The risk-properties of human capital and the design of government policies

Carlos E. da Costa
Lucas J. Maestri

Julho de 2004

Carlos E. da Costa†, Getulio Vargas Foundation
Lucas J. Maestri‡, Getulio Vargas Foundation

July 7, 2004

Abstract

Whether human capital increases or decreases wage uncertainty is an open question from an empirical standpoint. Yet, most policy prescriptions regarding human capital formation are based on models that impose riskiness on this type of investment. In a two period and finite type optimal income taxation problem we derive prescriptions that are robust to the risk characteristics of human capital: savings should be discouraged, human capital investments encouraged and both types of investment driven to an efficient level from an aggregate perspective. These prescriptions are also robust to the assumptions regarding what choices are observed, despite policy instruments being not.

Keywords: Education; Optimal Taxation; Endogenous Policy Instruments

JEL Classification: H21, H24

1 Introduction

The risk characteristics of human capital investment and the properties of optimal tax policies are intimately linked since, at least, the pioneering work of Eaton and Rosen (1980).

*We thank Bev Dahlby, Luis Braido, Humberto Moreira and Daniel Gottlieb for their invaluable comments. All errors are our own.
†E-mail: cdacosta@fgv.br.
‡E-mail: lmaestri@fgvmail.br
In a two period representation of life-cycle choices, human capital is assumed to be risky, and insurance markets for this type of life time risk inexistent. This creates a role for the government to insure against this purely idiosyncratic risk through tax instruments.

To isolate the effects of taxation on human capital formation, Eaton and Rosen (1980) assume that labor supply is inelastic in the second period, thus denying the possibility of any late adjustments in labor supply. In a later contribution to the subject, Hamilton (1987) extended the discussion by including—for most of his paper—labor supply responses after realization of uncertainty, as well.

These papers represent important contributions to our understanding of optimal policies, despite the fact that most tax prescriptions therein depend on restrictive assumptions on preferences and even, sometimes, on the behavior of endogenous variables.

For our purposes, it is important to highlight some of the main conclusions, though, as we mentioned, they should not be regarded as general propositions but rather as results derived for what may be regarded as reasonable cases. They are: i) proportional taxes are usually superior to lump-sum taxes in what regards its social welfare consequences; governments should ii) encourage human capital and iii) discourage savings. Underlying all these results is a single driving force: the risky nature of human capital investment.

Investments in human capital are risky because, at the margin, their return is higher in the ‘good’ states of nature, when the marginal utility of consumption is lower. Agents under-invest in human capital formation because, even though, the bulk of the risk in human capital investment is purely idiosyncratic there are no private markets to insure against this risk. The government may, in this case, alleviate the problem by both reducing its riskiness, with a proportional tax, and by directly subsidizing this form of investment.

But should we take for granted the risky nature of human capital?

From a purely theoretical viewpoint, if human capital returns are higher on the states of nature where marginal utility of income is lower, then the optimal policy prescriptions are the opposite of the ones found in the literature, where a specification for human capital technology is used that imposes these risk characteristics.\footnote{This issue has long been recognized in the literature, i.e., Hamilton (1987), p. 380. However, a}
issue of whether education provides or not insurance is closely related to whether it increases or decreases wage variance and the opposite assumption to the one used in the literature is just as appealing.

In virtue of all this one needs to recur to the data to try to settle the issue. Unfortunately, there is no conclusive evidence regarding which specification best describes the data.

We shall not explore the empirical literature, referring instead to the discussion in the introduction of Andersson and Anderberg (2003). We do so not only because we believe that we could not match the quality of their arguments but also, and more fundamentally, because the main point of our paper is exactly the fact that the risk characteristics of human capital is inessential to the qualitative properties of optimal policy.

We write a model along the lines of Andersson and Anderberg (2003) but allow for more powerful tax instruments: we consider a fully non-linear tax on labor income and possibly state dependent taxes on return of savings and human capital.

The problem of optimal policy for human capital investments along the lines of Mirrlees' (1971) is a multi-period agency problem that was only starting to be explored by the time first works regarding human capital investments came out. And, even though agency approaches dealing with the problem are found as early as Ulph and Hare (1979), risk is altogether eliminated by their collapsing choices in a single period, the same procedure followed by Brett and Weymark (2000). Uncertainty is also absent in Boadway and Marchant (1995), who investigate the role of public good provision in the presence of optimal non-linear income taxation. It was only recently that Maldonado (2004) and Naito (2004) have introduced dynamic agency to the discussion of human capital investment problems. They focus, however, on issues that are different from the ones we explore here.

Following Guesnerie (1995), we start with a description of the informational structure of the economy and derive tax instruments in two steps. First, the revelation principle is used to determine optimal allocations by means of a truthful revelation direct mechanism. Then, we characterize tax instruments capable of implementing such allocations.

formal derivation is only found in Andersson and Anderberg (2003).
As it turns out, fewer restrictions on preferences are needed in our framework for policy prescriptions to be derived. We are able to show that, if government has full control over private choices of savings and investment in human capital, savings should be set below and human capital investments above what would be privately chosen by agents independently of whether the human capital technology increases or reduces risk.

To understand what drives our result one must bear in mind the fact that, contrary to the earlier literature, we model the government optimization as a mechanism design problem. Risk sharing is taken care of by the non-linear income tax schedule. The role of other instruments is simply to relax the incentive compatibility constraints. It is not, then, the risk characteristics of human capital but rather how deviant (or the anticipation of deviant) behavior affects investment choices that ultimately determines optimal policies.

Another important characteristic of optimal policies is the prescription of aggregate efficiency for both types of investment: physical and human capital. On the one hand, agents private choices are distorted, while on the other, aggregate return is determined by a condition compatible with the prescription of no capital income taxation of Judd (1985), Chamley (1986) and Lucas (1990).

As for implementation, despite our having no heterogeneity at the time these choices are made, simple linear taxes or subsidies are not capable of implementing the optimal allocations. One of the consequences is that education subsidies do not substitute for compulsory education as one might expect, given ex-ante homogeneity among agents. With regards to savings, the optimal policy is even harder to interpret since the government must induce lower savings. We then characterize implementation via taxes both for savings and human capital investments. Marginal tax rates are shown to depend on second period labor output, i.e., marginal taxes for both type of investments are stochastic and dependent on labor output.\footnote{This result on taxation of savings was first derived, to the best of our knowledge, by Albanesi and Sleet (2003) in a somewhat similar environment.}

Implementation thus requires the use of instruments that are not currently observed and/or depend on apparently extreme assumptions on observability of choices. To overcome this caveat we relax the assumptions on the controllability of savings and...
human capital investment by the government, letting these choices be affected only by simple linear taxes or subsidies.

Encouragement of education and discouragement of savings still obtains albeit with slightly different meaning. If the government policy is towards either savings or human capital formation but not both at the same time, then it is optimal to tax savings or subsidize education. When both instruments are used, the signs of tax rates are ambiguous, though the formulae resemble the encouragement/discouragement expressions derived in Mirrlees (1976): savings ought to be ‘approximately discouraged’ and human capital formation ‘approximately encouraged’, in a sense to be made precise in the main text.

The remainder of the paper is organized as follows. Section 2 described the model economy discussing the competitive equilibrium and the properties of the first best optimum—sections 2.1 and 2.2, respectively. Section 3 describes optimal taxation in a world where government has complete control of agents’ investment choices, both in human capital and in a risk free technology. Implementation is discussed in section 4, where the tax systems that are needed to implement the allocations in section 3 are shown to be very far from what is currently observed. In section 5 we consider a more sensible assumption on observability of savings and human capital formation that means that the government may influence these choices but cannot exert direct control over them. In section 6 an intermediate case is explored. Section 7 concludes.

2 The Economy

The economy, based on Hamilton (1987), is populated by an atomistic measure of ex-ante identical agents with preferences represented by

\[u(c^1) + E[u(c^2) - \zeta(l)] \]

where, \(c^1 \) and \(c^2 \) are consumptions in first and second periods, respectively, and \(l \) is second period labor supply. Labor supply in the first period is the difference between the endowment of time—normalized to 1—and the time spent in human capital formation, \(h \). We assume \(u \) and \(\zeta \) to be smooth functions such that \(u' > 0, u'' < 0, \zeta' > 0, \zeta'' < 0 \)

\[\lim_{c \downarrow 0} u'(c) = \infty \] and \(\lim_{l \uparrow 1} \zeta'(l) = \infty. \]
Labor supply, or effort, produces efficiency units Y according to the relation $Y = wl$, where w is the agents productivity. We abstract from leisure choices in the first period and assume that an agent in endowed with one efficiency unit that may be sold to firms or used in producing human capital h. We follow Eaton and Rosen (1980) and Hamilton (1987) in considering foregone earnings as the only costs of this type of investment. Including other costs would add notational burden and would not provide new insights to the problem.

