Mensuração de Capacidade Tecnológica no Contexto de Industrialização Recente: Uma Breve Reflexão Crítica sobre Taxonomias e Evidências de Pesquisas Recentes

Camila Santos Loures

Orientador Acadêmico: Prof. Dr. Paulo Negreiros de Figueiredo

RIO DE JANEIRO
AGRADECIMENTOS

À Fundação Getulio Vargas, especialmente, à EBAPE – Escola Brasileira de Administração Pública e de Empresas, por ter me possibilitado cursar um dos cursos de mestrado de maior destaque e reconhecimento, além de fornecer as estruturas físicas e acadêmicas dignas de mérito.

À coordenação do Mestrado Executivo, sempre competente em conciliar as necessidades acadêmicas, o corpo docente e o conjunto de alunos, com seus diferentes anseios e interesses.

Aos professores do Mestrado Executivo, que formam uma equipe de estimada e reconhecida capacidade, onde, cada um de sua maneira, perfil e campo de atuação, colaboraram muito fornecendo as bases necessárias para qualquer tipo de aprendizado e realização.

Ao professor Paulo Figueiredo pela introdução e desenvolvimento dos conceitos relacionados à inovação tecnológica e pela colaboração e profissionalismo durante todo o tempo em que estive elaborando e desenvolvendo minha dissertação.

Aos amigos e colegas de turma, que sempre tiveram dispostos a ajudar e contribuir para o que fosse necessário.

Em especial, à minha família e ao meu noivo, que muitas vezes tiveram de se privar de minha presença ou mesmo de minha atenção devido às responsabilidades acadêmicas, mas que sempre deram muito apoio e amor para que eu pudesse superar todas as dificuldades e conseguisse seguir sempre rumo aos meus objetivos.
SUMÁRIO

<table>
<thead>
<tr>
<th>CAPÍTULO</th>
<th>TÍTULO</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUÇÃO</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>BASES PARA ESTUDOS DE MENSURAÇÃO DE CAPACIDADES TECNOLÓGICAS E INOVAÇÃO</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>PERSPECTIVAS SOBRE TECNOLOGIA</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>PERSPECTIVAS SOBRE INOVAÇÃO</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Abordagens e modelos convencionais de inovação</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2</td>
<td>O contraposto de países em desenvolvimento</td>
<td>19</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Aprendizagem e Capacidades Tecnológicas</td>
<td>25</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Características tecnológicas das empresas em países em desenvolvimento: por que</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>os modelos convencionais de inovação não são suficientes</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>TRAJETÓRIA DE ESTUDOS DE MENSURAÇÃO DE CAPACIDADES TECNOLÓGICAS EM PAÍSES EM DESENVOLVIMENTO</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>DESENHO E MÉTODO DA DISSERTAÇÃO</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>QUESTÕES DA DISSERTAÇÃO</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>MÉTODO DA DISSERTAÇÃO</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>TIPOS DE INFORMAÇÃO</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>FONTES DE INFORMAÇÃO</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>MÉTODO DE COLETA DE DADOS E INFORMAÇÕES</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>BREVE REVISÃO DE ESTRATÉGIAS E ESTUDOS À BASE DE INDICADORES DE C&T</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>ANTECEDENTES DOS INDICADORES DE C&T</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>PRINCIPAIS ABORDAGENS DE MENSURAÇÃO DE C&T BASEADAS EM INDICADORES</td>
<td>59</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Manual Frascati - Abordagem voltada para mensuração de P&D</td>
<td>59</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Manual de Canberra - Abordagem voltada para mensuração de recursos humanos</td>
<td>61</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Manual de Oslo - Abordagem voltada para mensuração da inovação</td>
<td>62</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Manual de Bogotá - Abordagem voltada para mensuração da inovação no contexto de países em</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>desenvolvimento</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>PRINCIPAIS INDICADORES DE C&T: MÉRITOS E LIMITAÇÕES NO Contexto de Países em Desenvolvimento</td>
<td>68</td>
</tr>
<tr>
<td>4.4</td>
<td>TRAJETÓRIA DE ESTUDOS DE INOVAÇÃO BASEADOS EM INDICADORES DE C&T EM PAÍSES EM DESENVOLVIMENTO</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>ESTRATÉGIAS DE MENSURAÇÃO DE CAPACIDADES TECNOLÓGICAS E INOVAÇÃO EM PAÍSES EM DESENVOLVIMENTO À BASE DE PERSPECTIVA CONVENCIONAL – LEVANTAMENTOS (SURVEYS) DE INOVAÇÃO</td>
<td>95</td>
</tr>
<tr>
<td>5.1</td>
<td>ECIB – CONCEITOS E METODOLOGIA</td>
<td>96</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Méritos e Limitações do ECIB</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>PINTEC – CONCEITOS E METODOLOGIA</td>
<td>105</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Méritos e Limitações da PINTEC</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>PAEP – CONCEITOS E METODOLOGIA</td>
<td>118</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Méritos e Limitações da PAEP</td>
<td>121</td>
</tr>
<tr>
<td>5.4</td>
<td>EAI – CONCEITOS E METODOLOGIA</td>
<td>129</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Méritos e Limitações da EAI</td>
<td>131</td>
</tr>
</tbody>
</table>
CAPÍTULO 6 - ESTUDOS À BASE DE TIPOS E NÍVEIS DE CAPACIDADES TECNOLÓGICAS EM PAÍSES EM DESENVOLVIMENTO ... 141

