auction to characterize equilibria of the game. Facing the menu of bidding contributions $\{t_i(q, \hat{\theta}_i)\}_{\hat{\theta}_i \in \Theta}$, principal P_i with type θ_i picks whatever schedule he prefers. By the Revelation Principle applied to that Bayesian game, there is no loss of generality in restricting the menu to be incentive compatible. Each principal P_i picks then the contribution corresponding to his own type. This leads us to state the following definition.

Definition 1: A family of nonlinear schedules $\{t_i(q, \hat{\theta}_i)\}_{\hat{\theta}_i \in \Theta}$ is incentive compatible if and only if principal P_i finds it optimal to truthfully reveal his type at a Bayesian equilibrium of the contribution game.

It is important to stress the difference between incentive compatibility and the notion of truthfulness developed in Bernheim and Whinston (1986a). In that latter piece, the principals’ preferences are common knowledge and truthfulness simply means that the marginal contribution of each principal is equal to his marginal valuation for the good. In other words, and when q takes values in a continuum, “truthfulness” means that $\frac{\partial t_i}{\partial q}(q, \hat{\theta}_i) = \hat{\theta}_i$ for all $\hat{\theta}_i$ and all q. Under asymmetric information instead, incentive compatibility requires only that each principal finds optimal to report truthfully his type by choosing the right contribution knowing that at the second stage, the agent chooses how much to produce.

A differentiable menu is a menu of incentive compatible nonlinear prices which are three times piece-wise differentiable with respect to q and $\hat{\theta}_i$.13

12Or truthful in the sense of incentive theory, not in the sense of the complete information common agency literature.

13In the Appendix, we analyze a class of non-differentiable equilibria.

7
Remark 1: Our specification of the bidding game and the contribution schedules available to each principal seems to restrict a priori the strategy space of the principals. It seems to preclude that any principal deviates by offering a more complex mechanism if he wants so. Section 7 precisely shows that the equilibria we obtain are robust. They are also equilibria when principals can deviate by offering more complex mechanisms belonging to a larger strategy space.

Remark 2: We model here a game of *intrinsic common agency*14 such that all contributions are accepted or refused at once. Following Bernheim and Whinston (1986a), the common agency literature has mostly studied models of *delegated common agency* where the agent may choose to turn down one of the offers. Of course, this extra option somewhat restricts the distribution of the aggregate surplus between the contributing principals and the agent. Because of complete information, those redistributive issues have nevertheless no impact on the actual decision that the agent takes. Instead, we put here at the core of the analysis asymmetric information which already links redistributive concerns and efficiency through incentive constraints. In our view, giving up the more complex model of delegated common agency in a first step is, in a sense, less of an issue in this context.

Benchmark: For further references, we denote by $q^*(\theta_1, \theta_2)$ the first-best level of public good which solves the well-known Lindahl-Samuelson conditions under complete information:

$$C'(q^*(\theta_1, \theta_2)) = \sum_{i=1}^{2} \theta_i. \quad (1)$$

Note that $q^*(\cdot)$ is (strictly) monotonically increasing in each of its arguments.

3 Preliminary Results

In this section, we are interested in characterizing the truthful menus $\{t(q, \hat{\theta})\}_{\hat{\theta} \in \Theta}$ offered at a *symmetric* equilibrium of the contribution game and we thus omit the index i. For ease of notation, let us denote $p(q, \theta_i) = \frac{\partial}{\partial q} t(q, \theta_i)$ the marginal contribution of a principal with type θ_i when q units of public good are produced.

At the last stage of the game, the agent’s problem is:

$$ (A) : \max_q \sum_{i=1}^{2} t(q, \theta_i) - C(q). $$

14See Bernheim and Whinston (1986b) who coined this term.
The level of public good is thus given by the first-order condition
\[
\sum_{i=1}^{2} p(q(\theta_1, \theta_2), \theta_i) = C'(q(\theta_1, \theta_2)),
\]
provided that the local second-order condition for the agent’s problem hold:
\[
\sum_{i=1}^{2} \frac{\partial p}{\partial q}(q(\theta_1, \theta_2), \theta_i) - C''(q(\theta_1, \theta_2)) \leq 0.
\]
We will first omit this last constraint in our analysis and will check ex post that it is satisfied at equilibrium.

Of particular relevance are contribution schedules such that upward shifts in the principal’s valuation (weakly) increase the equilibrium quantity. Using (2) and a revealed preference argument, this is of course obtained when \(\frac{\partial p}{\partial \theta_i}(q, \theta_i) \geq 0 \) for all \((q, \theta_i)\). Such equilibrium schedules exhibit thus the same Spence-Mirrlees property (SMP) than the principals’ preferences.

Definition 2: A menu of differentiable contribution schedules satisfies the Spence-Mirrlees Property (SMP) when
\[
\frac{\partial p}{\partial \theta_i}(q, \theta_i) \geq 0 \quad \text{for all} \quad (q, \theta_i).
\]

For such a schedule, a standard revealed preference argument yields:

Lemma 1: In any PBE of the contribution game with contribution schedules satisfying SMP:

- \(q(\theta_i, \theta_{-i}) \) is almost everywhere differentiable,
- \(\frac{\partial q}{\partial \theta_i}(\theta_i, \theta_{-i}) \geq 0 \), for all \((\theta_i, \theta_{-i})\) in \(\Theta^2 \).

Given the outcome of that last stage of the game, the Revelation Principle applies at the first stage, i.e., when principals make their choices. It tells us that:
\[
\theta_i = \arg \max_{\hat{\theta}_i} \Phi(\hat{\theta}_i, \theta_i)
\]
where \(\Phi(\hat{\theta}_i, \theta_i) = E\left[\theta_i q(\hat{\theta}_i, \cdot) - t(q(\hat{\theta}_i, \cdot), \hat{\theta}_i) \right] \) is principal \(P_i \)'s payoff when his type is \(\theta_i \) and he picks the contribution corresponding to type \(\hat{\theta}_i \) within the proposed menu. \(E[\cdot] \) is the expectation operator with respect to the distribution \(F \).
Integrating by parts yields:

\[
E \left[t(q(\hat{\theta}_i, \cdot), \hat{\theta}_i) \right] = (F(\cdot) - 1)t(q(\hat{\theta}_i, \cdot), \hat{\theta}_i) \left[\frac{1 - F(\cdot)}{f(\cdot)} \right] p(q(\hat{\theta}_i, \cdot), \hat{\theta}_i) \frac{\partial q}{\partial \theta_{-i}}(\hat{\theta}_i, \cdot) + E \left[q(\hat{\theta}_i, \cdot) \right] \frac{\partial q}{\partial \theta_{-i}}(\hat{\theta}_i, \cdot)
\]

Inserting into the maximand of (4) gives us finally:

\[
\Phi(\hat{\theta}_i, \cdot) = E \left[\left(\theta_i q(\hat{\theta}_i, \cdot) - \frac{1 - F(\cdot)}{f(\cdot)} \left(C'(q(\hat{\theta}_i, \cdot)) - p(q(\hat{\theta}_i, \cdot), \cdot) \right) \right) \frac{\partial q}{\partial \theta_{-i}}(\hat{\theta}_i, \cdot) \right] - t(q(\hat{\theta}_i, \cdot), \hat{\theta}_i).
\]

Proposition 1: The first- and second-order conditions for optimality of the principal’s problem (4) are respectively given by:

\[
(FOC) : E \left[\frac{\partial q}{\partial \theta_i}(\theta_i, \cdot) \left(\theta_i + p_{-i}(q(\theta_i, \cdot), \cdot) - C'(q(\hat{\theta}_i, \cdot)) - \frac{1 - F(\cdot)}{f(\cdot)} \frac{\partial p}{\partial \theta_{-i}}(q(\theta_i, \cdot), \cdot) \right) \right] = 0 \quad (6)
\]

\[
(SOC) : E \left[\frac{\partial q}{\partial \theta_i}(\theta_i, \cdot) \right] \geq 0 \quad (7)
\]

for all \(\theta_i \) in \(\Theta \) and \(i = 1, 2 \).

Pointwise-optimality: Among the equilibrium schedules satisfying conditions (6) and (7), we focus on those which are pointwise optimal and monotonic in the sense that:

\[
\theta_i + p(q(\theta_i, \theta_{-i}), \theta_i) - C'(q(\theta_i, \theta_{-i})) = \frac{1 - F(\theta_{-i})}{f(\theta_{-i})} \frac{\partial p}{\partial \theta_i}(q(\theta_i, \theta_{-i}), \theta_{-i}) \quad (8)
\]

and

\[
\frac{\partial q}{\partial \theta_i}(\theta_i, \theta_{-i}) \geq 0 \quad (9)
\]

for all \((\theta_i, \theta_{-i})\) in \(\Theta^2 \), \(i = 1, 2 \).

This focus on pointwise optimality will be motivated later on in Section 7 when we turn to one particular implementation of the PBE just described. From now on, the definition of an equilibrium will implicitly include that pointwise optimality requirement.

The following lemma guarantees that every profile of public good and marginal contribution which satisfy (8) and (9), satisfy also the conditions for global optimality.

Lemma 2: Let \(\{q(\theta_1, \theta_2), p(q, \theta)\} \) be a pair of public good level and marginal contribution schedule satisfying (8) and (9). This profile, if it exists, constitutes a PBE of the contribution game.
Condition (8) has an intuitive meaning. It looks like the traditional optimality condition for a simple problem involving principal P_i and an agent with preferences $t + t_{-i}(q, \theta_{-i}) - C(q)$ who has private information on θ_{-i}. The right-hand side of (8) represents then the standard distortion due to the fact that, under asymmetric information, this is the virtual demand of the agent which should be taken into account at the time of finding P_i’s best-response. We will come back on that later in Section 7 where this analogy becomes highlighting.

Modified Lindahl-Samuelson conditions: Condition (8) is also helpful in already deriving a few properties of the equilibrium schedules. To do so, let us focus on strictly increasing output schedules such that (9) is strict over the range of $q(\cdot)$. We can thus uniquely define the inverse function $\psi(q, \theta_i)$ as $q(\theta_i, \psi(q, \theta_i)) = q$ for all θ_i and q in the range of $q(\theta_i, \cdot)$. Note that because q is in the range of $q(\theta_i, \cdot)$, $\psi(q, \theta_i)$ belongs to $[\underline{q}, \bar{q}]$. Condition (8) becomes thus:

$$
\psi(q, \theta_i) + p(q, \theta_i) - C'(q) = 1 - F(\theta_i) \frac{\partial p}{\partial \theta_i}(q, \theta_i), \tag{10}
$$

for all q in the range of $q(\theta_i, \cdot)$. This can be rewritten as:

$$
\frac{\partial}{\partial \theta_i} [p(q, \theta_i)(1 - F(\theta_i))] = (\psi(q, \theta_i) - C'(q)) f(\theta_i)
$$

This is a differential equation in θ_i which can be integrated to get $p(q, \theta_i)$ as

$$
p(q, \theta_i) = \frac{\varphi(q)}{1 - F(\theta_i)} + C'(q) - \frac{1}{1 - F(\theta_i)} \int_{\theta_i}^{\bar{\theta}} \psi(q, x) f(x) dx, \tag{11}
$$

where $\varphi(q)$ is an integration constant.