Productivity is a function of human capital investment h and ‘talent’ θ. Uncertainty arises in this economy because, when still young, agents do not know their innate talent θ. That is, an agent who dedicates h units of time in the first period to human capital formation, will have productivity $w(h, \theta)$ efficiency units of labor in period two if her talent turns out to be θ^i. Here we take w to be a differentiable, strictly increasing (in the two arguments) and strictly concave function with $w(0, \theta) = 0$ and $\lim_{h \searrow 0} \partial w(h, \theta) / \partial h = \infty$ for all θ.

Once uncertainty is realized, talent is only privately observed. The distribution function of talent, however, is common knowledge.

Firms transform efficiency units into consumption goods using a linear technology with units normalized in such a way that one efficiency unit produces one unit of consumption. Because they cannot observe l or w work contracts are define in terms of efficiency units $Y = wl$ which are observed.

The economy is competitive in the usual sense. Agents take prices—wages and interest rates—when making their choices in both periods. The zero profit condition for firms implies that one efficiency unit is paid its marginal product. Also important is the fact that firms compete for workers in every period, and that agents cannot commit to working for the same firm for the two periods. Given the life-cycle nature of our model such form of commitment do not seem like a good description of actual labor markets. This assumption precludes insurance contracts between firms and workers and introduces a role for optimal taxation.

Before writing the agents problem we add to the model the fact that in period 1 they need not consume their income, $1 - h$. Borrowing and lending, denoted with s

\footnote{Golosov and Tsyvinsky (2003) define a competitive equilibrium where these long term contracts are possible. Our model is a representation of life-cycle choices for which this type of commitment doesn’t seem to be a good representation of actual labor contracts.}
(positive if lending and negative if borrowing), is possible at a gross interest rate of 1. This assumption of capital market efficiency is not made for sake of realism, but to focus on the role of risk properties of human capital in policy design.\footnote{A very interesting discussion of the role of optimal taxation in a market where the absence of collateral impedes the financing of education is found in Hoff and Lyon (1995).} As we shall see this type of market failure should aggravate the problem and make our case even stronger.

Hence, absent taxes, the budget constraints for the agents is
\[c^1 \leq 1 - h - s, \]
in the first period, and
\[c^i \leq l^i w(h, \theta^i) + s, \]
in the second period, state of nature \(i \). Here the superscript \(i \) in \(l^i \) denotes the fact that labor supply is state contingent—it is only decided after the realization of uncertainty.

One should not, however, view second period labor supply responses as simple variation in hours which, as pointed out by Eaton and Rosen (1980), seems not to be very responsive to changes in real after tax wages. Rather, this accounts for adjustments in long term labor/leisure choices after an individual has fully realized her earnings capacity.

In what follows, we shall assume that there are only two states of the world, \(H \) and \(L \) with \(\theta^H > \theta^L \). We also adopt the ‘law of large numbers convention’ that shocks are independent and identically distributed, and that the number of individuals composing the population is sufficiently large to eliminate aggregate uncertainty. Finally, and just for notational convenience, we assume that types are in equal proportion in this economy.

\subsection{The No-intervention Equilibrium}

In this section we consider a no-intervention regime, leaving for the next section the case of a benevolent government which will use the instruments available to increase expected utility.

Following the description of the economy in section 2, the timing of the model is as follows. In the first period, every worker decides how to split her time between work
and investment in human capital formation. She is paid the total efficiency units she supplies, \(1 - h\), and chooses the first period consumption and, consequently, her savings, \(s\) which may be negative.

In the second period, conditional on the variables chosen in the first period and on her type (now revealed), she has to choose how many efficiency units, \(Y(h, s, \theta)\), to supply.

As is usual we solve agents optimization problem backwards. That is, we start by defining the second period indirect utility functions,

\[
V(\theta^i, s, h) \equiv \max_{Y^i} u(Y^i + s) - \zeta \left(\frac{Y^i}{w(h, \theta^i)} \right), \quad i = H, L
\]

and then solving the first period optimal choices,

\[
\max_{s, h} 2u(1 - h - s) + V(\theta^H, s, h) + V(\theta^L, s, h).
\]

The first order conditions, which under our assumptions are necessary and sufficient for a maximum, yield,

\[
2u'(c^1) = u'(c^H) + u'(c^L)
\]

and

\[
2u'(c^1) = \zeta'(l^H)l^H \frac{w(h, \theta^H)}{w(h, \theta^H)} + \zeta'(l^L)l^L \frac{w(h, \theta^L)}{w(h, \theta^L)},
\]

where \(w(h, \theta^i) \equiv \frac{\partial^2 w(h, \theta^i)}{\partial h \partial \theta^i}\).

To further explore this expression, we use the first order conditions for problem (1) to write.

\[
2u'(c^1) = u'(c^H)l^H w_h(h, \theta^H) + u'(c^L)l^L w_h(h, \theta^L)
\]

dividing both sides by \(u'(c^H) + u'(c^L)\) we have,

\[
1 = \pi^H w_h(h, \theta^H)l^H + \pi^L w_h(h, \theta^L)l^L \leq \frac{1}{2} [w_h(h, \theta^H)l^H + w_h(h, \theta^L)l^L]
\]

where \(\pi^i\) is the risk-adjusted probability of state \(i\). On the right hand side of the expression above we have the marginal benefit of the investment in human capital formation in terms of efficient units. For sufficiently low labor supply elasticities there is under-investment (over-investment) if \(w_{hr}(h, \theta) > 0 (w_{hr}(h, \theta) > 0)\), where \(w_{hr}(h, \theta) \equiv \frac{\partial^2 w(h, \theta^i)}{\partial h \partial \theta^i}\).
In Eaton and Rosen (1980) and Hamilton (1987) education yields higher returns on the states of nature where people are more productive.\(^5\) Because human capital returns is higher when the marginal utility of income were lower it is a risky asset. Individuals demand a risk premium to carry the risky-asset: education. From an aggregate perspective, however, there is no risk but from an individual perspective, because there are no markets to insure against uncertainty in productivity, investment in human capital is risky. A taxation policy that could distort relative prices to benefit investment in human capital would raise social welfare. In particular, at no taxation, introducing a small subsidy on education is welfare improving since this reduces under-investment.

Recently, Andersson and Anderberg (2003) have shown that the results in Eaton and Rosen (1980) and Hamilton (1987) crucially depend on the fact that education is risky, which in turn depends on the sign of the cross derivatives and elasticity of labor supply. The problem is that, education might as well decrease wage variance and, hence, people would over-invest in this asset for insurance purposes. Whichever assumption is more realistic is an empirical matter. In what concerns tax prescriptions, one may not know whether education ought to be subsidized or taxed without confidence on the empirical measurements.

As we shall see, our results do not depend on any of these issues. Before, however, we spell out the first best solution which will provide some other important grounds for comparing the prescriptions we shall derive.

2.2 First Best Allocations

The purpose of this section is to provide a benchmark against which some results in other sections may be compared.

We characterize optimal savings and investment in human capital by solving the program

\[
\begin{align*}
\max_{s,h,c^{1},(e^{i},l^{i})_{i=H,L}} & \quad 2u(c^{1}) + \sum_{i=H,L} \left[u(c^{i}) - \zeta(l^{i}) \right] \\
\text{s.t.} & \quad \sum_{i=H,L} \left[c^{i} - l^{i}w(h,\theta^{i}) \right] \leq 2 \left(1 - h - c^{1} \right) \lambda
\end{align*}
\]

\(^{5}\)They use a specification that guarantees \(\partial^{2}w/\partial h\partial\theta > 0\) and impose conditions-or impose directly-that guarantee that labor supply is inelastic.
It is easy to see that combining the first order conditions of this problem one gets labor supply efficiency,

$$u'(c^i) w^*(h, \theta^i) = \zeta'(l^i),$$ \hspace{1cm} (2)

consumption smoothing across time and states of nature,

$$u'(c^1) = u'(c^H) = u'(c^L),$$ \hspace{1cm} (3)

and efficiency in human capital investment,6

$$1 = \frac{1}{2} [l^H w_h(h, \theta^H) + l^L w_h(h, \theta^L)].$$ \hspace{1cm} (4)

The last expression, i.e. the optimality condition for human capital investment, illustrates the fact that the marginal gain from an extra unit of time spent in enhancing human capital—as measured by the right hand side of (4)—is simply the expected increase in the output at the social optimum level of labor supply.

This condition is important because, throughout the paper, over and under investment is always a statement of how the particular value compares to the one determined in (4).

Notice also that a first best allocation requires equating marginal utility of income in both states of nature, as shown in (3). It also means that more productive agents work more—as shown in (2)—thus having a lower utility than less productive agents.

This naturally means that if information about productivity is private—as is assumed throughout the paper—the first best allocation is not be implementable. Agents who turn out to be more productive just announce to be less productive and get more utility than what they get if they announce truthfully.