6.1. MODELO DE MENSURAÇÃO DE CAPACIDADES TECNOLÓGICAS NO CONTEXTO DE INDUSTRIAIZAÇÃO TARDIA .. 142

6.2. ESTUDOS EM PROFUNDADE NO NÍVEL DE EMPRESAS .. 146
 6.2.1. Evidências acerca das capacidades tecnológicas de empresas de aço no Brasil 146
 6.2.2. Evidências acerca das capacidades tecnológicas de uma subsidiária da indústria de bens de capital no Brasil .. 152
 6.2.3. Evidências acerca das capacidades tecnológicas de uma subsidiária da indústria de refrigeradores no Brasil ... 157

6.3. ESTUDOS BASEADOS EM UMA AMOSTRA DE EMPRESAS ... 162
 6.3.1. Evidências acerca das capacidades tecnológicas da indústria de eletrônicos na Malásia .. 162
 6.3.2. Evidências acerca das capacidades tecnológicas de empresas de software no Brasil ... 168
 6.3.3. Evidências acerca das capacidades tecnológicas da indústria de bens de consumo duráveis no Brasil ... 173

6.4. LIMITAÇÕES DA MÉTRICA .. 178

CAPÍTULO 7 - ANÁLISES E DISCUSSÕES .. 181

CAPÍTULO 8 - CONCLUSÕES E RECOMENDAÇÕES ... 194

8.1. IMPLICAÇÕES E RECOMENDAÇÕES PARA POLÍTICAS GOVERNAMENTAIS E ESTRATÉGIAS CORPORATIVAS .. 197

8.2. IMPLICAÇÕES E RECOMENDAÇÕES PARA PESQUISAS FUTURAS .. 202

REFERÊNCIAS BIBLIOGRÁFICAS .. 206
ÍNDICE DE TABELAS

Tabela 6.1 – Capacidades tecnológicas em empresas de economias emergentes: um modelo descritivo ... 143

Tabela 6.2 – Taxa de acumulação de capacidades tecnológicas na CSN e USIMINAS 147

Tabela 6.3 – Taxa de acumulação de capacidades tecnológicas na Kvaerner Pulping 153

Tabela 6.4 – Taxa de acumulação de capacidades tecnológicas na subsidiária da Electrolux 160

Tabela 6.5 – Variedade dos mecanismos de aprendizagem da subsidiária da Electrolux 160

Tabela 6.6 – Tipos e níveis de capacidades tecnológicas de empresas da indústria de eletrônicos da Malásia ... 164

Tabela 6.7 – Tipos e níveis de capacidades tecnológicas das empresas de software 169

Tabela 6.8 – Trajetória de acumulação de capacidades tecnológicas das empresas de software para a função Projetos .. 171