If we impose that $\frac{\partial p}{\partial \theta_i}(q, \theta_i)$ is bounded around $\theta_i = \bar{\theta}$, we must have $\varphi(q) = 0$. Finally, the equilibrium schedule writes as:

$$
p(q, \theta_i) = C'(q) - \frac{1}{1 - F(\theta_i)} \int_{\theta_i}^{\bar{\theta}} \psi(q, x) f(x) dx. \tag{12}
$$

Taking into account that

$$
p(q, \theta_i) + p(q, \psi(q, \theta_i)) = C'(q) \tag{13}
$$

for any q in the range of $q(\theta_i, \cdot)$ yields

$$
p(q, \psi(q, \theta_i)) = \frac{1}{1 - F(\theta_i)} \int_{\theta_i}^{\bar{\theta}} \psi(q, x) f(x) dx,
$$

or using that $\psi(q, \psi(q, \theta_i)) = \theta_i$ for all θ_i

$$
p(q, \theta_i) = \frac{1}{1 - F(\psi(q, \theta_i))} \int_{\psi(q, \theta_i)}^{\bar{\theta}} \psi(q, x) f(x) dx. \tag{14}
$$
By summing the expressions of the marginal contributions obtained from (14), we get also a simple expression for the modified Lindahl-Samuelson conditions as:

$$C'(q(\theta_1, \theta_2)) = \sum_{i=1}^{2} \frac{1}{1 - F(\theta_i)} \int_{\theta_i}^{\hat{\theta}} \psi(q(\theta_1, \theta_2), x) f(x) dx.$$ \quad \text{(15)}$$

To understand (15), it is useful to come back on the definition of the equilibrium schedule given in (14). Given the equilibrium conjecture $p(\cdot)$, one may define for any type θ_i and output q, the conjugate type $\psi(q, \theta_i)$ which is such that the quantity q is produced when both types follow the equilibrium strategy. All types corresponding to a valuation x greater than $\psi(q, \theta_i)$ are thus ready to contribute at the margin at least $p(q, \psi(q, \theta_i))$ for q units of public good in any SMP equilibrium. This is in front of those types that principal P_i with type θ_i can in fact underestimate his valuation and contribute less than his true willingness to pay for q units of the good. How much can he underestimate his valuation? Indeed, facing such a type x, the marginal contribution of principal P_i with conjugate type $\psi(q, x)$ is $p(q, \psi(q, x))$. Once q units of the good are produced with type x for principal P_{-i}, one can infer that the marginal valuation of principal P_i is at least $\psi(q, x)$. What (14) shows is that the marginal contribution of type θ_i is an average of all such inframarginal valuations. Since x is greater than θ_i, and $\psi(q, \cdot)$ is decreasing in its second argument, that average is lower than θ_i. This already shows the extent of the principals’ bid-shading in this game.

Ex post inefficiency: Integrating by parts (16), we obtain:

$$p(q, \theta_i) = \theta_i + \frac{1}{1 - F(\psi(q, \theta_i))} \int_{\psi(q, \theta_i)}^{\hat{\theta}} \frac{\partial \psi}{\partial x}(q, x)(1 - F(x)) dx.$$ \quad \text{(16)}$$

From the definition of $\psi(\cdot)$,

$$\frac{\partial \psi}{\partial x}(q, x) = -\frac{\partial q}{\partial \theta_1} \frac{\partial q}{\partial \theta_2}(x, \psi(q, x)) < 0$$

when output is monotonically increasing. Therefore, in any symmetric PBE of the contribution game satisfying SMP (if such an equilibrium exists) and corresponding to a strictly monotonic output and nonlinear schedules having bounded derivative $\frac{\partial p}{\partial \theta}(\cdot)$ around $\bar{\theta}$, the equilibrium schedule $t(q, \theta_i)$ does not reflect the preferences of the principal with types θ_i. This finding contrasts sharply with the findings of Bernheim and Whinston (1986a) who show that, under complete information, equilibrium schedules can be chosen so that they reflect the principal’s preferences. Under asymmetric information instead, those preferences are not reflected at equilibrium.

Proposition 2: In any equilibrium satisfying SMP, we have:

$$p(q, \theta) \leq \theta,$$ \quad \text{(17)}$$
for all \(\theta \) in \([\bar{\theta}, \bar{\theta}]\), with a strict inequality everywhere except at \(\theta = \bar{\theta} \) and for \(q = q^*(\bar{\theta}, \bar{\theta}) \).

The Lindahl-Samuelson conditions (15) imply that equilibrium outputs are downward distorted below the first-best. This phenomenon is nothing else than the usual “free-rider” problem for public good. Instead of being cast in a centralized Bayesian mechanism as in the framework of Mailath and Postlewaite (1990), free-riding appears now at the symmetric equilibrium of a game with voluntary contributions. Principals shade their valuations and their marginal contributions to the public good are less than what it is worth to each of them. As a result of this phenomenon, there is underprovision of the public good.

Corollary 1: An ex post efficient outcome can never be implemented at a SMP equilibrium of the common agency game. Downward distortions below the first-best always occur.

Remark 3: It is worth noticing that, under complete information, free-riding does not occur in the Bernheim and Whinston (1986a)’s framework since the public good level is efficient when schedules are truthful. If one is interested in the normative properties of the equilibria (if any), one needs to relax the efficiency concept. This is what will be done in the Section 5. ■

4 Equilibrium Existence and Multiplicity

The qualitative properties of equilibria derived above do not give us much information on their existence and multiplicity. After all, the Lindahl-Samuelson rule (15) is rather complex and only defines \(q(\cdot) \) implicitly in terms of its inverse functions \(\psi(q, \cdot) \) which is a quite unusual feature.

Constructing equilibria: To get further insights on the existence and multiplicity of SMP equilibria, it is useful to come back on the two conditions which define the marginal contribution \(p(q, \cdot) \) and the conjugate type \(\psi(q, \cdot) \) and to reconstruct from there an equilibrium:

\[
p(q, \theta) + p(q, \psi(q, \theta)) = C'(q),
\]

\[
\theta - p(q, \theta) = \frac{1 - F(\psi(q, \theta))}{f(\psi(q, \theta))} \frac{\partial p}{\partial \theta}(q, \psi(q, \theta)),
\]

for all \((q, \theta)\), where \(q \) is in the range of \(q(\cdot) \), the equilibrium schedule of outputs.

In fact, those two equations do not yet uniquely define an equilibrium marginal schedule. We need first to define which type \(\bar{\theta} \) is such that \(q(\bar{\theta}, \bar{\theta}) = q \) in the equilibrium under
When both principals have type $\tilde{\theta}$, their marginal contributions are the same. For such a $\tilde{\theta}$, we must have $
abla(q, \tilde{\theta}) = \tilde{\theta}$ and

$$p(q, \tilde{\theta}) = \frac{C'(q)}{2}. \quad (20)$$

Moreover, by definition of a conjugate type, it must be that:

$$\psi(q, \psi(q, \theta)) = \theta, \quad (21)$$

for all θ in $[\underline{\theta}, \bar{\theta}]$ and q in the range of $q(\cdot)$.

The particular role played by the 45 degree line $\theta_1 = \theta_2$ in defining the “initial conditions” of the system (18)-(19) shows already that there exists a first degree of freedom in defining an equilibrium. The same quantity q can a priori be given to two different types $\tilde{\theta}$ in two different equilibria. A second degree of freedom comes from the flexibility in defining the function $\psi(q, \theta)$. Any function $\psi(q, \theta)$ is its own conjugate as soon as its graph is symmetric with respect to the 45 degree line.

Instead of defining the equilibrium output $q(\cdot)$, we may describe as well an equilibrium in terms of its isoquant lines $\psi(q, \theta)$. The (strict) monotonicity properties $\frac{\partial q}{\partial \theta_1}(\theta_1, \theta_2) > 0$ and $\frac{\partial q}{\partial \theta_2}(\theta_1, \theta_2) > 0$ are then satisfied whenever

$$\frac{\partial \psi}{\partial \theta}(q, \theta) < 0 \quad \text{and} \quad \frac{\partial \psi}{\partial q}(q, \theta) > 0 \quad (22)$$

over the whole domain of definition of $\psi(\cdot)$.

This approach in terms of isoquants is used thereafter to characterize the equilibrium schedules because it illuminates the two degrees of freedom left in specifying both the equilibrium output $Q(\theta) = q(\theta, \theta)$ along the 45 degree line and the conjugate type. Once we define a function $\psi(q, \theta)$ satisfying (21) over $[\underline{\theta}, \bar{\theta}]$ and the monotonically increasing output along the 45 degree line $Q(\theta)$, we can reconstruct the marginal contribution $p(q, \theta)$ on $[\underline{\theta}, \bar{\theta}]$ using (19) and thus on the whole interval $[\underline{\theta}, \bar{\theta}]$ using (18). This procedure is made explicit in the next proposition.

Proposition 3: Fix any monotonically increasing output schedule $Q(\theta) = q(\theta, \theta)$ such that $Q(\theta) \leq q^*(\theta, \theta)$ (with an equality only at $\tilde{\theta}$) and fix a function $\psi(q, \theta)$ such that:

- conditions (21) and (22) hold,
- $\psi(q, \tilde{\theta}) = \tilde{\theta}$ for some $\tilde{\theta}$ such that $Q(\tilde{\theta}) = q$.

Provided that the second-order condition for the agent’s problem (3) is satisfied, there exists a unique marginal contribution $p(q, \theta)$ that generates isoquants having equation $\theta_2 = \ldots$
\(\psi(q, \theta_1) \) in the corresponding SMP equilibrium. This marginal contribution solves the first-order differential equation
\[
\frac{\partial p}{\partial \theta}(q, \theta) = \psi(q, \theta) + p(q, \theta) - C'(q) \frac{1 - F(\theta)}{f(\theta)},
\]
over \([\theta, \tilde{\theta}]\) with the boundary condition (20). The marginal contribution over the interval \([\tilde{\theta}, \bar{\theta}]\) is defined by
\[
p(q, \theta) = C'(q) - p(q, \psi(q, \theta))
\]
where \(\psi(q, \theta)\) belongs to \([\theta, \tilde{\theta}]\).

It is by now in the Folklore of the profession to justify focusing on nonlinear contributions in models of incomplete information because those nonlinearities are needed to convey information or screen preferences in a world where preferences are not common knowledge. When the concept of “truthfulness” is given a more precise meaning by explicitly introducing an information problem, we obtain a rather disappointing result: still a large set of equilibria survives.

To better understand this multiplicity, it is necessary to describe the behavior of each principal at an equilibrium of the contribution game. When choosing how much to contribute at the margin for \(q\) units of the public good, each principal behaves as a monopsonist in front of a residual supply curve. This residual supply curve is obtained by substracting the expected marginal contributions of the other principal from the common agent’s marginal cost function. This principal chooses thus to increase his marginal contribution for \(q\) units up to the point where the marginal benefit he withdraws from all the inframarginal units produced at that price is just equal to the increase in the supply of the good that such an increased contribution induces. When the other principal contributes at the margin on average less, the residual supply is shifted downwards and, at a best response, a given principal chooses also to contribute less at the margin. This creates some form of complementarity between principals and generates multiple equilibria.