3 Optimal Taxation

In this section, we assume that the government can fully control all the investment choices made by the agents, that including investments in human capital and savings decisions. In the next sections we discuss what this assumption implies for tax instruments and the consequences of restricting the set of instruments available to the government.

6The linear specification makes the optimality condition for investment in physical capital innocuous.
Though the government can directly choose h and s, the first best allocation is still unfeasible, since only efficiency units—the traded objects—and not hours supplied are observed.

We write the mechanism design problem faced by the government and interpret it as an optimal tax system.

$$\max_{s,h,c^1,(c^i,Y^i)_{i=H,L}} 2u(c^1) + \sum_{i=H,L} \left[u(c^i) - \zeta \left(\frac{Y^i}{w(h,\theta^i)} \right) \right]$$

s.t.

$$\sum_{i=H,L} (c^i - Y^i) \leq 2 \left(1 - h - c^1 \right) \quad [\lambda]$$

$$u(c^H) - \zeta \left(\frac{Y^H}{w(h,\theta^H)} \right) \geq u(c^L) - \zeta \left(\frac{Y^L}{w(h,\theta^H)} \right) \quad [\mu]$$

We shall concentrate on two issues in particular: the second best choices of savings and investment in human capital.

The first order conditions with respect to c^1, c^H and c^L are, respectively, $u'(c^1) = \lambda$, $u'(c^H) (1 + \mu) = \lambda$, and $u'(c^L) (1 - \mu) = \lambda$. Therefore,

$$2u'(c^1) = [u'(c^H) + u'(c^L)] + \mu [u'(c^H) - u'(c^L)]. \quad (5)$$

The right hand side of (5) is less then $u'(c^H) + u'(c^L)$ if and only if $c^H > c^L$. But this is exactly the case as one can show by usual single-crossing arguments. This result is reminiscent of Cremer and Gahvari (1995), da Costa and Werning (2000) and Golosov et al. (2003).

The next result is, as far as we are aware of, new in such a context.

$$\zeta'(l^H) l^H w_h(h,\theta^H) + \zeta'(l^L) l^L w_h(h,\theta^L) - 2u'(c^1)$$

$$= -\mu \frac{w_h(h,\theta^H)}{w(h,\theta^H)} \zeta'(l^H) l^H - \zeta'(l^L) l^L \quad (6)$$

where $l^i (i = H, L)$ is the labor supply of agent type i and $l^L \equiv Y^L/w(h,\theta^H)$ is the labor supply of a high type agents who announces to be of a low type.

The first term in the left hand side is simply the private marginal benefit of education given by the decrease in marginal expected effort conditional on a given level of required efficiency units per type. The second term is the marginal cost. Absent any government policy this would be equal to 0.
The right hand side is, in general, different from 0. In fact, because \(L^H < L \) and \(\zeta \) is strictly convex, (6) implies
\[
\frac{w_h(h, \theta^H)}{w(h, \theta^H)} \zeta'(I^H) l^H + \frac{w_h(h, \theta^L)}{w(h, \theta^L)} \zeta'(I^L) l^L < 2u'(c^1).
\] (7)

The government creates a wedge between private marginal costs and benefits of investment in human capital proportional to the difference between the marginal benefit of this form of investment for high productivity agents who announce truthfully and those who lie. Choices are thus distorted in the direction of hurting off-equilibrium behavior.

To further explore these results we need the other two first order conditions,
\[
\zeta' \left(\frac{Y^H}{w(h, \theta^H)} \right) \frac{1}{w(h, \theta^H)} = \frac{\lambda}{1 + \mu},
\]
or, equivalently,
\[
\zeta'(I^H) l^H (1 + \mu) = \lambda Y^H \quad (8)
\]
and
\[
\zeta'(I^L) l^L - \mu \zeta'(I^L\mid I^H) l^L\mid H = \lambda Y^L \quad (9)
\]

From (6), (8) and (9) we have
\[
u'(c^1) = \frac{\lambda}{2} [w_h(h, \theta^H)l^H + l^Lw_h(h, \theta^L)] \Rightarrow 1 = \frac{1}{2} [w_h(h, \theta^H)l^H + l^Hw_h(h, \theta^L)]
\]
which is exactly (4). The distortion on private investment choices does not translate into aggregate inefficiency.

Contrary to the competitive equilibrium where the uncertainty on the returns of education leads to a level of investment in human capital formation that is generally non-optimal from an aggregate perspective, here, the level chosen by the government equates aggregate marginal costs and benefits of education.\(^7\)

4 Implementation

As we have seen, the government distorts choices of savings and human capital investment, inducing—from a private perspective—under-savings and an over-investment

\(^7\)The optimal level of \(h \) need not coincide with the first best one since labor supply differs, in general.
in human capital formation. How does this wedge translate into government policies? This is the question we aim at answering along this section.

4.1 Compulsory Choices and Taxation

If government can force agents to choose specific levels of schooling and savings then the answer to our problem is trivial. With regards to schooling this implies that schooling is compulsory at the optimal level. In practice, compulsory education usually means compelling that a certain amount of time is spent in 'school', but other dimensions of education such as effort may not be enforceable.\(^8\)

For savings, the story is a little different because the government must induce under-savings. This idea is at odds with most policies adopted in modern economies: it implies that government should forbid people to save!

This motivates the investigation of tax policies for inducing the optimal behavior. For inducing this behavior Because we have no heterogeneity at the moment where agents make their investment choices, a natural candidate policy is a linear tax on investment returns. In fact, a single tax is able to guarantee that

\[u'(c^1) = E[u'(c^*)] (1 - \tau), \]

where \(c^1\) and \(c^*\) are the equilibrium consumptions in first and second periods, respectively.

It turns out, however, that this is not enough. One has to be concerned with what is known as a double deviation as shown in Albanesi and Sleet (2003)—see also Kocherlakota (2004) and da Costa (2004). Agents, anticipating the fact that they will lie about their productivities in the second period, choose a level of savings compatible with these off-equilibrium choices.

The tax system must guarantee that the equilibrium savings choice is optimal not only along the equilibrium path but also off-equilibrium.

In 4.2 we show how both optimal savings and optimal human capital choices may be implemented with taxes. As we shall make clear, these will be dependent on second period choices and will differ across agents. The observation of individual savings choices is crucial here. In section 5 we relax this observability assumption and show what the consequences are for optimal policies.

\(^8\)We thank Bev Dahlby for pointing this practical restriction on compulsory education. Da Costa (2004) discusses the same issue regarding savings.
4.2 Implementation via Taxes

We consider a tax schedule that is (possibly) dependent not only on the level of savings but also on investment in human capital and on an agent’s announcement. We discuss in some detail whether one can dispense with any of these features.\footnote{The discussion on savings draws heavily on Albanesi and Sleet (2003), Golosov and Tsyvinsky (2003), Kocherlakota (2003) and Kocherlakota (2004).}

The first thing we note is that, because one is allowing for fully non-linear taxes one cannot map wedges into taxes. For savings to be identical for liars and abiders—and this is what ’controlling savings’ is all about—the marginal tax rates must be such that the marginal benefit of human capital investments for an agent along the equilibrium path,

\[u'(c^H)(1 - \tau_s(s, h, H)) + u'(c^L)(1 - \tau_s(s, h, L)) \]

must be identical to the marginal benefit for the same investments off the equilibrium path,

\[2u'(c^L)(1 - \tau_s(s, h, L)). \]

Because \(u'(c^H) < u'(c^L) \), (10) and (11) can only hold simultaneously if \(\tau_s(s, h, H) < \tau_s(s, h, L) \)—marginal taxes on savings must be state dependent. Tax schedules must be non-separable between savings and announcements. Moreover, (10) and (11) imply that \(E[u'(c)\tau_s(\cdot)] > 0 \). But, because \(u' \) and \(\tau_s \) are co-monotonic, \(E[u'(c)\tau_s(\cdot)] > 0 \) need not imply \(E[\tau_s(\cdot)] > 0 \).

The same is true with respect to human capital formation, though interpretation is a little harder here.

Implicit in our formulation is a tax schedule of the following kind. An agent chooses in period one a certain level of human capital investment, \(h \). Then, in the second period, conditional on her announcement, and her savings, she pays a tax \(\tau(s, h, Y) \). Her first order condition for human capital investment is

\[2u'(c) - \frac{w_h(h, \theta^H)}{w(h, \theta^H)} \zeta'(l^H) l^H - \frac{w_h(h, \theta^L)}{w(h, \theta^L)} \zeta'(l^L) l^L = -\left[\tau_h(s, h, H) u'(c^H) + \tau_h(s, h, L) u'(c^L) \right]. \]
if she plans to announce truthfully, and

\[
2u'(c) - \frac{w_h(h, \theta^H)}{w(h, \theta^H)} \zeta'(l^H) l^H - \frac{w_h(h, \theta^L)}{w(h, \theta^L)} \zeta'(l^L|H) l^L|H =
\]

\[-2\tau_h(s, h, L) u'(c^L), \tag{13}\]

if she intends to lie.