Tabela 6.9 – Quantidade de empresas da amostra que atingiu tipos e níveis específicos de capacidades tecnológicas .. 174

Tabela 6.10 – Número de anos que as empresas levaram para se mover através dos diferentes níveis de capacidades tecnológicas ... 176

Tabela 7.1 – Síntese dos méritos e limitações de abordagens à base de indicadores de C&T (surveys de inovação) .. 184

Tabela 7.2 – Síntese dos méritos e limitações da abordagem à base de tipos e níveis de capacidades tecnológicas .. 186
ÍNDICE DE FIGURAS

Figura 2.1 – Trajetória do Processo Inovador ... 16
Figura 2.2 – Componentes das capacidades tecnológicas ... 27
Figura 2.3 – Processo de aquisição de tecnologia em empresas de países em desenvolvimento 32
Figura 2.4 – Trajetórias tecnológicas: empresas de economias industrializadas versus empresas de economias emergentes ... 34
Figura 2.5 – Modelo ilustrativo da trajetória de acumulação de capacidades tecnológicas em empresas de economias emergentes ... 36
Figura 2.6 – Espectro de capacidades tecnológicas ... 37
Figura 6.1 – Trajetória de acumulação de capacidades tecnológicas da subsidiária da Electrolux 158
Figura 6.2 – Velocidade média de movimento das empresas da indústria de eletrônicos da Malásia através dos níveis de capacidades tecnológicas ... 165
Figura 6.3 – Velocidade média de movimento das empresas de software através dos níveis de capacidades tecnológicas .. 170
RESUMO

Esta dissertação tem como objetivo principal examinar evidências empíricas obtidas à luz de taxonomias e estratégias de mensuração de capacidades tecnológicas e inovação em empresas no contexto de países em desenvolvimento, motivada pelo fato de que vêm se intensificando, ao longo dos últimos trinta anos, debates e estudos voltados para a questão da inovação, tendo em vista o reconhecimento de sua importância vital e crescente para os desempenhos tecnológico, econômico, competitivo e industrial de empresas e países.

Duas tendências principais podem ser identificadas neste debate. De um lado, está a literatura relacionada à lógica de países desenvolvidos, cujas empresas encontram-se, em sua maioria, posicionadas na fronteira tecnológica, com o domínio de capacidades inovativas avançadas, voltadas para seu sustento, aprofundamento e renovação. De outro lado, estão as perspectivas voltadas para a realidade de países em desenvolvimento, onde predominam empresas com deficiência de recursos, ainda preocupadas com o acúmulo de capacidades tecnológicas básicas e intermediárias, com características e trajetórias de desenvolvimento tecnológico distintas e até inversas daquelas de países desenvolvidos.

Desta última tradição de estudos, destacam-se as abordagens de mensuração à base de indicadores de C&T e de tipos e níveis de capacidades tecnológicas. A primeira fornece uma perspectiva de nível macro, agregada, pela análise de uma amostra representativa de empresas, visando à geração de dados comparáveis internacionalmente, sem, contudo, adentrar nas especificidades intra-organizacionais e nas nuances das trajetórias de acumulação tecnológica traçadas pelas empresas, utilizando, muitas vezes, estatísticas de P&D, patentes, qualificações individuais, indicadores estes que carregam suas limitações.

Por outro lado, estudos que examinam os tipos e níveis de capacidades tecnológicas são escassos, normalmente voltados para uma pequena amostra de empresas e/ou setores. Portanto, diante do foco e das potencialidades de cada uma das perspectivas, este cenário expõe uma carência de estudos que examinem, de forma paralela e complementar, ambos tipos de estratégias, visando o fornecimento de informações mais realistas, coerentes e concretas sobre a realidade tecnológica de países em desenvolvimento.

A fim de cobrir esta lacuna, esta dissertação examina (i) estratégias de mensuração da inovação em contextos de países em desenvolvimento à base de abordagens tradicionais e indicadores de C&T, representados por quatro levantamentos de inovação – ECIB, PINTEC, PAEP e EAI, e, (ii) a partir da perspectiva de capacidade tecnológica como um recurso intrínseco à empresa, cujo desenvolvimento se dá de maneira cumulativa e baseada em aprendizagem, apresenta e extrai generalizações de seis aplicações empíricas de uma métrica que identifica tipos e níveis de capacidades tecnológicas, por meio de uma perspectiva dinâmica de nível intra empresarial.