Remark 4: When an isoquant \(\psi(q, \theta)\) is defined over \([\theta, \tilde{\theta}]\) it must be, by definition, that \(\psi(q, \theta) \leq \tilde{\theta}\). Reciprocally, when \(\psi(q, \theta)\) is only defined over an interval \([\theta_1, \tilde{\theta}]\) with \(\theta_1 > \theta\), we have \(\psi(q, \theta_1) = \tilde{\theta}\). In other words, \(q\) does not belong to the range of the equilibrium schedule \(q(\theta, \cdot)\) for \(\theta < \theta_1\).

Remark 5: The resolution techniques and the multiplicity of equilibria found above are reminiscent of the analysis of equilibria in double auctions made in Leininger, Linhart and Radner (1989). Those authors have developed a procedure that consists in fixing the equilibrium strategies for the buyer and the seller when their valuations coincide and reconstruct numerically the bidding strategies as solutions of differential equations with
lags on both sides of these critical values. Menezes, Monteiro and Temini (2001) and Laussel and Palfrey (2003, p. 460) use also a similar technique in their public good model with a 0-1 decision. The flexibility in choosing the equilibrium quantities in a continuum allows us to solve explicitly a similar differential equation for the marginal contributions as a function of a \(\psi(q, \theta) \) function which represents a degree of freedom. Menezes, Monteiro and Temini (2001) argue that one should be careful in checking for the monotonicity conditions of the equilibrium schedule. Our approach avoids this problem. We start from specifying a \(\psi(q, \theta) \) which satisfies those monotonicity conditions and then reconstruct equilibrium strategies.

Multiplicity revisited: To sharpen intuition for why multiple equilibria are possible, it is useful to give an alternative expression of the Lindahl-Samuelson conditions. This expression is obtained by summing up the conditions of pointwise optimality for both principals to get first:

\[
C'(q(\theta_1, \theta_2)) = \sum_{i=1}^{2} \left(\theta_i - \frac{1 - F(\theta_i)}{f(\theta_i)} \frac{\partial p}{\partial \theta_i}(q(\theta_1, \theta_2), \theta_i) \right).
\]

(25)

Using (2) and differentiating with respect to \(\theta_i \) yields

\[
\frac{\partial q}{\partial \theta_i} \left(\sum_{i=1}^{2} \frac{\partial p}{\partial q}(q, \theta_i) - C''(q) \right) = -\frac{\partial p}{\partial \theta_i}(q, \theta_i).
\]

Inserting into (25) gives a new expression for the Lindahl-Samuelson conditions:

\[
C'(q(\theta_1, \theta_2)) = \sum_{i=1}^{2} \theta_i + \left(\sum_{i=1}^{2} \frac{\partial p}{\partial q}(q(\theta_1, \theta_2), \theta_i) - C''(q(\theta_1, \theta_2)) \right) \left(\sum_{i=1}^{2} \frac{1 - F(\theta_i)}{f(\theta_i)} \frac{\partial q}{\partial \theta_i}(\theta_1, \theta_2) \right).
\]

(26)

This expression illuminates also the degree of freedom available to describe equilibria. All this freedom can be captured by the term \(\sum_{i=1}^{2} \frac{\partial p}{\partial q}(q(\theta_1, \theta_2), \theta_i) - C''(q(\theta_1, \theta_2)) \) which is the second derivative of the agent’s objective function evaluated at the equilibrium quantities. That term plays the role of a conjecture that, when it varies, allows to trace out the different equilibrium quantities. The purpose of the next two sections is precisely to pin down this conjecture by imposing various requirements (either interim efficiency or robustness to perturbations).

For the time being, this expression allows us to get:

Corollary 2: At a SMP equilibrium characaterized in Proposition 3, the local second-order condition of the agent’s problem holds:

\[
\sum_{i=1}^{2} \frac{\partial p}{\partial q}(q(\theta_1, \theta_2), \theta_i) - C''(q(\theta_1, \theta_2)) \leq 0 \quad \text{for all } (\theta_1, \theta_2) \in \Theta^2.
\]

(27)
5 Interim Efficiency

Under complete information, Bernheim and Whinston (1986a) have observed that the “truthful” equilibrium of common agency game lies on the Pareto-frontier of what the contributing principals could achieve by binding themselves through a contract. Under asymmetric information, one can still be interested by the normative properties of equilibria provided Pareto efficiency is replaced by interim efficiency to take into account asymmetric information. Following Laussel and Palfrey (2003), we investigate under which circumstances an equilibrium of our common agency game under asymmetric information is interim efficient.

We first describe interim efficient allocations. Those allocations are obtained as the solution of a centralized mechanism design problem where an uninformed mediator (possibly the agent) offers a single mechanism to both principals, who then report their types to this mediator. This mediator maximizes a weighted sum of both the principals and the agent’s utilities with the weights given to different types of the principals being possibly different. For simplicity, we restrict to symmetric allocations so that the weights do not depend on the principal’s identity.

Proposition 4 : (Ledyard and Palfrey (1999)) A level of public good $q(\theta_1,\theta_2)$ is interim efficient if and only if there exists positive social weights $\alpha(\theta)$ such that:

$$\int_{\theta_1}^{\theta_2} \alpha(\theta) f(\theta) d\theta \leq 1,$$ \hspace{1cm} (28)

$$C'(q(\theta_1,\theta_2)) = \sum_{i=1}^{2} b(\theta_i)$$ \hspace{1cm} (29)

where

$$b(\theta_i) = \theta_i - \frac{1 - F(\theta_i)}{f(\theta_i)} (1 - \tilde{\alpha}(\theta_i))$$

is increasing with well-specified weights $\alpha_i(\cdot)$ and

$$\tilde{\alpha}(\theta_i) = \frac{1}{1 - F(\theta_i)} \int_{\theta_i}^{\theta} \alpha(x) f(x) dx.$$

This formula is valid as long as the right-hand side of (29) is monotonically increasing in each θ_i for $i = 1, 2$.

The fact that $\int_{\theta_i}^{\theta} \alpha(x) f(x) dx < 1$ captures the possibility that a positive social weight is given to the common agent in the social welfare function maximized by the uninformed mediator.
As a preliminary remark, notice that an interim efficient allocation is necessarily such that \(C'(q(\theta_1, \theta_2)) \) is separable in \(\theta_1 \) and \(\theta_2 \); an extremely restrictive condition which may kill much equilibria of our common agency game. This separability is not pure luck. Indeed, to derive interim efficient allocations, Holmström and Myerson (1983) and, later on, Ledyard and Palfrey (1999) and Laussel and Palfrey (2003) in public good contexts, use a centralized mechanism: all information needed to decide upon the level of public good is reported to an uninformed mediator who commits to a mechanism which specifies public good levels and compensations as functions of those reports. Under common agency instead, allocations result from an equilibrium between a pair of decentralized mechanisms. As Section 7 will make clear, each principal signals his own type through the mere offer he makes to the agent whereas, at the same time, he designs his own mechanism to screen the preferences of the other. For each piece of information, there is in a sense too much communication and an unnecessary duplication of reports in the common agency game. That lack of coordinated communication makes it not obvious that interim efficiency is achieved in all equilibria of our game. We will be interested in a weaker statement which is to assess whether there nevertheless exist equilibria which are indeed interim efficient.

If an interim efficient \(q(\cdot) \) is implemented through a common agency equilibrium, we must have

\[
\psi(q, \theta) = b^{-1}(C'(q) - b(\theta))
\]

and using (15), we get that \(b(\cdot) \) must satisfy the following functional equation:

\[
\sum_{i=1}^{2} b(\theta_i) = \sum_{i=1}^{2} \frac{1}{1 - F(\theta_i)} \int_{\theta_i}^{\bar{\theta}} b^{-1}(b(\theta_1) + b(\theta_2) - b(x)) f(x) dx
\]

for all \((\theta_1, \theta_2) \in \Theta^2\).

Finding directly the solutions (if any) to (30) is difficult in general, let us first content ourselves with looking at linear solutions of the form \(b(\theta) = \bar{\theta} + \lambda (\theta - \bar{\theta}) \) and imposing conditions on the type distribution which ensure that such a linear solution exists.

Proposition 5: Assume that \(1 - F(\theta) = \left(\frac{\bar{\theta} - \theta}{\bar{\theta} - \underline{\theta}}\right)^\beta \) where \(\beta \geq 0 \), then there exists at least one equilibrium of the common agency game under asymmetric information which is interim efficient with:

\[
C'(q^{IE}(\theta_1, \theta_2)) = \left(\frac{\beta + 2}{\beta + 1}\right) (\theta_1 + \theta_2) - \frac{2\bar{\theta}}{\beta + 1}.
\]

It corresponds to social weights \(\alpha(\theta) = \frac{1}{\beta + 1} \) for all \(\theta \in [\underline{\theta}, \bar{\theta}] \), and to marginal contributions

\[
p^{IE}(q, \theta) = \frac{C'(q) + \theta}{\beta + 1} + \frac{\bar{\theta}(1 - 2\beta)}{\beta(\beta + 1)}.
\]
and linear isoquants

$$\psi^{IE}(q, \theta) = \frac{(\beta + 1)C'(q) + 2\bar{\theta}}{\beta + 2} - \theta.$$ \hspace{1cm} (33)

The case for interim efficiency exists under those strong assumptions on the type distribution. We see on (31) that the common agency equilibrium selected by the interim efficiency criterion satisfies the separability property already stressed. With the generalized β-distributions proposed, one equilibrium output depends linearly on the sum of the principal’s marginal preferences for the public good whatever the cost function. This linearity ensures separability.\footnote{Lausel and Palfrey (2003) derive also such a linear interim efficient outcome in the case of a 0-1 project.}

The social weights on the different types of the principals are constant and do not sum to one, reflecting the fact that the mediator proposing the centralized mechanism implementing that interim efficient allocation gives a positive weight to the agent in his objective function. An alternative interpretation of this outcome is worth stressing. Everything happens as if, with this centralized mechanism, the agent had now all bargaining power in proposing a mechanism to the principals but would give them a weight $\frac{1}{\beta + 1} < 1$ in his objective function.

Instead of working with (30), we may as well directly try to identify the Lindahl-Samuelson conditions (26) with those conditions (29) obtained at interim efficient allocations. Proceeding that way, we obtain:

Proposition 6 : Assume that $\lim_{\theta \to \bar{\theta}} f(\theta) \int_{\theta}^{\bar{\theta}} \frac{dx}{1 - F(x)} \leq 1$\footnote{Note that this implies that $f(\bar{\theta}) = 0.$} and that the monotone hazard rate property $\frac{d}{d\theta} \left(\frac{1 - F(\theta)}{f(\theta)} \right) < 0$ holds, then there exists at least one equilibrium of the common agency game under asymmetric information which is interim efficient with:

$$C'(q_{IE}(\theta_1, \theta_2)) = \sum_{i=1}^{2} b^{IE}(\theta_i)$$ \hspace{1cm} (34)

where

$$b^{IE}(\theta_i) = \theta_i - (1 - F(\theta_i)) \int_{\theta}^{\theta_i} \frac{dx}{1 - F(x)} \leq \theta_i$$ \hspace{1cm} (35)

with equalities at both θ and $\bar{\theta}$. It corresponds to an output $Q_0(\theta)$ along the 45 degree line such that:

$$C'(Q_0(\theta)) = 2 \left(\theta - (1 - F(\theta)) \int_{\theta}^{\bar{\theta}} \frac{dx}{1 - F(x)} \right).$$ \hspace{1cm} (36)
Propositions 5 and 6 altogether show that the common agency game may have one equilibrium which implements what a planner having a particular specification of the social weights of the different principals in his objective function would do by himself.17 Even though it is quite attractive, this result relies heavily on the distribution of types belonging to a rather special class. When those assumptions are not satisfied, one needs something else than interim efficiency to select among equilibria. This is the purpose of next section.