From (12) and (13) it is immediate that

\[
\frac{w_h(h, \theta^L)}{w(h, \theta^L)} \left[\zeta'(l^H) l^H - \zeta'(l^L|H) l^L|H \right] = \tau_h(s, h, H) u'(c^H) - \tau_h(s, h, L) u'(c^L)
\]

The left hand side is positive. It must also be the case that

\[
\tau_h(s, h, L) u'(c^L) < 0
\]

for (7) to be satisfied. Which means that \(\tau_h(s, h, L) < 0\).

It is usually argued that because human capital is a risky asset agents under-invest on it. Government’s role, it is said is to induce more investment since, in the aggregate, there is no risk.

Paradoxically, taxes here may induce more risk since marginal tax rates may be lower for more productive agents. The point we stress here is that what drives the prescription is the fact that under-investment is more severe for agents who intend to deviate from optimal behavior than for those who comply.

Although we are not able to sign the taxes on the so-called empirical measure, we are able to sign taxes on the risk-neutral measure. Direct observation of 14 and 5 shows that \(E_Q(\tau_s) > 0\) and \(E_Q(\tau_h) < 0\). The expectation of the tax on savings is negative and the tax on human capital is positive in the risk-neutral measure. This result, apparently strange, can be well understood once we realize that the people weight differently the states of nature when making their portfolio decisions.

The fact that results obtained thus far depend on tax instruments that do not resemble the ones verified in most current policies may be regarded in two different ways. First, one may just say that instruments currently in use are not optimal. Second that our assumptions are not very realistic. In particular, we have been assuming that the government can observe education and savings. However, observable measures of human capital formation as years of schooling may be very far from fully capturing
what is meant by education. In practice, the government may be restricted to using simple instruments like linear subsidies or taxes for both types of investment.

What the next section show is that results herein are robust—in a sense to be made precise—to restrictions in tax instruments associated to this more realistic environment.

5 The Role of Unobserved Choices

In this section we assume that neither savings nor human capital investment is observed by the government. In this case, we can no longer define the agency problem as in the previous section, having to rely, instead, in a procedure that allows for these unobserved choices.

Let us start however with the second period, and let s^* and h^* the equilibrium choices of savings and human capital, which we will explain in detail, shortly after this. Then, an allocation that is implemented by a truthful direct mechanism must satisfy

$$u(s^* + y^i) - \zeta \left(\frac{Y_i}{w(h^*, \theta^i)} \right) \geq u(s^* + y^j) - \zeta \left(\frac{Y_j}{w(h^*, \theta^i)} \right) \quad i, j = H, L. \quad (15)$$

This guarantees that once uncertainty is revealed, no matter what type she turns out to be, the agent finds in her best interest to reveal her true type.

Though necessary, conditions (15) does not suffice, in this case. Of concern here is again the double deviation problem. Even if, at the equilibrium levels of savings and human capital s^* and h^* the agent prefers the allocation intended for her, there may be alternative choices of h and s at which (15) does not hold and that are ex-ante preferred by the agent.

To deal with this we follow da Costa (2004) by considering that, in the first period, agents conceive contingent plans, or strategies, that prescribe what they ought to announce as being their productivity if they turn out to be of a certain type. A strategy is, in this sense, a mapping $\sigma : \{H, L\} \rightarrow \{H, L\}$ from types to announcements.

This is not all an agent does in the first period, however. She also chooses how much to save, s, and how much to invest in human capital, h. In general this may result in the problem being very complicated. It turns out, however, that in our setup, the optimization problem related to savings and human capital investment is strictly convex conditional on a given strategy. Hence, associated to each strategy σ^i is a pair
(h^i, s^i). Because we only have two types, there are only four possible strategies,\(^10\) and consequently triples, \((\sigma^i, h^i, s^i)\), to compare.

In characterizing the optimal tax schedule we choose allocations that induce the truthful announcement strategy—which we shall denote with a star—\(\sigma^* (j) = j\), \(j = H, L\). The revelation principle guarantees that we can restrict our attention to allocations that can be implemented by this direct mechanism.

The allocations must be such that the truthful strategy is preferable to the other strategies allowing for the optimization with respect to \(h\) and \(s\). In other words, the triple \((\sigma^*, s^*, h^*)\) is better than any of the other three strategies.

Formally, let \(\sigma^o\) represent an arbitrary alternative strategy. An allocation is implementable if and

\[
2u (1 - s^* - h^*) + \sum_i \left\{ u(s^* + y^i) - \zeta \left(\frac{Y^i}{w(h^*, \theta^i)} \right) \right\} \geq
2u (1 - s^o - h^o) + \sum_i \left\{ u(s^o + y^{\sigma^o(i)}) - \zeta \left(\frac{Y^{\sigma^o(i)}}{w(h^o, \theta^i)} \right) \right\},
\]

for all \(\sigma^o\), where \(s^o\) and \(h^o\) are, respectively, the optimal savings and investment corresponding to strategy \(\sigma^o\).

There are five different incentive compatibility—henceforth IC—constraints: three in the first period (16) and two in the second (15). What we shall do next is to show that only one of the five IC constraints binds at the optimum.

5.1 Some Auxiliary Results

In the next few paragraphs we collect a series of results that will be necessary for defining the government’s program.

The first proposition guarantees that once the first period IC constraints (15) are imposed one need not be concerned about second period IC constraints.

Proposition 1 If constraints (16) are satisfied, so are constraints (15).

\(^10\)If we let \#(\sigma) be the cardinality of the set of strategy we have \#(\sigma) = 2^\#(i), where \#(i) is the cardinality of the set of types. Hence the convenience of keeping down the number of types.
The intuition for this result is rather simple. Assume that one of the second period IC constraints is binding. In this case, at the equilibrium level of savings and human capital investment the agent is indifferent between truthful announcement and adopting the strategy corresponding to this binding IC constraint. Re-optimizing \(s \) and \(h \) will break the indifference in favor of the alternative strategy thus violating one of the first period IC constraints. As a consequence, if (16) are satisfied, so are (15).

Next, we present a lemma that will be needed in most results that follow. It says that implementable allocations are increasing in types, i.e., then usual monotonicity requirement extends to our framework.

Lemma 1 For an allocation \((Y_i^i, y_i^i) \) to be implementable it is necessary that \((Y_H^i, y_H^i) \geq (Y_L^i, y_L^i) \). If \((Y_H^i, y_H^i) \neq (Y_L^i, y_L^i) \) then \((Y_H^i, y_H^i) >> (Y_L^i, y_L^i) \).

The next result guarantees that the strategy of always announcing falsely—\(\sigma_o(j) = i, i \neq j \)—cannot be optimal. More precisely, if there is a choice of \((s, h) \) that makes this strategy better than truthful announcement, then there are also levels of savings and investment in human capital that make one of the two other alternative strategies optimal. Therefore, imposing the two IC constraints associated to strategies \(\sigma_o(j) = L (j = H, L) \) and \(\sigma_o(j) = H (j = H, L) \) guarantees that the third is also satisfied.

Proposition 2 If the truthful strategy is no worse than strategies \(\sigma_o(j) = L (j = H, L) \) and \(\sigma_o(j) = H (j = H, L) \), then it is no worse than strategy \(\sigma_o(H) = L, \sigma_o(L) = H \).

We are down to two IC constraints only. We shall now show that the strategy of always announcing to be of a high productivity type—\(\sigma_o(j) = H, j = H, L \)—cannot be optimal, if the tax system is welfare increasing. This will bring us down to only one relevant IC constraint.

Notice that we rule out this strategy on different grounds than the other strategy. There are implementable allocations for which the relevant IC constraint is associated to the strategy of always announcing \(H \).

The point here is that, though there might be allocations that are implementable at which the agents are indifferent between the truthful strategy and the strategy of always announcing high, these allocations yield a lower expected utility than what an
agent gets in autarchy. Hence it should not bind at the optimum, given the objective
of the government.

Proposition 3 If the agent is indifferent between always telling the truth and always
announcing H then the implementable allocation must result in a lower expected utility
than what the agents gets in the competitive equilibrium.

To summarize this section, we have shown that, under our assumptions, one needs
only be concerned with one alternative strategy, $\sigma^o (j) = L; j = H, L$, which amounts
to the agent always announcing to be of type L.

We are now in a position to write down the government’s program.