O exame de aplicações empíricas das duas abordagens expôs o que cada uma das métricas é capaz de oferecer e até onde podem contribuir para a geração de informações que reflitam o desenvolvimento tecnológico em setores industriais específicos em países em desenvolvimento. Não obstante o foco, objetivo, perspectiva, abrangência, escopo e lente empregada sejam substancialmente distintos, gerando, de um lado, uma visão agregada, e de outro, uma visão intra-setorial, intra-empresarial e específica, os resultados sugerem que a utilização de uma não implica prescindir ou abdicar da outra. Pelo contrário, o uso de ambas de forma complementar significa a geração de evidências e análises mais completas, ricas e relevantes que fornecem uma noção realista do desenvolvimento industrial e contribuem mais diretamente para a elaboração de estratégias empresariais e políticas governamentais, tanto as de nível macro quanto as mais específicas e focadas, voltadas para o fomento e incremento dos esforços inovadores internos das empresas.
ABSTRACT

This dissertation aims at examining empirical evidences obtained in the light of taxonomies and strategies for measuring firms technological capabilities and innovation in the context of developing countries, motivated by the fact that debates and studies directed to innovation has been intensified, for the last thirty years, by the recognition of its vital and growing importance to the technological, economic, competitive and industrial development of firms and countries.

Two main tendencies can be identified on this debate. At one side, it’s the literature related to the developed countries logic, whose companies are, in majority, positioned at the technological frontier, characterized by the domain of innovative advanced capabilities, directed to its sustaining, deepening and renewal. At the other side, there are the perspectives directed to the developing countries reality, where there is a prevalence of companies with deficiency of resources, still in process of accumulating basic and intermediate technological capabilities, with characteristics and technological development trajectories distinct or even reverse from those of developing countries.

From this last tradition of studies, the measuring approaches based in C&T indicators and in types and levels of technological capabilities stand out. The first offers a macro level, aggregated perspective, through the analysis of a representative sample of firms, seeking to the generation of internationally comparable data, without addressing the intra-organizational specificities and nuances of the paths of technological accumulation developed by the firms, using, mostly, R&D statistics, patents, individual qualifications, indicators that carry their own limitations. On the other hand, studies that examine types and levels of technological capabilities are scarce, usually directed to a small sample of firms and/or industrial sectors. Therefore, in the light of the focus and potentialities of each of the perspectives, this scenario exposes a lack of studies that examine, in a parallel and complementary way, both types of strategies, seeking to offer more realistic, consistent and concrete information about the technological reality of developing countries.

In order to close this gap, this dissertation examines (i) strategies of innovation measurement in the contexts of developing countries based on traditional approaches and C&T indicators, represented by four innovation surveys - ECIB, PINTEC, PAEP and EAI, and, (ii) from the perspective of technological capabilities as an intrinsic resource of the firm, the development of which occurs in a cumulative way and based on learning, presents and extracts generalizations of empirical applications of a metric that identifies types and levels of technological capabilities, through a dynamic and intra-firm perspective.