6 Robustness to Perturbations

We follow now the so-called “Wilson doctrine” and look for an equilibrium that would be robust to the details of the environment. More specifically, we assume that the cost function of the agent writes as $C(q) + \varepsilon q$ for some shock ε drawn on an interval centered around zero $[-\bar{\varepsilon}, \bar{\varepsilon}]$ according to a cumulative distribution $H(\cdot)$ (with density $h(\cdot)$) that we leave unspecified.18 Principals commit to a nonlinear schedule before the realization of ε. This shock is observable ex post only by the agent after he has accepted the principals’ offers. Since principals have to choose within a menu of nonlinear contribution schedules which cannot be conditioned on ε, the same nonlinear contribution $t(q, \theta_i)$ must thus be used for all realizations of ε.

For a triplet $(\theta_1, \theta_2, \varepsilon)$, the quantity of public good $q(\theta_1, \theta_2, \varepsilon)$ chosen by the agent satisfies:

$$\sum_{i=1}^{2} p(q(\theta_1, \theta_2, \varepsilon), \theta_i) = C'(q(\theta_1, \theta_2, \varepsilon)) + \varepsilon. \quad (37)$$

From which we deduce by differentiating (37) with respect to θ_i and ε respectively:

$$\frac{\partial p}{\partial \theta_i}(q, \theta_i) = \frac{\partial q}{\partial \theta_i} \left(C''(q) - \sum_{i=1}^{2} \frac{\partial p}{\partial q}(q, \theta_i) \right), \quad (38)$$

$$-1 = \frac{\partial q}{\partial \varepsilon} \left(C''(q) - \sum_{i=1}^{2} \frac{\partial p}{\partial q}(q, \theta_i) \right). \quad (39)$$

Proceeding as in Section 3, and focusing again on equilibria which are pointwise opti-

17This result is reminiscent of a standard result in bargaining theory stating that the optimal trading mechanism between a buyer and seller privately informed on their own valuation and cost can be implemented as the equilibrium of a centralized mechanism (actually a double auction) when types are uniformly distributed on the same support. See Myerson and Satterwaite (1983).

18We do not make any further assumption on the support of this distribution. Even though, we describe our refinement in the case where principals share the same beliefs on ε, this is not needed for our argument which extends in contexts where principals may not even share the same beliefs on ε.

we find:
\[\theta_i + p(q, \theta_{-i}) - \varepsilon - C'(q) = \frac{1 - F(\theta_i)}{f(\theta_i)} \frac{\partial p}{\partial \theta_i}(q, \theta_i), \] (40)

with the monotonicity condition \(\frac{\partial q}{\partial \theta_i} \geq 0 \) for \(i = 1, 2 \).

Summing (40) when \(i = 1 \) and \(i = 2 \) and using (37) and (38) yields:
\[\sum_{i=1}^{2} \theta_i - \varepsilon - C'(q) = \left(C''(q) - \sum_{i=1}^{2} \frac{\partial p}{\partial q}(q, \theta_i) \right) \left(\sum_{i=1}^{2} \frac{1 - F(\theta_i)}{f(\theta_i)} \frac{\partial q}{\partial \theta_i} \right). \] (41)

Had \(\varepsilon \) being identically fixed at zero, the multiplicity of equilibria would come from the flexibility in specifying the second derivative of the agent’s objective function \(-C''(q) + \sum_{i=1}^{2} \frac{\partial p}{\partial q}(q, \theta_i) \). When the same marginal contribution is used for all values of the shock \(\varepsilon \), this flexibility is pinned down by (39). The equilibrium condition (41) becomes a first-order partial derivative equation:
\[\left(\sum_{i=1}^{2} \theta_i - \varepsilon - C'(q) \right) \frac{\partial q}{\partial \varepsilon} + \sum_{i=1}^{2} \frac{1 - F(\theta_i)}{f(\theta_i)} \frac{\partial q}{\partial \theta_i} = 0. \] (42)

This PDE can be solved explicitly to find the integral surfaces \(q = q(\theta_1, \theta_2, \varepsilon) \) in \(\mathbb{R}^4 \). It is well known that every such integral surface is the union of characteristic curves obtained as solutions to the following of ordinary differential equations:
\[\frac{d\theta_i}{dt} = \frac{1 - F(\theta_i)}{f(\theta_i)}, \quad \text{for } i = 1, 2; \] (43)
\[\frac{d\varepsilon}{dt} = \sum_{i=1}^{2} \theta_i - \varepsilon - C'(q), \] (44)
\[\frac{dq}{dt} = 0, \] (45)

where \(t \) in \(\mathbb{R}_+ \) is an arbitrary parametrization of these characteristic curves.

The differential equation (43) can be integrated directly as
\[1 - F(\theta_i(t)) = k_i e^{-t} \quad \text{or} \quad \theta_i(t) = \Psi(1 - k_i e^{-t}) \] (46)
where \(\Psi = F^{-1} \) and \(k_i \)'s are arbitrary positive constants. Note that one can choose \(k_1 = 1 \) by rescaling parameter \(t \).

Inserting into (44) yields
\[\varepsilon(t) = K e^{-t} + e^{-t} \int_{t_0}^{t} e^x \left(\sum_{i=1}^{2} \Psi(1 - k_i e^{-x}) \right) dx - C'(q), \] (47)

\(^{19}\)Pointwise optimality should now be also meant with respect to the realization of \(\varepsilon \) also.

\(^{20}\)See John (1982) for instance.
where K is an arbitrary constant and $t_0 = \max\{\ln k_2, 0\}$ since $\Psi(\cdot)$ is defined over $[0, 1]$.

We are interested in defining the trace of integral surfaces on the hyperplane $\varepsilon = 0$ to select robust equilibria. Then, it must be that $q(\theta_1, \theta_2, 0)$ (denoted thereafter $q(\theta_1, \theta_2)$ to simplify notation) satisfies:

$$C'(q(\theta_1, \theta_2)) = Ke^{-t} + e^{-t}\int_{t_0}^{t} e^{x} \left(\sum_{i=1}^{2} \Psi(1 - k_i e^{-x})\right) dx$$

with θ_1, θ_2 and t are linked through (46).

Eliminating t and k_2, we get the following family of solutions parametrized by the one-dimensional parameter K:

$$C'(q(\theta_1, \theta_2)) = (1 - F(\theta_1)) \left\{ K + \int_{0}^{-\ln(1 - F(\theta_1))} e^{x} \left(\Psi(1 - e^{-x}) + \Psi \left(1 - \frac{1 - F(\theta_2)}{1 - F(\theta_1)} e^{-x}\right)\right) dx \right\},$$

for $\theta_2 \geq \theta_1$ (i.e., above the 45 degree line) so that $k_2 \leq 1$.

To better understand the structure of those solutions, let us compute their values $q(\theta, \theta) = Q(\theta)$ along the ray $\theta_1 = \theta_2 = \theta$:

$$C'(Q(\theta)) = (1 - F(\theta)) \left\{ K + 2 \int_{0}^{-\ln(1 - F(\theta))} e^{x} \Psi(1 - e^{-x}) dx \right\}.$$

Integrating by parts and changing variables, we finally obtain:

$$C'(Q(\theta)) = K'(1 - F(\theta)) + 2 \left(\theta - (1 - F(\theta)) \int_{\theta}^{\bar{\theta}} \frac{dx}{1 - F(x)} \right)$$

for some K'. Such a solution is always monotonically increasing in θ on $[\theta, \bar{\theta}]$ when $K' \leq 0$.

Proposition 7: There exists a one-dimensional set of equilibrium outputs which are robust to perturbations of the agent’s cost function. Within that set, the equilibrium outputs on the ray $\theta_1 = \theta_2 = \theta$ can be ranked with a higher output $Q_0(\theta)$ being defined by (36).

Of course $Q_0(\theta) \leq q^*(\theta, \theta)$ because of free-riding between principals. However, there are no distortions at both sides of the type interval, $Q_0(\bar{\theta}) = q^*(\bar{\theta}, \bar{\theta})$ and $Q_0(\bar{\theta}) = q^*(\bar{\theta}, \bar{\theta})$.

21 Note that for $t \to +\infty$, all solutions to (46)-(47) converge towards $(\bar{\theta}, \bar{\theta}, 2\bar{\theta} - C'(q))$.

22 This can be seen by using L’hôpital’s rule since

$$\lim_{\theta \to \bar{\theta}} (1 - F(\theta)) \int_{\theta}^{\bar{\theta}} \frac{dx}{1 - F(x)} = \lim_{\theta \to \bar{\theta}} \frac{1 - F(\theta)}{f(\theta)} = 0.$$
Interestingly, the equilibria selected through interim efficiency (Proposition 6) and the Pareto-dominating one which is robust to perturbations are identical on the 45 degree line. Tedious computations show nevertheless that the two equilibria differ off the diagonal. In that case, interim efficiency and robustness to perturbations may conflict off the diagonal.

Remark 6: Importantly, our selection device yields an allocation $q_0(\theta_1, \theta_2)$ which can be computed for any distributions $F(\cdot)$ whereas interim efficiency is explicitly obtained only with restrictive assumptions on those distributions. Our selection device is thus applicable in a broader range of environments.

Remark 7: It is worth mentioning that perturbations could come from the presence of an extra principal whose preferences for the public good ϵq are observable only by the agent.

Remark 8: Think about an econometrician having observed data (marginal contributions and outputs), aware of the structure of the game and willing to estimate which equilibrium is played among those presented in Section 4. This econometrician would like to introduce some random shock exactly as we did above and would certainly estimate the robust equilibrium allocation.

The special case of a 0-1 project: As an application, consider the special case of a 0-1 project whose unit cost is c as in Laussel and Palfrey (2003). We assume that the principals’ valuations are drawn in $[0, 1]$ and that $c < 2$ so that, under complete information, it would be optimal to make the project if and only if both principals have a sufficiently high valuation, namely $\theta_1 + \theta_2 \geq c$. The quantity q is now interpreted as the probability of building the project.

Using (36), the boundary of the area where the project is done is defined implicitly above the bissectrice $\theta_1 = \theta_2$ by the curve:

$$c = (1 - F(\theta_1)) \int_0^{-\ln(1-F(\theta_1))} e^x \left(\Psi(1 - e^{-x}) + \Psi \left(1 - \frac{1 - F(\theta_2)}{1 - F(\theta_1)} e^{-x} \right) \right) dx,$$

for $\theta_2 \geq \theta_1$ and a symmetric expression for $\theta_2 \leq \theta_1$.