5.2 The Optimal Taxation Problem

The government maximizes the agents’ expected utility subject to the economy’s
resource constraint

$$\sum_{i=H,L} (Y^i - y^i) \geq 0$$

and, as shown in section 5.1, a single IC constraint

$$2u \left(1 - s^* - h^*\right) + \sum_{i=H,L} \left[u(s^* + y^i) - \zeta \left(\frac{Y_i}{w(h^*, \theta^i)}\right)\right] \geq$$

$$2 \left[u \left(1 - s^o - h^o\right) + u(s^o + y^L)\right] - \sum_{i=H,L} \zeta \left(\frac{Y^L_i}{w(h^o, \theta^i)}\right).$$

To find optimal taxes we write the Lagrangian for the government’s program,

$$\mathcal{L} \equiv (1 + \mu) \left\{ 2u \left(1 - s^* - h^*\right) + \sum_{i=H,L} \left[u(s^* + y^i) - \zeta \left(\frac{Y_i}{w(h^*, \theta^i)}\right)\right] \right\} -$$

$$\mu \left\{ 2 \left[u \left(1 - s^o - h^o\right) + u(s^o + y^L)\right] - \sum_{i=H,L} \zeta \left(\frac{Y^L_i}{w(h^o, \theta^i)}\right) \right\} + \lambda \sum_{i=H,L} (Y^i - y^i).$$

From the first order conditions it is immediate that the marginal tax rate of a high
productivity agent is found by exploring

$$\frac{\zeta'(h^H)}{w'(s^* + y^H)} = w(h^*, \theta^H).$$
Because the marginal rate of substitution between labor supply and consumption is exactly the price of leisure, the most productive agent is not distorted at the margin. The zero marginal tax rate result is preserved, here.

As for the low productivity agent, we have

$$\frac{\zeta'(l^L)}{u'(s^o + y^L)} \frac{1}{w(h^o, \theta^L)} = \left\{ \lambda + \mu \left[\frac{\zeta'(Y^L/w(h^o, \theta^L))}{w(h^o, \theta^L)} + \frac{\zeta'(Y^L/w(h^o, \theta^H))}{w(h^o, \theta^H)} \right] \right\} \left\{ \lambda + 2\mu u'(s^o + y^L) \right\}^{-1}$$

The left hand side of this expression is the marginal rate of substitution between y^L and Y^L, which is equal to one, there is no distortion. Therefore, we need to evaluate whether the right hand side of this expression to determine the sign of the marginal tax rate faced by the low productivity agent.

We first notice that the expression in the right hand side can be rewritten as

$$\left\{ \frac{\phi}{\phi + 1} + \frac{\mu}{2(\phi + 1)} \left[\frac{\zeta'(Y^L/w(h^o, \theta^L))}{u'(s^o + y^L) w(h^o, \theta^L)} + \frac{\zeta'(Y^L/w(h^o, \theta^H))}{u'(s^o + y^L) w(h^o, \theta^H)} \right] \right\},$$

where $\phi \equiv \lambda/2u'(s^o + y^L)$.

The term in brackets is the average marginal rate of substitution between leisure and consumption for an agent off the equilibrium path. Hence, the marginal tax rate faced by a low productivity agent will be positive or negative depending on whether the average marginal tax rate faced by an agent off the equilibrium path is positive or negative.

Though the rule differ from the case where no first period unobservable choices are present, the principle that drives tax prescriptions is the same. The idea is that if one is at the maximum redistribution that preserves Pareto efficiency distorting choices may be useful in relaxing IC constraints if agents have different marginal rates of substitution between y and Y at this point.

When all choices are controlled by the government, we need only to compare the low type with the high type announcing to be a low type. Single-crossing is used to sign the marginal tax rate. Here, what must be considered is the average marginal rate of substitution of an agent who opts for the strategy of always announcing to be of type low, with that of a low type at the equilibrium choices of s and h. Unfortunately, we cannot resort to single-crossing to sign the marginal tax rate.
To further understand the issues at stake we need to explore off equilibrium choices, starting from the next proposition.

Proposition 4 At the optimum, \(s^* < s^o \) and \(h^* > h^o \).

The intuition for this behavior is rather simple. When deciding to deviate by always announcing to be of a low productivity type an agent anticipates less income and more leisure. Under our assumptions on preferences this implies higher marginal utility of consumption and lower disutility of labor.

A higher marginal utility of income and a lower marginal disutility of labor makes it optimal to increase consumption and diminish leisure by choosing to save more and to get less education.

5.3 Educational Policy

In this section we assume that the government can introduce an anonymous tax (or subsidy) on human capital formation. To model it we write the cost of education in terms of foregone earnings as \((1 + \tau) h \) where \(\tau \) is the tax on human capital formation.

We differentiate the Lagrangian with respect to \(\tau \) at \(\tau = 0 \) to get

\[
\frac{\partial L}{\partial \tau} \bigg|_{\tau=0} = -(1 + \mu) u'(c^*) h^* + \mu u'(c^o) h^o + \lambda h^*
\]

\[
= -(1 + \mu) h^* \left[u'(s^* + y^H) + u'(s^* + y^L) \right] + 2\mu u'(s^o + y^L) h^o + \lambda h^*
\]

\[
= 2\mu u'(s^o + y^L) (h^o - h^*) < 0. \tag{17}
\]

where in the last step the first order conditions with respect to \(y^H \) and \(y^L \) were used.

This shows that, around \(\tau = 0 \), it is optimal to reduce taxes on (thus subsidizing) human capital formation. Eaton and Rosen (1980) and Hamilton (1987) derive an analogous result for taxation on wages based on assumptions which are a little more restrictive. In particular, it is worth pointing out that their result has a different interpretation. They show that a small tax rate on wage (equivalently a small subsidy on education) is welfare increasing because it provides insurance to the uncertainty present on the educational returns. We, on the other hand, show that in an optimized economy this follows because taxing wages, or financing education, one can relax the incentive-compatibility constraint.
This result has a straightforward interpretation. From proposition 4 one can see that those who choose to cheat decide to work more on the first period and to get less education, since this strategy contemplates always announcing to be lower type. Hence, by subsidizing education the government can hurt more those who in the second period decide to lie about their types.

5.3.1 Optimal Taxes

At $\tau \neq 0$ things are not so straightforward. The problem here is that one can no longer guarantee which IC constraint binds at the optimum for arbitrary values of τ. Yet, we can still show that, if the binding IC constraint is the natural one, then it is optimal to subsidize education.11

When taxes are non-zero, government’s budget constraint becomes

$$\sum_{i=H,L} (Y^i - y^i) + 2\tau h \geq 0$$

and equation (17) becomes

$$\frac{\partial L}{\partial \tau} = 2\mu u' (s^o + y^L) (h^o - h^*) + 2\tau \lambda \frac{\partial h^*}{\partial \tau},$$

where

$$\frac{\partial h^*}{\partial \tau} \equiv \frac{\partial h^*}{\partial \tau} - \frac{1}{2} \left(\frac{\partial h^*}{\partial y^H} + \frac{\partial h^*}{\partial y^L} \right) h^* < 0$$

is a form of compensated investment in human capital.12

Under these conditions

$$\frac{\partial L}{\partial \tau} = 0 \Rightarrow \tau < 0,$$

which means that optimal tax on education is negative: the policy prescription is to subsidize education.

In our model there is no credit rationing nor externalities in the educational investment. Yet, we conclude that the optimal tax rate on education should be negative. This

11Da Costa (2004) offers some arguments as of why we should expect this to be the case for any reasonable parametrization of the model.

12This extra term results from the fact that the first order conditions with respect to y^i ($i = H, L$) have now an extra term, $\lambda \tau \partial h / \partial y^i$, that must be considered when proceeding with the same substitutions that were used in the previous section.
is not directly due to the fact that there is wage uncertainty in our model. Instead, wage uncertainty makes necessary an optimal taxation mechanism to redistribute wealth.

5.4 Taxing Investments

Defining now, t as the tax on investments, an analogous procedure to the one used in section 5.3 yields

$$\left. \frac{\partial L}{\partial t} \right|_{t=0} = -(1 + \mu) \sum_{i=H,L} \left[u'(s^* + y^i)s^* - \mu 2u'(s^o + y^L)s^0 \right] + \lambda s^* > 0.$$

Once again we have the result that, around $t = 0$, it is optimal to increase taxes on (thus taxing) returns on investments.

5.4.1 Optimal Taxes

The case here is exactly analogous to the case studied in section 5.3.1. Once again assuming that the relevant IC constraint is the one that guarantees that it is not optimal to always announce L we may show that it is optimal to tax savings.

5.5 Discussion

What we see form this section is that even if the government cannot directly control savings and investment in human capital, it is still the case that it should intervene in the market by taking savings and subsidizing education.

Notice also that we have not considered the two instruments together. The problem here is that the cross effects of taxation on the two investment choices affect the sign of tax instruments.

Yet, it is possible to show that under the same conditions of the last two sections we have, $\tau \hat{h}_r + t\hat{s}_r > 0$ and $\tau \hat{h}_t + t\hat{s}_t < 0$, where variables with hats are 'compensated' choices.\footnote{E.g., $\hat{s}_r \equiv s_r + (s_{yH} + s_{yL}) h$ measures the effect on savings of increasing taxes on human capital investment when this change is compensated with an increase of h units of income in each state of the world.}
We would want to interpret the two expressions as a statement about the encouragement of human capital investment and a discouragement of savings along the lines of Mirrlees (1976), however the association is not precise. The problem here is that though \hat{s} and \hat{h} are 'compensated' savings and human capital investment, they need not be symmetric, i.e., $\hat{s} \neq \hat{h}$, in general.