The exam of the empirical evidences of the two approaches showed what each one of the metrics are capable to offer and the way they can contribute to the generation of information that reflect the technological development of specific industrial sectors in developing countries. In spite of the fact that the focus, objective, perspective, inclusion, scope and lens used are substantially distinct, generating, on a side, an aggregated view, and of other, an intra-sector, intra-organizational and specific view, the results suggest that the use of one doesn't implicate discarding or abdicating the other. On the contrary, using both in a complementary way means the generation of more complete, rich and relevant evidences and analysis that offer a realistic notion of the industrial development and contribute in a more direct way to the design of corporate strategies and government policies, including those directed to the macro level aspects just as those more specific and focused, designed to increment and foment firms in-house innovative efforts.
Esta dissertação trata do exame de evidências empíricas obtidas à luz de taxonomias e estratégias de mensuração de capacidades tecnológicas e inovação em empresas no contexto de países em desenvolvimento. Neste sentido, adota o conceito de capacidade tecnológica (ou competência tecnológica) desenvolvido por Bell e Pavitt (1993), pelo qual esta é entendida como os recursos necessários para gerar e gerir a mudança tecnológica, incluindo habilidades, conhecimentos e experiências, estruturas institucionais e as redes de ligações. Paralelamente, adota a perspectiva abrangente sobre inovação, descrita por Dosi (1988) como um processo que envolve a busca, descoberta, experimentação, desenvolvimento, imitação e adoção de novos produtos, novos processos de produção e novos arranjos organizacionais. Portanto, o presente trabalho procura se alinhar a perspectivas que consideram o desenvolvimento tecnológico como um processo que se dá de maneira cumulativa, ao longo do tempo, baseado na aprendizagem, onde as melhorias contínuas e incrementais e o aprender fazendo são partes essenciais do processo, que além de ser intrínseco ao contexto, também inclui diversos elementos de natureza tácita.

Muito embora estudos e questões relacionados a capacidades tecnológicas e inovação venham sendo desenvolvidos desde a década de 1970, foi, sobretudo, a partir da década de 1990 que se intensificaram, à medida que aumentou o reconhecimento destes elementos como fonte de vantagem competitiva para empresas, e quando começaram a ser desenvolvidos e aplicados modelos analíticos para examinar essas questões no contexto de países em desenvolvimento. Consequentemente, ao focar em empresas de país em desenvolvimento, os referidos estudos diferem substancialmente da maioria daqueles realizados em países industrializados. Portanto, de forma geral, pode-se dizer que existem basicamente duas tradições de pesquisas voltadas para a análise das questões tecnológicas e de inovação. A primeira delas se dirige ao contexto de economias industrializadas, que costumam focar em empresas posicionadas na fronteira tecnológica, que são aquelas onde as capacidades tecnológicas já são existentes e, portanto, a preocupação se volta para o sustento, aprofundamento, rotinização e renovação de tais capacidades (FIGUEIREDO, 2001b). A segunda das tradições se refere ao contexto de países em desenvolvimento, cujas empresas ainda se encontram em processo de desenvolvimento tecnológico, voltadas
para a construção e acumulação de capacidades tecnológicas, já que trata de empresas onde mesmo as capacidades mais básicas podem ainda não estar presentes ou se encontrarem em um estágio rudimentar, além de serem os tipos de empresas prevalentes em contextos de países em desenvolvimento (*latecomer companies*). Entretanto, é importante notar que nestes países também existem, porém em menor escala, empresas posicionadas na fronteira tecnológica, preocupadas com a construção de capacidades estratégicas e inovativas mais avançadas, tais como a Acer, Samsung, Petrobras, Aracruz, Embraer, Gerdau, Vale do Rio Doce, Usiminas (BELL; FIGUEIREDO, 2008); ao mesmo tempo em que também podem ser encontradas empresas ainda em processo de construção de competências tecnológicas nos países desenvolvidos.

Diante destes dois amplos grupos de estudos, Bell (2007) destaca, ainda, dois grandes campos de pesquisa nessa área relacionados à mensuração de capacidades tecnológicas e inovação. De um lado, encontram-se aqueles voltados para uma perspectiva de nível micro, concentrando-se nas capacidades tecnológicas no nível intra-organizacional voltadas para o uso e operação da tecnologia, mas que podem, também, modificá-las e até mesmo criá-las. A outra vertente aborda a questão a partir de um nível macro, explorando a construção e interpretação de diversos tipos de índices e indicadores no nível de países como forma de avaliar o desenvolvimento tecnológico. Assim, no âmbito desta dissertação, estas são as duas vertentes/abordagens de mensuração da inovação no contexto de países em desenvolvimento examinadas: aquelas com foco nas capacidades tecnológicas desenvolvidas pelas empresas ao longo do tempo e aquelas relacionadas aos levantamentos (*surveys*) de inovação baseados em indicadores de C&T.