It is easy to check that the line which separates the areas where the project is either done or not crosses the horizontal axes $\theta_2 = 1$ for θ_1^* which solves:

$$c = (1 - F(\theta_1^*)) \int_0^{-\ln(1-F(\theta_1^*))} e^x [\Psi(1 - e^{-x}) + 1] dx.$$

For a uniform distribution, we find

$$c = 2\theta^* + (1 - \theta^*) \ln(1 - \theta^*)$$

and thus $1 > \theta^* > \frac{\epsilon}{2}$ necessarily.

\[22\] Consistently with Proposition 7, we select $K' = 0$.

7 Mechanism Design Approach

In this section, we propose an alternative approach to characterize the pointwise optimal equilibria of the common agency game using mechanism design techniques. This alternative approach illustrates the role of the nonlinear contribution of any given principal in simultaneously screening the other principal’s type and signaling his own to the agent.

Viewing the strategy of each principal as a choice within a menu \(\{t(q, \hat{\theta}_i) \}_{\hat{\theta}_i \in \Theta} \) as we did so far and writing down the condition for incentive compatibility may a priori entails a loss of generality if we want to describe the whole set of equilibria when principals are unrestricted in the mechanisms they may offer. Indeed, a given principal might like to deviate to a more complex mechanism than a nonlinear contribution schedule. In this section, we show that this is indeed not the case. We will describe explicitly \(P_i \)’s best-response to \(P_{-i} \)’s own offer within the largest class of mechanisms available and show that it can actually be implemented as a contribution schedule.

For any fixed nonlinear schedule offered by principal \(P_i \), the design of \(P_{-i} \)’s own contribution is an informed principal problem under private values. We know from Maskin and Tirole (1990) that, under risk-neutrality, there is no loss of generality in having principal \(P_{-i} \) offering a contract to the agent exactly as if the latter was informed on the principal’s type. Intuitively, the mechanism consisting in piling up the various contracts that would be signed by those different types if the agent was informed on \(P_{-i} \)’s preferences is incentive compatible from the principal’s point of view and achieves a lower bound on the principal’s payoffs. The key insight due to Maskin and Tirole (1990) is that, higher payoffs can only be achieved if the principal is risk-averse. This is obtained by pooling those contracts at the time of offering contracts and revealing the principal’s type at a later communication stage only. Pooling offers relaxes the agent’s incentive and participation constraints and improves risk-sharing among the different types of the principal. With risk-neutrality, this insurance motive disappears and the lowest bound on the principal’s payoff is also an upper bound. In that case, instead of offering a mechanism to the agent with a communication stage after contract’s acceptance, the principal is as well off revealing his type right away by offering only one contract. For each contribution offered by \(P_i \), \(P_{-i} \) has thus always in his best-response correspondence a separating menu of contributions.\(^{23}\)

\(^{23}\)The reader will recognize here a feature already found in Bernheim and Whinston (1986a)’s original paper. To refine with a truthfulness criterion among all equilibria of their common agency game under complete information, they indeed first notice that each principal has a best response which is truthful and thus justify that focusing at equilibria in truthful schedules is meaningful. We apply the same device to justify that focusing on equilibria where principals reveal their types through a separating offer is also meaningful.
between two contracting modes has no consequence. In our common agency environment instead, that seemingly innocuous difference in the timing of information revelation has a strategic value since it affects the way principal \(P_i \) will himself contract with the agent. Provided that \(P_{-i} \)’s offer reveals his type to the agent, \(P_i \) knows that he should design his contribution not only to signal his own type to the agent but also to screen \(P_{-i} \)’s type which is “endogenously” learned in equilibrium by the agent. This points at the major role that nonlinear contributions play in a common agency environment: learning over what Epstein and Peters (1999) and Peters (2001) would call market information; i.e., everything which is not known to a given principal and, most specifically in our context, the preferences of others.

We focus on pure strategy PBE with separating menus which reveal all information to the agent through contract offers. To compute \(P_i \)’s best response to any given \(P_{-i} \)’s nonlinear contribution \(t_{-i}(q, \theta_{-i}) \) within the largest space of possible mechanisms, we use the Revelation Principle.\(^{24}\) We may thus as well restrict the analysis to direct truthful revelation mechanisms \(\{t^D_1(\hat{\theta}_{-i}|\theta_i), q(\hat{\theta}_{-i}|\theta_i)\} \) where \(\hat{\theta}_{-i} \) is the agent’s report on \(\theta_{-i} \) (that he has learned through the revelation induced by \(P_{-i} \)’s offer). We will compute these direct revelation mechanisms as if \(\theta_i \) was known by the agent. Again, this is justified by our discussion above and the result of Maskin and Tirole (1990). The agent’s utility can then be written as:

\[
\hat{U}(\hat{\theta}_{-i}, \theta_{-i}|\theta_i) = t^D_1(\hat{\theta}_{-i}|\theta_i) + t_{-i}(q(\hat{\theta}_{-i}|\theta_i), \theta_{-i}) - C(q(\hat{\theta}_{-i}|\theta_i)).
\]

From incentive compatibility we get:

\[
U(\theta_{-i}|\theta_i) = \hat{U}(\hat{\theta}_{-i}, \theta_{-i}|\theta_i) = \max_{\hat{\theta}_{-i}} \hat{U}(\hat{\theta}_{-i}, \theta_{-i}|\theta_i).
\]

We assume that \(t_{-i}(q, \theta_{-i}) \) is twice differentiable and satisfies SMP. Using standard techniques, we get:

- \(q(\theta_{-i}|\theta_i) \) is monotonically increasing and thus almost everywhere differentiable with respect to \(\theta_{-i} \) with,

\[
\frac{\partial q}{\partial \theta_{-i}}(\theta_{-i}|\theta_i) \geq 0 \quad \text{a.e.,}
\]

- \(U(\theta_{-i}|\theta_i) \) is almost everywhere differentiable in \(\theta_{-i} \) with

\[
\frac{\partial U}{\partial \theta_{-i}}(\theta_{-i}|\theta_i) = \frac{\partial t_{-i}}{\partial \theta_{-i}}(q(\theta_{-i}|\theta_i), \theta_{-i}).
\]

\(^{24}\)See Martimort and Stole (2002, 2003) for this way of applying the Revelation Principle to compute best response of pure strategy equilibria in common agency games.
At a best-response to $t_{-i}(q, \theta_{-i})$, P_i with type θ_i must solve the following problem:

$$(P_i) : \max_{\{U(\cdot|\theta_i), q(\cdot|\theta_i)\}} E[\theta_i q(\cdot|\theta_i) + t_{-i}(q(\cdot|\theta_i), \cdot) - C(q(\cdot|\theta_i)) - U(\cdot|\theta_i)],$$

subject to (50)-(51) and

$$U(\theta_{-i}|\theta_i) \geq 0, \text{ for all } \theta_{-i} \in \Theta.$$ \hspace{1cm} (52)

where (53) is the agent’s ex post participation which guarantees that he makes a positive profit for all preference profiles (θ_i, θ_{-i}).

A solution to (P_i) is an allocation $\{U(\theta_{-i}|\theta_i), q(\theta_{-i}|\theta_i)\}$ or equivalently a direct revelation mechanism $\{t_i^D(\theta_{-i}|\theta_i), q(\theta_{-i}|\theta_i)\}$ (we omit the dependence on $t_{-i}(q, \theta_{-i})$) from which we can reconstruct a nonlinear contribution $t_i(q, \theta_i)$ when $q(\theta_{-i}|\theta_i)$ is invertible. Of course, since all problems (P_i) have the same constrained set whatever θ_i, the menu $\{t_i(q, \theta_i)\}_{\theta_i \in \Theta}$ obtained is incentive compatible from principal P_i’s point of view.

Proposition 8: Provided that (50) holds, an equilibrium with separating contributions satisfies (8) and (9) and is thus pointwise optimal.

Comparing with the more direct approach taken in Proposition 1, we observe that the equilibria with separating contributions describe indeed the pointwise optimal allocations that we selected in Section 3. By the same token, it is easy to see that the equilibria satisfying the weaker condition (6) correspond in fact to cases where a subset S of the principals P_{-i} pool and offer the whole set of contributions $\{t_{-i}(q, \theta_{-i})\}_{\theta_{-i} \in S}$. Following these pooling offers, the agent learns nothing on principal P_{-i} when his type lies in set S and P_i cannot learn these types through screening.

Proposition 8 shows thus that the focus on pointwise optimal allocations is a rather natural requirement. It comes immediately from the fact that each principal may as well reveal truthfully his type to the agent through his mere offer of a contract at a best response.

8 Conclusion

In this paper, we analyzed a common agency game privately informed principals with, in mind, the objectives of checking whether the earlier lessons of common agency games under complete information are in fact robust and of extending their insights. In that respect, our results leave us with contrasted feelings. Under asymmetric information, incentive compatibility conditions on the principals replace the “truthfulness” requirement used in the earlier literature but far from helping in selecting an equilibrium allocation, it
still generates a multiplicity of outcomes. “Almost anything” is an equilibrium allocation provided that this allocation leads to under-provision of the public good below the first-best. Free-riding and ex post inefficiency are thus pervasive in common agency games under asymmetric information.

Nevertheless, a few more optimistic insights emerge from our analysis. First, we have been able to specify conditions under which equilibria of the common agency game yield interim efficient allocations. This suggests that modelers could sometimes forget about the complexity of the decentralized approach and instead look at a centralized mechanism design approach provided that the social weights on the different types of principals are conveniently specified. Extending the conditions under which that decentralization result obtains seems a fruitful alley for research. Second, if one is not particularly comfortable with an efficiency criterion, one may prefer to select among all equilibrium allocations those which are robust to random perturbations of the game. Such allocations exist and can be characterized. Finally, the class of pointwise optimal equilibria of common agency games under asymmetric information can be easily analyzed with standard mechanism design techniques and is robust in the sense that a principal would not like to deviate to a larger space of mechanisms to improve his payoff.

Our model should certainly be extended along several directions. First, we should analyze also delegated common agency games. Taking a mechanism design approach in computing best-responses, this possibility introduces a type-dependent participation constraint which affects the distribution of surplus between principals. An open question is whether it also affects the equilibrium allocations. Second, other information structures could possibly be analyzed. One may think the case of correlation between the principals’ types and of the case where the agent has also some private information on his own. Third, following Maskin and Tirole (1990), we know that risk-aversion on the principals’ side forces pooling in informed principal games. This may significantly change equilibrium patterns in common agency environments. Fourth, the robust equilibrium we have selected could be amenable to econometric analysis. Lastly, in other institutional contexts, allocations do not result from a well-centralized mechanisms but come out of the equilibria among various decentralized mechanisms. One may think of multi-unit auctions on financial or electricity markets for instance. It would be nice to extend the approach taken in this paper to these environments. We hope to investigate some of these issues in future research.