Hamilton (1987) is able to show that an interest income tax is optimal under fairly restrictive assumption: inelastic labor supply and no savings. We analyze the same question setting up a mechanism design problem, what allows us to give more policy prescriptions under more general assumptions.

The general rule present in the literature prescribes zero tax rate on capital, see for example, Feldstein (1978) in a two-periods model and Chamley (1987) and Lucas (1990) in a Ramsey framework. Our result contradicts these prescriptions. In a different framework, we find a result analogous to the one derived by Kockerlakota et. al. (2003).

6 Observable Education and Unobservable Savings

In this section we assume that the government can still control education but cannot control savings. There is an inconsistency in assuming this type of observability, given that observing one implies observing the other from the fact that labor supply—in terms of efficiency units—is observe and $1 - h - s$ is observed. This is of course due to our simplifying assumptions regarding first period choices.

We set this aside and solve the government’s program

$$\max_{h,Y^H,Y^L,y^H,y^L} 2u(1 - h - s^*) + u(s^* + y^H) - \zeta \left(\frac{Y^H}{w(h, \theta^H)} \right) + u(s^* + y^L) - \zeta \left(\frac{Y^L}{w(h, \theta^L)} \right)$$

s.t. $$2u(1 - h - s^*) + \sum_{i=H,L} \left[u(s^* + y^i) - \zeta \left(\frac{Y^i}{w(h, \theta^i)} \right) \right] \geq 2u(1 - h - s^*) + 2u(s^* + y^L) - \sum_{i=H,L} \zeta \left(\frac{Y^L}{w(h, \theta^L)} \right), \quad [\mu]$$

$$Y^H + Y^L \geq y^H + y^L, \quad [\lambda]$$

where Lagrange multipliers are shown at the right of each constraint equation.
First order conditions are

\[u'(c^H) = \frac{\lambda}{1 + \mu}, \]
\[u'(c^L) = \frac{\lambda}{1 + \mu} - 2\frac{\mu}{1 + \mu}u'(s^o + y^L), \]
\[\zeta'(l^H) = \frac{\lambda}{1 + \mu}w(h, \theta^H), \]
\[\zeta'(l^L) = \frac{\lambda}{1 + \mu}w(h, \theta^L) + \frac{\mu}{1 + \mu} \left[\zeta'(l^L) + \zeta'(l^L|H) \frac{w(h, \theta^L)}{w(h, \theta^H)} \right], \]

and

\[2u'(1 - h - s^*) = \zeta'(l^H) l^H w(h, \theta^H) w(h, \theta^H) + \zeta'(l^L) l^L w(h, \theta^L) w(h, \theta^H) + \mu \left[\zeta'(l^H) l^H - \zeta'(l^L) l^L \right] \frac{w(h, \theta^H)}{w(h, \theta^H)}. \]

Notice that the first order condition with respect to \(Y^L \) can be rewritten as

\[\frac{\zeta'(l^L)}{w(h, \theta^L)} - u'(c^L) = \frac{\mu}{1 + \mu} \left\{ \frac{1}{2} \left[\frac{\zeta'(l^L)}{w(h, \theta^L)} + \frac{\zeta'(l^L|H)}{w(h, \theta^H)} \right] - u'(s^o + y^L) \right\} \quad (18) \]

which parallels the one found in section 5. The difference is that human capital investments are controlled in (18), hence equal on and off the equilibrium path whilst in they differ, in general.

High productivity agents will necessarily consume more—\((Y^H, y^H) >> (Y^L, y^L)\). The differences in marginal utilities will be proportional to \(u'(s^o + y^L) \), the marginal utility of consumption for those who opted for deviating. Notice also that:

\[\frac{\zeta'(l^L)}{w(h, \theta^L)} > \frac{\zeta'(l^H)}{w(h, \theta^H)}. \]

The marginal cost will be higher for the least productive.

So, the interpretation for the equation that determines the optimal quantity of education parallels that of section 3. Once again, a wedge between marginal cost and marginal benefit of education is induced by the government.

Equation (18) resembles (9). When choosing the optimal amount of education the government should equalize its private cost, the foregone earnings, to its private
benefit, the reduction in marginal cost of effort, plus one term relative to the incentive compatibility constraint. Noticing that $Y^H > Y^L$ one can easily see that this expression should be positive. Hence, we have the same situation as before: the government should distort the level of education to punish the deviators.

6.1 Taxing Investments

Assume that the government can tax savings as in section 5. In this case,

$$\frac{\partial L}{\partial t} = (1 + \mu) \left[u'(c^H) + u'(c^L) \right] s^* + \mu u'(c^L) s^o + \lambda \left(s^* + t \frac{\partial s^*}{\partial t} \right) = 0$$

The same procedure used in section 5 applies here. First we notice that

$$\frac{\partial L}{\partial t} = \mu u'(c^L) (s^o - s^*) + \lambda \frac{\partial s^*}{\partial t} = 0,$$

with

$$\frac{\partial s^*}{\partial t} = \frac{\partial s^*}{\partial t} - \frac{1}{2} \left(\frac{\partial s^*}{\partial y^H} + \frac{\partial s^*}{\partial y^L} \right) s^* < 0$$

Hence, we only need to know the sign of $(s^o - s^*)$ to determine the sign of t.

But optimal savings on and off-equilibrium, s^* and s^o, can be determined by the following private first order conditions:

$$u'(1 - h - s^*) = \frac{1}{2} \left[u'(s^* + y^H) + u'(s^* + y^L) \right]$$
$$u'(1 - h - s^o) = u'(s^o + y^L)$$

Hence, $s^o > s^*$. This shows that the optimal linear tax rates on savings are positive.

Finally, notice that an increase in h reduces savings (on and off the equilibrium path) hence reducing tax revenues. This indirect effect must be accounted for by the government when deciding the optimal level of h. It does not change, however the qualitative results.

6.1.1 Observable Savings and Unobservable Education

When the government observes only savings, the same procedure may be used to show that the government should choose a lower level of savings than what the agent would find optimal. We omit the algebra, since this derivation is absolutely analogous to the case analyzed above.
The reason for introducing this wedge between marginal cost and marginal gains for savings is the same as before. By reducing savings the government makes life tougher for those who adopt the strategy of announcing falsely their types, when compared to the effect on those who intend to comply. Lower savings is useful for relaxing the incentive compatibility constraints, in this case.

Also, if we allow the government to set a linear tax on the investment in education, one can show that the tax rate should be negative: education ought to be subsidized.

7 Conclusion

In this paper, we have analyzed a model of human capital formation with wage uncertainty due to idiosyncratic shocks to productivity along the lines of Eaton and Rosen (1980) and Hamilton (1987).

Our model differs from these early contributions to the literature in two dimensions. First, we generalize the human capital investment technology by letting human capital increase or decrease wage variance. Second, we allow the government to use a fully non-linear income tax schedule.

Contrary to the rest of the literature the prescriptions we derive are robust to the risk characteristics of human capital: government should encourage education and discourage savings. Robustness is due to our prescriptions being driven by reasons that are different from the usual ones. The government should finance education and tax savings to punish those who want to deviate and free-ride on the government’s redistributive programs, claiming to be less productive than they really are. Because the pattern of choices driven by deviant behavior is independent of the risk characteristics of human capital investment, so are policy prescriptions.

Finally, we have built a bridge between different ways to analyze the same problem based on different informational structures and have shown another dimension of robustness of our results: they are also robust to different assumptions on observability of investment choices.

Wedges between marginal private costs and benefits are created with instruments that are feasible according to the informational structure of the problem. Signs of wedges are invariant to these informational changes.
A Proofs

Proof of Proposition 1. Because IC constraints (16) are satisfied we have

\[2u(1 - s^* - h^*) + \sum_i \left\{ u(s^* + y^i) - \zeta \left(\frac{Y^i}{w(h^*, \theta^i)} \right) \right\} \geq \]

\[2u(1 - s^o - h^o) + \sum_i \left\{ u(s^o + y^o(i)) - \zeta \left(\frac{Y^o(i)}{w(h^o, \theta^i)} \right) \right\} \geq \]

\[2u(1 - s^* - h^*) + \sum_i \left\{ u(s^* + y^o(i)) - \zeta \left(\frac{Y^o(i)}{w(h^o, \theta^i)} \right) \right\} \]

where the last inequality is due to \(s^o \) and \(h^o \) being the optimal choices for alternative strategy \(o \).