Pode-se dizer que os indicadores de C&T surgiram nas décadas de 1940 e 1950, prevalecendo a *abordagem de resultados*, relacionada à identificação e contagem de inovações tecnológicas comercializáveis (GODIN, 2002). A partir da década de 1960, o foco voltou-se para o dimensionamento dos recursos financeiros e humanos investidos em ciência e tecnologia (*insumos*), limitando-se à identificação dos recursos aplicados à pesquisa tais como P&D, financiamentos, estudantes de engenharia e disciplinas científicas, mão-de-obra; portanto, baseados no conceito *linear* de inovação. Com o tempo, percebeu-se a necessidade de capturar não somente as entradas e saídas do processo, mas também, e principalmente, o que ocorria na “caixa preta” representada pelas atividades intermediárias, fazendo com que passassem a enfocar as *atividades inovativas* realizadas
nas empresas, a partir de uma perspectiva mais ampla de inovação. Assim, ao longo deste processo de transição, a fim de guiar a coleta e mensuração de dados e informações sobre diversos aspectos da inovação e gerar dados comparáveis internacionalmente, foram sendo elaborados diversos manuais metodológicos, periodicamente revisados, buscando incorporar as evoluções nos conceitos e teorias de inovação.

Relativamente às perspectivas voltadas para análise das capacidades tecnológicas, inicialmente prevalecia a concepção de que o desenvolvimento de países mais atrasados seguiria aquele dos países mais avançados, tratando o processo inovador nos países em desenvolvimento como uma simples questão de escolha tecnológica, relacionada à tarefa de eleger uma dentre as diversas possibilidades de tecnologias disponíveis, normalmente desenvolvidas pelos países industrializados. Ou seja, era tido como um processo não criativo, onde as escolhas eram baseadas em aspectos objetivos tais como custo, disponibilidade, facilidade de acesso e aquisição da tecnologia. Além disso, dominava uma abordagem estática, marcada pela análise das características apresentadas pelas empresas em um ponto específico no tempo. A década de 1970 representou o início da mudança dessa perspectiva, com o surgimento (e incremento, sobretudo a partir da década de 1990) de estudos que passaram a tratar inovação e desenvolvimento tecnológico de forma mais abrangente e dinâmica, dando enfoque aos caminhos de mudança tecnológica em um período de tempo, à velocidade (taxa) de tal evolução, aos esforços internos realizados pelas empresas, às melhorias incrementais em equipamentos e plantas, aos processos de aprendizagem e de transferência de tecnologia subjacentes à acumulação de capacidades tecnológicas, aos mecanismos de aquisição de conhecimento; às dimensões organizacional e gerencial de capacidades tecnológicas (Figueiredo, 2001b, 2006; BELL, 2006, 2007).