25This could be useful in view of the recent vintage of empirical works having taken the Grossman and Helpman (1994) political economy model to estimate policy distortions. See Gawande and Bandyopadhyay (2000) for instance.
References

Appendix

Proof of Lemma 1: Let us fix \((\theta_i, \theta_{-i})\) and consider \(\theta_i > \theta_i'\). By definition, we have

\[
t(q(\theta_i, \theta_{-i}), \theta_i) + t(q(\theta_i, \theta_{-i}), \theta_{-i}) - c(q(\theta_i, \theta_{-i})) \geq t(\tilde{q}, \theta_i) + t(\tilde{q}, \theta_{-i}) - c(\tilde{q}), \quad \forall \tilde{q}.
\]

Thus,

\[
t(q(\theta_i, \theta_{-i}), \theta_i) - t(\tilde{q}, \theta_i) \geq t(\tilde{q}, \theta_{-i}) - c(\tilde{q}) - [t(q(\theta_i, \theta_{-i}), \theta_{-i}) - c(q(\theta_i, \theta_{-i}))]
\]

for all \(\tilde{q} \leq q(\theta_i, \theta_{-i})\).

Using (SMP), the l.h.s. above is lower than \(t(q(\theta_i, \theta_{-i}), \theta_i') - t(\tilde{q}, \theta_i')\) for all \(\tilde{q} \leq q(\theta_i, \theta_{-i})\). Then \(q(\theta_i, \theta_{-i}) \geq q(\theta_i', \theta_{-i})\) and \(q(\cdot)\) is almost everywhere differentiable in each of its arguments.

\[
\Box
\]

Proof of Proposition 1: Using (5), we get the following first-order derivative of \(\Phi(\cdot)\) with respect to \(\hat{\theta}_i\):

\[
\frac{\partial \Phi}{\partial \theta_i}(\hat{\theta}_i, \theta_i) = E\left[\left(\theta_i - \frac{1 - F(\cdot)}{f(\cdot)} \left(C'(q(\hat{\theta}_i, \cdot)) - \frac{\partial p}{\partial q}(q(\hat{\theta}_i, \cdot), \cdot)\right)\right) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot)\right]
\]

\[
- E\left[\frac{1 - F(\cdot)}{f(\cdot)} (C'(q(\hat{\theta}_i, \cdot)) - p(q(\hat{\theta}_i, \cdot), \cdot)) \frac{\partial^2 q}{\partial \theta_i \partial \theta_{-i}}(\hat{\theta}_i, \cdot)\right]
\]

\[
- p(q(\hat{\theta}_i, \theta), \hat{\theta}_i) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \theta) - \frac{\partial t}{\partial \theta_i}(q(\hat{\theta}_i, \theta), \hat{\theta}_i).
\]

(A1)

Integrating by parts the second term yields

\[
E\left[\frac{1 - F(\cdot)}{f(\cdot)} (C'(q(\hat{\theta}_i, \cdot)) - p(q(\hat{\theta}_i, \cdot), \cdot)) \frac{\partial^2 q}{\partial \theta_i \partial \theta_{-i}}(\hat{\theta}_i, \cdot)\right] =
\]

\[
(1 - F(\cdot)) (C'(q(\hat{\theta}_i, \cdot)) - p(q(\hat{\theta}_i, \cdot), \cdot)) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot) \bigg|_{\theta = \hat{\theta}_i}
\]

\[
- E\left[\frac{1 - F(\cdot)}{f(\cdot)} \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot)\left(\frac{\partial q}{\partial \theta_{-i}}(\hat{\theta}_i, \cdot) \left(C''(q(\hat{\theta}_i, \cdot)) - \frac{\partial p}{\partial q}(q(\hat{\theta}_i, \cdot), \cdot)\right) + \frac{\partial p}{\partial \theta_i}(q(\hat{\theta}_i, \cdot), \cdot)\right)\right]
\]

\[
+ E\left[C''(q(\hat{\theta}_i, \cdot)) - p(q(\hat{\theta}_i, \cdot), \cdot)\right]
\]

\[
= -p(q(\hat{\theta}_i, \theta), \hat{\theta}_i) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \theta)
\]

-E \left[\frac{1 - F(\cdot)}{f(\cdot)} \left\{ \left(C''(q(\hat{\theta}_i, \cdot)) - \frac{\partial p}{\partial q}(q(\hat{\theta}_i, \cdot), \cdot) \right) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot) \frac{\partial q}{\partial \theta_{-i}}(\hat{\theta}_i, \cdot) + \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot) \frac{\partial p}{\partial \theta_i}(q(\hat{\theta}_i, \cdot), \cdot) \right\} \right] \\
+ E \left[C'(q(\hat{\theta}_i, \cdot)) - p(q(\hat{\theta}_i, \cdot), \cdot) \right]. \\ (A2)

where the last equality comes from (2) for \(\theta_1 = \hat{\theta}_i \) and \(\theta_2 = \theta_i \).

Moreover, it must be that the agent’s payoff with type \(\hat{\theta}_i \) when \(\theta_{-i} = \theta_i \) is zero

\[t(q(\hat{\theta}_i, \theta), \hat{\theta}_i) + t(q(\hat{\theta}_i, \theta), \theta) = C(q(\hat{\theta}_i, \theta)), \text{ for all } \hat{\theta}_i. \]\n
(A3)

Differentiating w.r.t. \(\hat{\theta}_i \) yields:

\[\left(p(q(\hat{\theta}_i, \theta), \hat{\theta}_i) + p(q(\hat{\theta}_i, \theta), \theta) - C'(q(\hat{\theta}_i, \theta)) \right) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \theta) + \frac{\partial t}{\partial \theta_i}(q(\hat{\theta}_i, \theta), \hat{\theta}_i) = 0 \]

and thus using (2),

\[\frac{\partial t}{\partial \theta_i}(q(\hat{\theta}_i, \theta), \hat{\theta}_i) = 0 \text{ for all } \hat{\theta}_i. \] (A4)

Inserting into (A1) yields:

\[\frac{\partial \Phi}{\partial \theta_i}(\hat{\theta}_i, \theta_i) = E \left[\frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot) \left(\theta_i + p(q(\hat{\theta}_i, \cdot), \cdot) - C'(q(\hat{\theta}_i, \cdot)) \right) - \frac{1 - F(\cdot)}{f(\cdot)} \frac{\partial p}{\partial \theta_{-i}}(q(\hat{\theta}_i, \cdot), \cdot) \right] \]. (A5)

For \(\hat{\theta}_i = \theta_i \) being the optimal report, i.e., \(\frac{\partial \Phi}{\partial \theta_i}(\theta_i, \theta_i) = 0 \), we obtain the first-order condition (6).

The second-order condition for the principal’s problem is

\[\left. \frac{\partial^2 \Phi}{\partial \theta_i^2}(\hat{\theta}_i, \theta_i) \right|_{\theta_i = \hat{\theta}_i} \leq 0. \]

But using (A5) and the envelope theorem and taking the total derivative of (A4) with respect to \(\hat{\theta}_i \), we get

\[\frac{\partial^2 \Phi}{\partial \theta_i^2}(\theta_i, \theta_i) = -E \left[\frac{\partial q}{\partial \theta_i}(\theta_i, \cdot) \right], \]

hence (7).

\textbf{Proof of Lemma 2:} The proof of this lemma reduces to show that the schedule satisfying (8) and (9) is not only locally incentive compatible but also globally. From (A5) and (9) we have that

\[\Phi(\theta_i, \theta_i) - \Phi(\hat{\theta}_i, \theta_i) = \int_{\theta_i}^{\theta_i} \frac{\partial \Phi}{\partial \theta_i}(x, \theta_i) dx = \int_{\theta_i}^{\theta_i} \left[\frac{\partial \Phi}{\partial \theta_i}(x, \theta_i) - \frac{\partial \Phi}{\partial \theta_i}(x, x) \right] dx \]

31
By (9) this last expression is always non-negative.

Proofs of Propositions 2 and 3: Fix \(\psi(q, \theta) \) and \(\tilde{\theta} \) in \([\theta, \tilde{\theta}]\) such that \(\psi(q, \tilde{\theta}) = \tilde{\theta} \) and \(q(\tilde{\theta}, \tilde{\theta}) = q \). From (19) taken for \(\psi(q, \theta) \), we have:

\[
\frac{1 - F(\theta)}{f(\theta)} \frac{\partial p}{\partial \theta}(q, \theta) = \psi(q, \theta) - p(q, \theta)). \tag{A6}
\]

Using (18), we get (23). Still using (18) at \(\theta = \tilde{\theta} \), we obtain the initial condition (20).

Consider (23) and note that it can be rewritten as:

\[
\frac{\partial}{\partial \theta} [(1 - F(\theta))p(q, \theta)] = (\psi(q, \theta) - C'(q))f(\theta).
\]

Integrating yields

\[
(1 - F(\theta))p(q, \theta) = k + \int_{\theta}^{\tilde{\theta}} \psi(q, x)f(x)dx + C'(q)(1 - F(\theta)).
\]

But using (20), we get \(k = -\frac{C'(q)}{2}(1 - F(\tilde{\theta})) \) and finally:

\[
p(q, \theta) = C'(q) \left(1 - \frac{1 - F(\tilde{\theta})}{2(1 - F(\theta))} \right) + \frac{1}{1 - F(\theta)} \int_{\theta}^{\tilde{\theta}} \psi(q, x)f(x)dx. \tag{A7}
\]

We must check that \(\frac{\partial p}{\partial \theta}(q, \theta) > 0 \) over \([\theta, \tilde{\theta}]\) to have a SMP equilibrium. Then, because \(\frac{\partial \psi}{\partial \theta}(q, \theta) < 0 \) and from (18), we have

\[
\frac{\partial p}{\partial \theta}(q, \theta) = -\frac{\partial p}{\partial \theta}(q, \psi(q, \theta)) \frac{\partial \psi}{\partial \theta}(q, \theta) > 0
\]

also on \([\tilde{\theta}, \tilde{\theta}]\), by (23).

To guarantee \(\frac{\partial p}{\partial \theta}(q, \theta) > 0 \) on \([\theta, \tilde{\theta}]\), from (18) and (19) we must have

\[
\psi(q, \theta) + p(q, \theta) - C'(q) > 0
\]

on \([\theta, \tilde{\theta}]\).

Using (A7), this amounts to proving that

\[
B(\theta) = 2(1 - F(\theta))\psi(q, \theta) + 2 \int_{\theta}^{\tilde{\theta}} \psi(q, x)f(x)dx - (1 - F(\tilde{\theta}))C'(q)
\]

is positive over \([\theta, \tilde{\theta}]\).
Note that
\[B(\theta) = 2\frac{\partial \psi}{\partial \theta}(q, \theta)(1 - F(\theta)) \leq 0 \]
so that \(B(\theta) \) is decreasing over \([\hat{\theta}, \tilde{\theta}]\) and thus minimized at \(\hat{\theta} \) for \(B(\hat{\theta}) = (1 - F(\hat{\theta}))(2\hat{\theta} - C'(q)) > 0 \). Hence, \(\frac{\partial p}{\partial \theta}(q, \theta) > 0 \) over \([\hat{\theta}, \tilde{\theta}]\).