Take first strategy \(\sigma^o(j) = L, j = H, L \). Then,

\[\sum_i \left\{ u(s^* + y^i) - \zeta \left(\frac{Y^i}{w(h^*, \theta^i)} \right) \right\} \geq \]

\[u(s^* + y^L) - \sum_i \zeta \left(\frac{Y^L}{w(h^*, \theta^i)} \right) \Rightarrow \]

\[u(s^* + y^H) - \zeta \left(\frac{Y^H}{w(h^*, \theta^H)} \right) \geq u(s^* + y^L) - \zeta \left(\frac{Y^L}{w(h^*, \theta^H)} \right). \]

Therefore, one of the second period IC constraints is satisfied. To prove that the other is also satisfied we only need to consider the other alternative strategy \(\sigma^o(j) = H, j = H, L \). An analogous procedure delivers the result. ■

Proof of Lemma 1. For notational simplicity, in this proof, we normalize \(s^* = 0 \) and simplify notation by assuming \(w(h^*, \theta^L) = 1, w(h^*, \theta^H) = w \). Assume \((Y^H, y^H) \ll (Y^L, y^L) \). Take any monotonic path \((y, Y) : [0, 1] \rightarrow [y^L, Y^L] \times [y^H, Y^H] \) from \((y^L, Y^L) \) to \((y^H, Y^H) \) and write

\[u(y^H) - \zeta \left(\frac{Y^H}{w} \right) - [u(y^L) - \zeta \left(\frac{Y^L}{w} \right)] = \int_0^1 \left\{ u'(y(t))y'(t) - \zeta' \left(\frac{Y(t)}{w} \right) Y'(t) \right\} dt \]

\[> \int_0^1 \left\{ u'(y(t))y'(t) - \zeta' \left(\frac{Y(t)}{w} \right) Y'(t) \right\} dt \]

\[= u(y^H) - \zeta \left(\frac{Y^H}{w} \right) - \left[u(y^L) - \zeta \left(\frac{Y^L}{w} \right) \right] \]

If an allocation is implementable the left hand side is non-positive, which means that

\[u(y^L) - \zeta \left(\frac{Y^L}{w} \right) > u(y^H) - \zeta \left(\frac{Y^H}{w} \right). \]
Hence, the allocation is not implementable. □

Proof of Proposition 2. Let s^o and h^o be the optimum level of savings and human capital investments for the strategy σ^o such that $\sigma^o(H) = L$ and $\sigma^o(L) = H$. Then, lemma 1, monotonicity and convexity of $\zeta(\cdot)$ guarantee that

$$\zeta \left(\frac{Y^H}{w(h^o, \theta^L)} \right) + \zeta \left(\frac{Y^L}{w(h^o, \theta^H)} \right) > \zeta \left(\frac{Y^H}{w(h^o, \theta^L)} \right) + \zeta \left(\frac{Y^L}{w(h^o, \theta^L)} \right)$$

which then implies,

$$2u(1 - s^o - h^o) + 2u(y^H + s^o) - \left[\zeta \left(\frac{Y^H}{w(h^o, \theta^L)} \right) + \zeta \left(\frac{Y^L}{w(h^o, \theta^H)} \right) \right] < 2u(1 - s^o - h^o) + 2u(y^H + s^o) - \left[\zeta \left(\frac{Y^H}{w(h^o, \theta^L)} \right) + \zeta \left(\frac{Y^L}{w(h^o, \theta^H)} \right) \right] \leq 2u(1 - s^o - h^o) + 2u(y^H + s^o) - \left[\zeta \left(\frac{Y^H}{w(h^*, \theta^L)} \right) + \zeta \left(\frac{Y^L}{w(h^*, \theta^L)} \right) \right]$$

where the last inequality is due to (s^*, h^*) being optimal for the true-telling strategy. □

Proof of Proposition 3. Assume first that the optimal allocation is such that $Y^H < y^H$ and $Y^L > y^L$. Then for any s and h the allocation is a mean preserving spread over the allocation obtained by choosing s and h and producing Y^H and Y^L depending on the state of nature. Because agents are risk averse utility is lower in the first case.

Next consider $Y^H \geq y^H$ and $Y^L \leq y^L$. If the constraint in binding, the expected utility delivered by the optimal tax scheme is

$$2u(1 - s^o - h^o) + \sum_{i=H,L} u(y^i + s^o) - \zeta \left(\frac{Y^i}{w(h^*, \theta^i)} \right) = 2u(1 - s^o - h^o) + 2u(y^H + s^o) - \sum_{i=H,L} \zeta \left(\frac{Y^H}{w(h^o, \theta^i)} \right) \leq 2u(1 - s^o - h^o) + 2u(y^H + s^o) - \sum_{i=H,L} \zeta \left(\frac{Y^H}{w(h^o, \theta^i)} \right)$$

with strict inequality if $Y^H > y^H$. But, if $Y^H = y^H$ the allocation is feasible in autarchy and, in general, non-optimal, hence governments policy lowers utility, when compared to what can be attained in autarchy. □
Proof of Proposition 4. Fix s^* and s^0 and assume that $h^* \leq h^o$. The first order conditions for savings are

$$2u' (1 - s^* - h^*) = u' (y^H + s^*) + u' (y^L + s^*) \quad (19)$$

and

$$u' (1 - s^0 - h^o) = u' (y^L + s^0) \quad (20)$$

with $y^L < y^H$. While the first order conditions for human capital investments imply,

$$2u' (1 - s^* - h^*) = \left[\zeta' \left(\frac{Y^H}{w(h^*, \theta^H)} \right) \frac{Y^H (\partial w^H/\partial h)^*}{w(h^*, \theta^H)^2} + \zeta' \left(\frac{Y^L}{w(h^*, \theta^L)} \right) \frac{Y^L (\partial w^L/\partial h)^*}{w(h^*, \theta^L)^2} \right] \geq \left[\zeta' \left(\frac{Y^H}{w(h^o, \theta^H)} \right) \frac{Y^H (\partial w^H/\partial h)^o}{w(h^o, \theta^H)^2} + \zeta' \left(\frac{Y^L}{w(h^o, \theta^L)} \right) \frac{Y^L (\partial w^L/\partial h)^o}{w(h^o, \theta^L)^2} \right] \geq\right.$$

$$2u' (1 - s^0 - h^o),$$

where $(\partial w^H/\partial h)^* \equiv \partial w(h^*, \theta^H)/\partial h$ and $(\partial w^H/\partial h)^o \equiv \partial w(h^o, \theta^H)/\partial h$.

The two equalities—which begin and end the expression—are simply the first order conditions with respect to h along and off the equilibrium path. The second inequality is a simple consequence of $Y^L < Y^H$. As for the first, it is due to the facts that: i) $h^* \leq h^o \Rightarrow w(h^*, \theta) < w(h^o, \theta)$ (monotonicity) and $(\partial w/\partial h)^o < (\partial w/\partial h)^*$ (concavity), and ii) convexity and monotonicity of $\zeta(\cdot)$.

Hence, $u' (1 - s^* - h^*) \geq u' (1 - s^0 - h^o)$ for any s, $h^* \leq h^o$ which is not compatible with (19) and (20).

As for savings, assume $s^* > s^0$. Then,

$$u' (y^L + s^0) > \frac{1}{2} \left[u' (y^H + s^*) + u' (y^L + s^*) \right] = u' (1 - s^* - h^*) > u' (1 - s^0 - h^o).$$

where the last inequality is due to $h^* > h^o$. This contradicts s^0 and h^o satisfying the first order conditions. \blacksquare
References