Entretanto, apesar da profusão de estudos sobre o tema e da evolução ao longo do tempo de ambas estratégias aqui consideradas, pode-se dizer que os estudos e pesquisas existentes ainda não são suficientes para cobrir todo o espectro de possibilidades relativas ao desenvolvimento tecnológico de países de industrialização tardia, ocasionando em uma carência de fundamentos analíticos e empíricos adequados às estratégias de inovação industrial (LOURES; FIGUEIREDO, 2006). Primeiro, porque as estratégias à base de indicadores de C&T tendem a se concentrar na captura de características típicas de empresas localizadas na fronteira tecnológica, normalmente medindo as capacidades tecnológicas por meio de indicadores tais como P&D, patentes, relação de gastos, alocação
de pessoal, qualificações individuais, que apresentam limitações quando aplicados no contexto de países em desenvolvimento, caracterizados por serem países onde (i) a aquisição e difusão de tecnologia (como esforço criativo para adaptação e melhoria para necessidades específicas) toma importância central; (ii) as capacidades produtivas e tecnológicas encontram-se, principalmente, nos estágios básicos e intermediários; e (iii) apesar de existirem empresas em diversos níveis de desenvolvimento tecnológico, são dominantes as que ainda se encontram nos estágios básicos e intermediários de desenvolvimento de capacidades. Uma vez que o foco desta dissertação recai sobre estes tipos de empresas, a análise do processo de construção de capacidades ao longo do tempo é de importância fundamental, através do monitoramento das capacidades existentes, da forma como foram construídas e acumuladas, permitindo a identificação da natureza e intensidade da lacuna tecnológica, a elaboração de estratégias apropriadas para superação dos obstáculos apresentados, o posicionamento relativo frente aos outros países/concorrentes, onde as mudanças se fazem necessárias e a que velocidade. Segundo, porque, apesar de alguns manuais metodológicos de estratégias à base de indicadores de C&T já terem se adaptado e passado a adotar o conceito amplo de inovação (tal como o Manual de Oslo, amplamente utilizado como padrão para elaboração e aplicação de levantamentos (surveys) de inovação), os levantamentos deste tipo não costumam adentrar nas especificidades intra-organizacionais, essenciais a uma compreensão mais focada e alinhada à realidade das empresas, impossibilitando a captura de especificidades e nuances nas trajetórias de acumulação de capacidades tecnológicas. Terceiro, porque os estudos existentes à base de tipos e níveis de capacidades tecnológicas ainda são escassos, comparativamente à quantidade e diversificação de empresas e setores, dificultando comparações e possibilidades de generalizações e extrapolações úteis ao desenho de políticas e estratégias de inovação. Finalmente, mas não de forma exaustiva, e relacionado a onde esta dissertação se insere de forma mais direta neste debate, está a escassez de abordagens gerenciais para estratégias de inovação industrial do ponto de vista de acumulação de capacidade tecnológica, além da carência de estudos que procedam a exames e comparações de ambas abordagens, através da exposição dos méritos e limitações de cada um, de análises críticas buscando avaliar a possibilidade e a forma de uma composição das mesmas, a fim de que uma possa atuar de forma complementar ao que a outra é capaz de oferecer como elementos, subsídios e fundamentos para a elaboração de políticas públicas e estratégias corporativas adequadas, realistas e coerentes.
Assim, pretende-se gerar contribuições à gestão do processo de desenvolvimento industrial a partir do exame de duas abordagens de mensuração de capacidades tecnológicas e inovação, comumente consideradas estratégias antagónicas ou mesmo incompatíveis, analisando como podem ser utilizadas de forma complementar na geração de dados, informações e implicações relevantes, realistas e coerentes aos propósitos da gestão da inovação desejados, pois políticas tecnológicas e industriais, sejam aquelas de nível intra-organizacional ou as de nível macro, devem estar alinhadas e convergentes às políticas macroeconômicas para que apresentem maiores condições de serem bem sucedidas.

Portanto, o presente estudo é realizado e estruturado para responder às seguintes questões:

1. Quais os méritos e limitações das metodologias baseadas em indicadores de inovação convencionalmente utilizados no exame de atividades tecnológicas de empresas no contexto de países em desenvolvimento?

2. Até que ponto métricas de mensuração à base de tipos e níveis de capacidades tecnológicas podem oferecer uma complementação às abordagens tradicionais no que se refere à compreensão do processo inovador em países em desenvolvimento?

3. À luz de 1 e 2, quais recomendações podem ser feitas para estudos futuros voltados para a mensuração dos aspectos da inovação e das capacidades tecnológicas e para as elaborações de estratégias tecnológicas – governamentais e empresariais – quando realizados em contextos de economias emergentes?

Assim, a fim de abordar o problema de pesquisa exposto, esta dissertação examina as evidências e resultados de pesquisas empíricas conduzidas em contexto de países em desenvolvimento, procurando selecionar estudos que apresentassem características capazes de abranger as principais possibilidades, potencialidades e aplicabilidades de cada uma das duas estratégias sob análise. Em primeiro lugar, procede a um exame detalhado de quatro levantamentos (surveys) de inovação que têm como metodologia principal manuais e padrões internacionais amplamente aplicados, à base de indicadores de C&T, que propiciam a coleta de dados agregados e a geração de informações de caráter geral e amplo relacionados à inovação tecnológica (três pesquisas de nível nacional – ECIB e PINTEC no Brasil, e EAI no Uruguai; e uma regional – PAEP no Estado de São Paulo). Em seguida, procede à exposição e análise de aplicações empíricas de uma métrica à base de tipos e níveis de capacidades tecnológicas, que, a partir de uma abordagem dinâmica de
nível intra-organizacional, examinam o desenvolvimento tecnológico de empresas ao longo do tempo, a partir de uma perspectiva baseada na cumulatividade e na aprendizagem. Neste sentido, a partir da verificação das contribuições de cada uma das estratégias, bem como da exposição dos principais méritos e limitações, procura-se identificar onde e como cada uma delas é capaz de se aplicar melhor, além de expor porque tais estratégias podem e devem ser combinadas/complementadas a fim de gerar informações mais relevantes, consistentes e coerentes que sirvam de subsídio e suporte a decisões estratégicas e políticas relacionadas à gestão da inovação.