From that, we immediately obtain that \(\psi(q, \theta) \geq p(q, \psi(q, \theta)) \) on \([\hat{\theta}, \tilde{\theta}]\) and by differentiating (19) that \(\frac{\partial p}{\partial \theta}(q, \theta) > 0 \) also on \([\tilde{\theta}, \bar{\theta}]\) which implies that \(p(\theta) \leq \theta \) on \([\tilde{\theta}, \bar{\theta}]\) also.

Proof of Corollary 2: From Corollary 1, we know that \(C'(q(\theta_1, \theta_2)) \leq \theta_1 + \theta_2 \), moreover, from construction in Proposition 3, we have \(\frac{\partial q}{\partial \theta_i} > 0 \). Hence the result follows.

Proof of Proposition 5: If \(b(\cdot) \) is linear, (30) amounts to:
\[
\sum_{i=1}^{2} b(\theta_i) = \sum_{i=1}^{2} \left(2\theta_i - \frac{1}{1 - F(\theta_i)} \int_{\theta_i}^{\tilde{\theta}} xf(x)dx \right),
\]
which admits the (unique) solution \(b(\cdot) \) defined by
\[
b(\theta) = 2\theta - \frac{1}{1 - F(\theta)} \int_{\theta}^{\tilde{\theta}} xf(x)dx = \theta - \frac{1}{1 - F(\theta)} \int_{\theta}^{\tilde{\theta}} (1 - F(x))dx.
\]

When \(1 - F(\theta) = \left(\frac{\bar{\theta} - \theta}{\bar{\theta} - \tilde{\theta}}\right)^\beta \), we get indeed linearity
\[
b(\theta) = \frac{\beta + 2}{\beta + 1} \theta - \frac{\tilde{\theta}}{\beta + 1}
\]
which finally yields (31).

From this, we also get
\[
1 - \tilde{\alpha}(\theta) = \frac{f(\theta)}{(1 - F(\theta))^2} \int_{\theta}^{\tilde{\theta}} (1 - F(x))dx
\]
and
\[
\int_{\theta}^{\tilde{\theta}} \alpha(x)f(x)dx = 1 - F(\theta) - \frac{f(\theta)}{1 - F(\theta)} \int_{\theta}^{\tilde{\theta}} (1 - F(x))dx.
\]

Note that \(\int_{\theta}^{\tilde{\theta}} \alpha(x)f(x)dx < 1 \) so that a positive social weight is necessarily given to the agent.

Moreover, we get:
\[
\alpha(\theta)f(\theta) = \frac{d}{d\theta} \left(\frac{f(\theta)}{1 - F(\theta)} \right) \int_{\theta}^{\tilde{\theta}} (1 - F(x))dx
\]
and finally $\alpha(\theta) = \frac{1}{\beta_{\theta}}$ for all θ in $[\underline{\theta}, \bar{\theta}]$. Finally, $\psi(q, \theta)$ is directly obtained from (31) and $p(q, \theta)$ is derived from (12).

Proof of Proposition 6: We can identity conditions (26) and (29) by setting

$$1 - \tilde{\alpha}(\theta_i) = \frac{\partial q}{\partial \theta_i} \left(\sum_{i=1}^{2} \frac{\partial p}{\partial q}(q, \theta_i) - C''(q) \right).$$

By this, we get along an isoquant q:

$$-\frac{\partial \psi}{\partial \theta_1} = \frac{\partial q}{\partial \theta_1} \frac{1 - \tilde{\alpha}(\theta_1)}{1 - \tilde{\alpha}(\psi(q, \theta_1))}.$$ \hspace{1cm} (A8)

For an equilibrium to be interim efficient, we must have

$$\psi(q, \theta_1) = b - 1 - \frac{C'(q) - b(\theta_1)}{f(\theta)}$$

and thus

$$-\frac{\partial \psi}{\partial \theta_1} = \frac{\dot{b}(\theta_1)}{b(\psi(q, \theta_1))}.$$ \hspace{1cm} (A9)

Identifying (A8) and (A9), one possibility is to set $\dot{b}(\theta) = 1 - \tilde{\alpha}(\theta)$. Inserting this expression in the definition of $b(\cdot)$ yields the differential equation:

$$\dot{b}(\theta) = \theta - 1 - \frac{F(\theta)}{f(\theta)} \dot{b}(\theta),$$ \hspace{1cm} (A10)

with the boundary condition $b(\bar{\theta}) = \bar{\theta}$.

Solving (A10) gives

$$\dot{b}^{IE}(\theta) = k(1 - F(\theta)) + \theta - (1 - f(\theta)) \int_{\underline{\theta}}^{\theta} \frac{dx}{1 - F(x)},$$ \hspace{1cm} (A11)

with $k \leq 0$ to insure that $\dot{b}^{IE}(\theta) > 0$ everywhere on $[\underline{\theta}, \bar{\theta}]$. For $k = 0$, we get the less distorted outcome in the ex post sense.

We have also

$$1 - \tilde{\alpha}(\theta) = \dot{b}^{IE}(\theta) = f(\theta) \int_{\underline{\theta}}^{\theta} \frac{dx}{1 - F(x)}.$$ \hspace{1cm} (A12)

$\tilde{\alpha}(\theta)$ remains positive as long as $1 \geq A(\theta) = f(\theta) \int_{\underline{\theta}}^{\theta} \frac{dx}{1 - F(x)}$.

One can show that $A(\theta)$ remains increasing as long as $A(\theta) < 1$. Hence, under the assumption of the proposition, $\tilde{\alpha}(\theta)$ remains positive.

Moreover, by differentiating in θ, we have:

$$\alpha(\theta) = 2 - f(\theta) \int_{\underline{\theta}}^{\theta} \frac{dx}{1 - F(x)} + \frac{\dot{f}(\theta)(1 - F(\theta))}{f(\theta)} \int_{\underline{\theta}}^{\theta} \frac{dx}{1 - F(x)}.$$
When the monotone hazard rate property holds, we have:
\[
\frac{f'(\theta)(1 - F(\theta))}{f(\theta)} > -f(\theta)
\]
and thus
\[
\alpha(\theta) \geq 2(1 - A(\theta)) > 0
\]
ensuring that all social weights are positive. □

Derivation of (40): Observe that now:
\[
\Phi(\hat{\theta}_i, \theta_i) = E[\theta_i q(\hat{\theta}_i, \cdot) - t(q(\hat{\theta}_i, \cdot), \hat{\theta}_i)]
\]
where \(q(\hat{\theta}_i, \cdot)\) is meant for \(q(\hat{\theta}_i, \theta_i, \varepsilon)\) and \(E[\cdot]\) denotes now the expectation operator with respect to the joint distribution of \(\theta_{-i}\) and \(\varepsilon\) which has density \(f(\theta_{-i})h(\varepsilon)\).

Proceeding as in the main text, we get again:
\[
\Phi(\hat{\theta}_i, \theta_i) = E\left[\left(\theta_i q(\hat{\theta}_i, \cdot) - \frac{1 - F(\cdot)}{f(\cdot)} \left(C'(q(\hat{\theta}_i, \cdot)) - p(q(\hat{\theta}_i, \cdot), \cdot)\right)\right) \frac{\partial q}{\partial \theta_i}(\hat{\theta}_i, \cdot)\right] - E_{\varepsilon}[t(q(\hat{\theta}_i, \theta_i, \varepsilon), \hat{\theta}_i)],
\]
where \(E_{\varepsilon}[\cdot]\) denotes now the expectation operator with respect to the distribution of \(\varepsilon\). The proof then is similar to that of Proposition 1 once we replace (A3) by the participation constraint in expectation over \(\varepsilon\) since the agent accepts the contracts before the realization of \(\varepsilon\):
\[
E_{\varepsilon}[t(q(\hat{\theta}_i, \theta_i, \varepsilon), \hat{\theta}_i) + t(q(\hat{\theta}_i, \theta_i, \varepsilon), \hat{\theta}_i) - C(q(\hat{\theta}_i, \theta_i, \varepsilon))] = 0, \quad \text{for all } \hat{\theta}_i.
\]
(A13)
The optimality condition \(\frac{\partial \Phi}{\partial \theta_i}(\theta_i, \theta_i) = 0\) and the corresponding second-order condition \(\frac{\partial^2 \Phi}{\partial \theta_i^2}(\theta_i, \theta_i) \leq 0\) can be handled as in the proof of Proposition 1.

Proof of Proposition 8: For equilibria where \(\frac{\partial t_{-i}}{\partial \theta_{-i}}(q, \theta_{-i}) \geq 0\), \(U(\theta_{-i}|\theta_i)\) is increasing and (51) is binding at \(\theta_{-i} = \theta_i\). Integrating by parts, we obtain:
\[
E[U(\cdot|\theta_i)] = E\left[\frac{1 - F(\cdot)}{f(\cdot)} \frac{\partial t_i}{\partial \theta_{-i}}(q(\cdot|\theta_i), \cdot)\right].
\]
Inserting into (52) and optimizing with respect to \(q(\theta_{-i}|\theta_i)\) yields (8).

Provided that \(\frac{\partial q}{\partial \theta_{-i}}(\theta_{-i}|\theta_i) \geq 0\), this gives the pointwise optimal output. □

Non-Differentiable Equilibria: For the sake of completeness, we present in this section a class of non-differentiable equilibria. To analyze those equilibria, it turns out that the most useful procedure is based on the *supply profile* due to Wilson (1993).\(^{26}\)

\(^{26}\)Wilson (1993) is interested in nonlinear pricing and thus consider in fact *demande profiles.*
Consider a principal \(P_i \) with type \(\theta_i \) willing to pay a marginal contribution \(p_i \) for \(q \) units of the public good. This principal has to evaluate the measure of types of principal \(P_{-i} \) who are also willing to contribute enough so that this amount is produced.

Formally, if \(P_{-i} \) follows the strategy \(p_{-i}(q, \cdot) \), the likelihood that \(q \) units of public good are produced is

\[
\text{proba} \left\{ p_{-i}(q, \hat{\theta}_{-i}) + p_i \geq C'(q) \right\} = 1 - G_{-i}(C'(q) - p_i|q)
\]

where \(G_{-i}(\cdot|q) \) is the cumulative distribution of the marginal contribution of principal \(P_{-i} \) for \(q \) units of the public good. Given that residual supply schedule, \(P_i \) acts in fact as a monopsonist and offers a marginal contribution for \(q \) units of the public good which solves:

\[
p_i(q, \theta_i) \in \arg \max_{p_i}(\theta_i - p_i)(1 - G_{-i}(C'(q) - p_i|q)).
\]

These best responses for each \(\theta_i \) induce a distribution of marginal contributions \(G_i(\cdot|q) \) for principal \(P_i \). A symmetric equilibrium of the common agency game is thus a family of distributions (one for each value of \(q \)) \(G(\cdot|q) \) which are fixed-points of these processes.

To find an interesting class of non-differentiable equilibria, it is in fact enough to specify marginal contributions having two steps and a threshold \(\theta^*(q) \) such that:

- for \(\theta \geq \theta^*(q) \), \(p(q, \theta) = \bar{p}(q) \);
- for \(\theta \leq \theta^*(q) \), \(p(q, \theta) = p(q) (< \bar{p}(q)) \).