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>ENDOGENOUS TIME-DEPENDENT RULES AND THE COSTS OF DISINFLATION WITH</td>
<td>Marco Bonomo; Carlos Viana de</td>
<td>Outubro de</td>
<td>27 págs</td>
</tr>
<tr>
<td></td>
<td>IMPERFECT CREDIBILITY</td>
<td>Carvalho</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>CAPITAIS INTERNACIONAIS: COMPLEMENTARES OU SUBSTITUTOS?</td>
<td>Carlos Hamilton V. Araújo; Renato</td>
<td>Outubro de</td>
<td>24 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. Flôres Jr.</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>TESTING PRODUCTION FUNCTIONS USED IN EMPIRICAL GROWTH STUDIES</td>
<td>Pedro Cavalcanti Ferreira; João</td>
<td>Outubro de</td>
<td>8 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vítor Issler; Samuel de Abreu</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pessoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>SHOULD EDUCATIONAL POLICIES BE REGRESSIVE?</td>
<td>Daniel Gottlieb; Humberto Moreira</td>
<td>Outubro de</td>
<td>25 págs</td>
</tr>
<tr>
<td>509</td>
<td>TRADE AND CO-OPERATION IN THE EU-MERCOSUL FREE TRADE AGREEMENT</td>
<td>Renato G. Flôres Jr.</td>
<td>Outubro de</td>
<td>33 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>OUTPUT CONVERGENCE IN MERCOSUR: MULTIVARIATE TIME SERIES EVIDENCE</td>
<td>Mariam Camarero; Renato G. Flôres</td>
<td>Outubro de</td>
<td>36 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jr; Cecílio Tamarit</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>ENDOGENOUS COLLATERAL</td>
<td>Aloísio Araújo; José Fajardo</td>
<td>Novembro de</td>
<td>37 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barbachan; Mario R. Páscoa</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>NON-MONOTONE INSURANCE CONTRACTS AND THEIR EMPIRICAL CONSEQUENCES</td>
<td>Aloísio Araujo; Humberto Moreira</td>
<td>Novembro de</td>
<td>31 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>EQUILIBRIA IN SECURITY MARKETS WITH A CONTINUUM OF AGENTS</td>
<td>A. Araujo; V. F. Martins da Rocha;</td>
<td>Novembro de</td>
<td>17 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. K. Monteiro</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>SPECULATIVE ATTACKS ON DEBTS AND OPTIMUM CURRENCY AREA: A WELFARE</td>
<td>Aloísio Araujo; Márcia Leon</td>
<td>Novembro de</td>
<td>50 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>O MÉTODO GENERALIZADO DOS MOMENTOS(MGM): CONCEITOS BÁSICOS</td>
<td>Renato G. Flôres Jr</td>
<td>Novembro de</td>
<td>27 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>VARIÁVEIS INTRUMENTAIS E O MGM: USO DE MOMENTOS CONDICIONAIS</td>
<td>Renato G. Flôres Jr</td>
<td>Novembro de</td>
<td>27 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>O VALOR DA MOEDA E A TEORIA DOS PREÇOS DOS ATIVOS</td>
<td>Fernando de Holanda Barbosa</td>
<td>Dezembro de</td>
<td>17 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>EMPRESÁRIOS NACIONOS, GARANTIAS E ACESSO À CRÉDITO</td>
<td>Marcelo Côrtes Néri; Fabiano da</td>
<td>Dezembro de</td>
<td>23 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silva Giovanini</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>DESENHO DE UM SISTEMA DE METAS SOCIAIS</td>
<td>Marcelo Côrtes Néri; Marcelo</td>
<td>Dezembro de</td>
<td>24 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xerez</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>A NEW INCIDENCE ANALYSIS OF BRAZILIAN SOCIAL POLICIES USING MULTIPLE</td>
<td>Marcelo Côrtes Néri</td>
<td>Dezembro de</td>
<td>55 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DATA SOURCES</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>AN INTRA-HOUSEHOLD APPROACH TO THE WELFARE COSTS OF INFLATION</td>
<td>Rubens Penha Cysne</td>
<td>Janeiro de</td>
<td>16 págs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>CENTRAL LIMIT THEOREM FOR ASYMMETRIC KERNEL FUNCTIONALS</td>
<td>Marcelo Fernandes; Paulo Klinger Monteiro</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>523</td>
<td>THE TRADE-OFF BETWEEN INCENTIVES AND ENDOGENOUS RISK</td>
<td>Aloísio Araujo; Humberto Moreira; Marcos H. Tsuchida</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>DO DIVIDENDS SIGNAL MORE EARNINGS ?</td>
<td>Aloísio Araujo; Humberto Moreira; Marcos H. Tsuchida</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Biased managers, organizational design, and incentive provision</td>
<td>Cristiano M. Costa; Daniel Ferreira; Humberto Moreira</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>Land taxes in a Latin American context</td>
<td>Juliano J. Assunção; Humberto Moreira</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>Indicadores coincidentes de atividade econômica e uma cronologia de recessões para o Brasil</td>
<td>Angelo J. Mont’alverne Duarte; João Victor Issler; Andrei Spacov</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>TESTING UNIT ROOT BASED ON PARTIALLY ADAPTIVE ESTIMATION</td>
<td>Zhijie Xiao; Luiz Renato Lima</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>DO SHOCKS PERMANENTLY CHANGE OUTPUT? LOCAL PERSISTENCY IN ECONOMIC TIME SERIES</td>
<td>Luiz Renato Lima; Zhijie Xiao</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>A NEW PERSPECTIVE ON THE PPP HYPOTHESIS</td>
<td>Soyoung Kim; Luiz Renato Lima</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>TRADE LIBERALIZATION AND INDUSTRIAL CONCENTRATION: EVIDENCE FROM BRAZIL</td>
<td>Pedro Cavalcanti Ferreira; Giovanni Facchini</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>REGIONAL OR EDUCATIONAL DISPARITIES? A COUNTERFACTUAL EXERCISE</td>
<td>Angelo José Mont’Alverne; Pedro Cavalcanti Ferreira; Márcio Antônio Salvato</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>INFLAÇÃO: INÉRCIA E DÉFICIT PÚBLICO</td>
<td>Fernando de Holanda Barbosa</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>A INÉRCIA DA TAXA DE JUROS NA POLÍTICA MONETÁRIA</td>
<td>Fernando de Holanda Barbosa</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>DEBT COMPOSITION AND EXCHANGE RATE BALANCE SHEET EFFECTS IN BRAZIL: A FIRM LEVEL ANALYSIS</td>
<td>Marco Bonomo; Betina Martins; Rodrigo Pinto</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>536</td>
<td>THE SET OF EQUILIBRIA OF FIRST-PRICE AUCTIONS</td>
<td>Paulo Klinger Monteiro</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>OPTIMAL AUCTIONS WITH MULTIDIMENSIONAL TYPES AND THE DESIRABILITY OF EXCLUSION</td>
<td>Paulo Klinger Monteiro; Benar Fux Svaiter; Frank H. Page Jr</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>INCOME INEQUALITY IN A JOB-SEARCH MODEL WITH HETEROGENEOUS TIME PREFERENCES</td>
<td>Rubens Penha Cysne</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>IMPOSTO INFLACIONÁRIO E TRANSFERÊNCIAS INFLACIONÁRIAS NO BRASIL: 1947-2003</td>
<td>Rubens Penha Cysne; Paulo C. Coimbra-Lisboa</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>ON THE STATISTICAL ESTIMATION OF DIFFUSION PROCESSES – A survey</td>
<td>Rubens Penha Cysne</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>ROBUSTNESS OF STATIONARY TESTS UNDER LONG-MEMORY ALTERNATIVES</td>
<td>Luiz Renato Lima; Zhijie Xiao</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>542</td>
<td>MONETARY UNION AND PRODUCTIVITY DIFFERENCES IN MERCOSUR COUNTRIES</td>
<td>Mariam Camarero; Renato G. Flôres, Jr.; Cecilio R. Tamarit</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>543</td>
<td>TWO ADDITIONS TO LUCAS´S “INFLATION AND WELFARE”</td>
<td>Rubens Penha Cysne</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>THE IMPLICATIONS OF EMBODIMENT AND PUTTY-CLAY TO ECONOMIC DEVELOPMENT</td>
<td>Samuel de Abreu Pessoa; Rafael Rob</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>MONEY WITH BANK NETWORKS</td>
<td>Ricardo Cavalcanti; Henrique Dezemone Forno</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>546</td>
<td>CYCLICAL INTEREST PAYMENTS ON INSIDE MONEY</td>
<td>Ricardo Cavalcanti; Henrique Dezemone Forno</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>DOIS EXPERIMENTOS DE POLÍTICA MONETÁRIA NO MODELO NOVO-KEYNESIANO</td>
<td>Fernando de Holanda Barbosa</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>548</td>
<td>THE EVOLUTION OF INTERNATIONAL OUTPUT DIFFERENCES (1960-2000): FROM</td>
<td>Pedro Cavalcanti Ferreira; Samuel de Abreu Pessoa; Fernando A. Veloso</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FACTORS TO PRODUCTIVITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>549</td>
<td>PRINCIPAIS CARACTERÍSTICAS DO CONSUMO DE DURÁVEIS NO BRASIL E TESTES</td>
<td>Fábio Augusto Reis Gomes; João Victor Issler; Márcio Antônio Salvato</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE SEPARABILIDADE ENTRE DURÁVEIS E NÃO-DURÁVEIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>AVALIANDO PESQUISADORES E DEPARTAMENTOS DE ECONOMIA NO BRASIL A</td>
<td>João Victor Issler; Rachel Couto Ferreira</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARTIR DE CITAÇÕES INTERNACIONAIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>COMMON AGENCY WITH INFORMED PRINCIPALS</td>
<td>David Martimort; Humberto Moreira</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>552</td>
<td>PURCHASING POWER PARITY AND THE UNIT ROOT TESTS: A ROBUST ANALYSIS</td>
<td>Zhijie Xiao; Luiz Renato Lima</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>553</td>
<td>A MODEL OF MIXED SIGNALS WITH APPLICATIONS TO COUNTERSIGNALING AN THE</td>
<td>Aloisio Araujo; Daniel Gottlieb; Humberto Moreira</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>554</td>
<td>THE RISK-PROPERTIES OF HUMAN CAPITAL AND THE DESIGN OF GOVERNMENT</td>
<td>Carlos E. da Costa; Lucas J. Maestri</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POLICIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>BANNING INFORMATION AS A REDISTRIBUTIVE DEVICE</td>
<td>Daniel Gottlieb; Lucas Maestri</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>