As we will see below, the three functions \(\bar{p}(\cdot) \), \(p(\cdot) \) and \(\theta^*(\cdot) \) are linked altogether by some equilibrium conditions. Given a function \(\tilde{\theta}^*(q) \) (satisfying some properties to be made precise below), one can certainly find a two-step equilibrium (or the marginal contribution associated to it) using those conditions.

For a two-step symmetric equilibrium, let us describe the probability that \(q \) units of the public good are produced given a marginal contribution \(p_i \):

\[
\begin{align*}
G(C'(q) - p_i|q) &= 0 \quad \text{if} \quad p_i > C'(q) - \bar{p}(q) \\
G(C'(q) - p_i|q) &= F(\theta^*(q)) \quad \text{if} \quad C'(q) - \bar{p}(q) \leq p_i \leq C'(q) - \underline{p}(q) \\
G(C'(q) - p_i|q) &= 1 \quad \text{if} \quad p_i \leq C'(q) - \bar{p}(q)
\end{align*}
\]

where in first (last) case \(q \) units of the public good are (never) produced and the second case there is a probability \(1 - F(\theta^*(q)) \) to be produced.

For each quantity \(q \) and \(\theta_i \) a type for \(P_i \), \(P_i \)'s best response is to offer a marginal contribution \(\bar{p}(q) = C'(q) - \underline{p}(q) \) whenever

\[
\theta_i - C'(q) + \underline{p}(q) \geq \max_{C'(q) - \bar{p}(q) \leq p_i \leq C'(q) - \underline{p}(q)} (\theta_i - p_i)(1 - F(\theta^*(q))) \quad (A14)
\]

36
\[= (\theta_i - C'(q) + \bar{p}(q))(1 - F(\theta^*(q))).\]

The set of such types \(\theta_i\) is thus of the form \([\theta^*(q), \bar{\theta}]\) as requested by the structure postulated for the equilibrium.

At a symmetric two-step equilibrium, it must thus be that the two following conditions hold:

\[\bar{p}(q) + \underline{p}(q) = C'(q), \quad \text{(A15)}\]

and

\[\theta_i = \theta^*(q) \text{ solves (A14) as an equality, i.e., } \theta^*(q)F(\theta^*(q)) = \bar{p}(q)(2 - F(\theta^*(q)) - C'(q)(1 - F(\theta^*(q)))). \quad \text{(A16)}\]

For \(q\) such that \(\frac{C'(q)}{2} \leq \bar{p}(q) \leq \bar{\theta}\), (A17) defines uniquely \(\theta^*(q)\) in \([\bar{\theta}, \bar{\theta}]\). Alternatively, given an increasing schedule \(Q^\star(\theta)\) which admits an inverse \(\theta^*(q)\) which is almost everywhere differentiable, one can reconstruct \(\bar{p}(q)\) from (A17) and \(\underline{p}(q)\) from (A15). Note that \(\bar{p}(q)\) is such that \(\bar{p}(q) \geq \frac{C'(q)}{2}\).

Proposition 9: There exists multiplicity of equilibria with two-steps marginal contributions. For each \(Q^\star(\theta)\) monotonically increasing with \(Q^\star(\bar{\theta}) = q^\star(\bar{\theta}, \bar{\theta})\) and \(Q^\star(\theta) \leq q^\star(\theta, \theta)\), there exists an equilibrium described by (A15) and (A17).

Proof: The only thing to note is that for \(\theta_1 < \theta^*(q) \leq \theta_2\), \(P_2\) offers a marginal contribution \(\bar{p}(q)\) whereas \(P_1\) offers \(\underline{p}(q)\), leading to the choice of \(q\) units. Idem for \(\theta_2 \leq \theta^*(q) < \theta_1\) with the identity of the principals being reversed. When \(\theta_1 = \theta_2 = \theta^*(q)\), note that both principals are indifferent between paying \(\bar{p}(q)\) or \(\underline{p}(q)\) at the margin. Break this indifference with a lexicographic order in favor of principal \(P_1\) who pays indeed \(p(q)\) when both contributions are the same. Then the isoquant for \(q\) units cuts the diagonal at \(\theta_1 = \theta_2 = \theta^*(q)\). Note that (A17) and \(\bar{p}(q) \geq \frac{C'(q)}{2}\) imply that \(2\theta^*(q) \geq C'(q)\).

It is worth describing the isoquants corresponding to those non-differentiable equilibria. In fact, those curves are the reunion made of the horizontal segment \(\{\theta_1 \geq \theta^*(q)\}\) with the vertical segment \(\{\theta_2 \geq \theta^*(q)\}\). Those non-differentiable equilibria allows us to describe settings where isoquants are not strictly decreasing (\(\psi(q, \cdot)\) being not invertible).

Remark 9: Equilibria with more than two steps can also be constructed following the same kind of procedure.

Remark 10: Those non-differentiable equilibria are clearly not robust to the introduction of perturbations.
<p>| 502. | NONPARAMETRIC SPECIFICATION TESTS FOR CONDITIONAL DURATION MODELS - Marcelo Fernandes; Joachim Grammig – Setembro de 2003 – 42 págs. |
| 505. | ENDOGENOUS TIME-DEPENDENT RULES AND THE COSTS OF DISINFLATION WITH IMPERFECT CREDIBILITY - Marco Bonomo; Carlos Viana de Carvalho – Outubro de 2003 – 27 págs. |
| 507. | TESTING PRODUCTION FUNCTIONS USED IN EMPIRICAL GROWTH STUDIES - Pedro Cavalcanti Ferreira; João Victor Issler; Samuel de Abreu Pessoa – Outubro de 2003 – 8 págs. |
| 510. | OUTPUT CONVERGENCE IN MERCOSUR: MULTIVARIATE TIME SERIES EVIDENCE - Mariam Camarero; Renato G. Flôres Jr; Cecílio Tamarit – Outubro de 2003 – 36 págs. |
| 511. | ENDOGENOUS COLLATERAL - Aloísio Araújo; José Fajardo Barbachan; Mario R. Páscoa – Novembro de 2003 – 37 págs. |
| 514. | SPECULATIVE ATTACKS ON DEBTS AND OPTIMUM CURRENCY AREA: A WELFARE ANALYSIS - Aloísio Araujo; Márcia Leon – Novembro de 2003 – 50 págs. |
| 517. | O VALOR DA MOEDA E A TEORIA DOS PREÇOS DOS ATIVOS - Fernando de Holanda Barbosa – Dezembro de 2003 – 17 págs. |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>518</td>
<td>EMPRESÁRIOS NANICOS, GARANTIAS E ACESSO À CRÉDITO</td>
<td>Marcelo Côrtes Néri; Fabiano da Silva Giovanini</td>
<td>Dezembro de 2003</td>
<td>23</td>
</tr>
<tr>
<td>519</td>
<td>DESENHO DE UM SISTEMA DE METAS SOCIAIS</td>
<td>Marcelo Côrtes Néri; Marcelo Xerez</td>
<td>Dezembro de 2003</td>
<td>24</td>
</tr>
<tr>
<td>520</td>
<td>A NEW INCIDENCE ANALYSIS OF BRAZILIAN SOCIAL POLICIES USING MULTIPLE DATA SOURCES</td>
<td>Marcelo Côrtes Néri</td>
<td>Dezembro de 2003</td>
<td>55</td>
</tr>
<tr>
<td>521</td>
<td>AN INTRA-HOUSEHOLD APPROACH TO THE WELFARE COSTS OF INFLATION</td>
<td>Rubens Penha Cysne</td>
<td>Janeiro de 2004</td>
<td>16</td>
</tr>
<tr>
<td>522</td>
<td>CENTRAL LIMIT THEOREM FOR ASYMMETRIC KERNEL FUNCTIONALS</td>
<td>Marcelo Fernandes; Paulo Klinger Monteiro</td>
<td>Fevereiro de 2004</td>
<td>23</td>
</tr>
<tr>
<td>523</td>
<td>THE TRADE-OFF BETWEEN INCENTIVES AND ENDOGENOUS RISK</td>
<td>Aloísio Araujo; Humberto Moreira; Marcos H. Tsuchida</td>
<td>Fevereiro de 2004</td>
<td>21</td>
</tr>
<tr>
<td>524</td>
<td>DO DIVIDENDS SIGNAL MORE EARNINGS ?</td>
<td>Aloísio Araujo; Humberto Moreira; Marcos H. Tsuchida</td>
<td>Fevereiro de 2004</td>
<td>26</td>
</tr>
<tr>
<td>525</td>
<td>Biased managers, organizational design, and incentive provision</td>
<td>Cristiano M. Costa; Daniel Ferreira; Humberto Moreira</td>
<td>Fevereiro de 2004</td>
<td>11</td>
</tr>
<tr>
<td>526</td>
<td>Land taxes in a Latin American context</td>
<td>Juliano J. Assunção; Humberto Moreira</td>
<td>Fevereiro de 2004</td>
<td>19</td>
</tr>
<tr>
<td>527</td>
<td>Indicadores coincidentes de atividade econômica e uma cronologia de recessões para o Brasil</td>
<td>Angelo J. Mont’alverne Duarte; João Victor Issler; Andrei Spacov</td>
<td>Fevereiro de 2004</td>
<td>41</td>
</tr>
<tr>
<td>528</td>
<td>TESTING UNIT ROOT BASED ON PARTIALLY ADAPTIVE ESTIMATION</td>
<td>Zhijie Xiao; Luiz Renato Lima</td>
<td>Março de 2004</td>
<td>27</td>
</tr>
<tr>
<td>529</td>
<td>DO SHOCKS PERMANENTLY CHANGE OUTPUT? LOCAL PERSISTENCY IN ECONOMIC TIME SERIES</td>
<td>Luiz Renato Lima; Zhijie Xiao</td>
<td>Março de 2004</td>
<td>21</td>
</tr>
<tr>
<td>530</td>
<td>A NEW PERSPECTIVE ON THE PPP HYPOTHESIS</td>
<td>Soyoung Kim; Luiz Renato Lima</td>
<td>Março de 2004</td>
<td>36</td>
</tr>
<tr>
<td>531</td>
<td>TRADE LIBERALIZATION AND INDUSTRIAL CONCENTRATION: EVIDENCE FROM BRAZIL</td>
<td>Pedro Cavalcanti Ferreira; Giovanni Facchini</td>
<td>Março de 2004</td>
<td>25</td>
</tr>
<tr>
<td>532</td>
<td>REGIONAL OR EDUCATIONAL DISPARITIES? A COUNTERFACTUAL EXERCISE</td>
<td>Angelo José Mont’Alverne; Pedro Cavalcanti Ferreira; Márcio Antônio Salvato</td>
<td>Março de 2004</td>
<td>25</td>
</tr>
<tr>
<td>533</td>
<td>INFLAÇÃO: INÉRCIA E DÉFICIT PÚBLICO</td>
<td>Fernando de Holanda Barbosa</td>
<td>Março de 2004</td>
<td>16</td>
</tr>
<tr>
<td>534</td>
<td>A INÉRCIA DA TAXA DE JUROS NA POLÍTICA MONETÁRIA</td>
<td>Fernando de Holanda Barbosa</td>
<td>Março de 2004</td>
<td>13</td>
</tr>
</tbody>
</table>