Diante do exposto, esta parte introdutória buscou fornecer um panorama geral do tema deste trabalho, explicitando o foco da dissertação, sua relevância e inserção na literatura, bem como as questões norteadoras do trabalho e a forma como serão respondidas.

O Capítulo 2 trata da estrutura conceitual da pesquisa, apresentando conceitos essenciais, tais como as diversas perspectivas sobre tecnologia, definições e características de inovação tecnológica, algumas abordagens tradicionais sobre o processo inovador, além de características e peculiaridades do processo inovador no contexto de países em desenvolvimento. Adicionalmente, apresenta conceitos tais como o de aprendizagem e capacidades tecnológicas, além da exposição das características tecnológicas de empresas com inserção tardia (latecomer) e de seus processos de acumulação tecnológica. Por fim, é apresentada a trajetória de estudos que utilizam a abordagem de capacidades tecnológicas em contexto de países em desenvolvimento.

O Capítulo 3 mostra como esta dissertação foi feita, através da reafirmação das questões balizadoras, da especificação dos tipos e fontes de informação utilizados para responder as questões da pesquisa, bem como o método de coleta de dados e informações.

O Capítulo 4 oferece uma breve revisão de estratégias e estudos de mensuração da inovação à base de indicadores de C&T. Inicialmente, são apresentados os antecedentes dos indicadores de C&T, seguidos de uma exposição das principais abordagens que os tomam como base e têm servido de metodologia para grande parte dos levantamentos de inovação conduzidos ao redor do mundo. Posteriormente, são destacados os principais indicadores de C&T utilizados, seus méritos e limitações, sobretudo quando utilizados de forma isolada ou no contexto de países em desenvolvimento. Por fim, uma breve revisão de estudos de inovação baseados em indicadores de C&T é apresentada.
O Capítulo 5 trata do exame de estratégias de mensuração de capacidades tecnológicas e inovação em países em desenvolvimento baseadas em perspectivas convencionais, representadas por quatro levantamentos (surveys) de inovação, que utilizam abordagens e indicadores tradicionais de C&T. São apresentadas suas características, bem como seus principais méritos e limitações. Diante de tais informações, pode-se identificar as possíveis contribuições deste tipo de perspectiva para o entendimento do processo inovador e para a formulação de estratégias e políticas em contexto de países de industrialização tardia, bem como os aspectos que limitam uma aplicação mais detalhada e focada das informações obtidas sob este ponto de vista.

O Capítulo 6 examina estudos empíricos à base de tipos e níveis de capacidades tecnológicas conduzidos em países em desenvolvimento. Dois grupos de estudos foram selecionados: (i) estudos aprofundados no nível de empresas, caracterizados por estudos de caso simples ou comparativo, e (ii) estudos baseados em uma amostra de empresas de diferentes setores industriais. Por meio da apresentação de experiências segundo este tipo de perspectiva, representada por estudos voltados para diferentes setores e enfoques, são extraídas generalizações que refletem as possibilidades deste tipo de abordagem, além de também expor as principais limitações da métrica em questão.

O Capítulo 7 resgata os pontos principais levantados nos Capítulos 5 e 6, sobretudo no que se refere aos méritos e limitações das duas abordagens sob análise nesta dissertação, e trata de análises e discussões de forma a comparar e avaliar as possibilidades oferecidas por cada um dos modelos/abordagens, fornecendo informações sobre até onde cada uma das métricas consegue contribuir e porque devem ser utilizadas de forma complementar a fim de que possam ser obtidas informações mais fiéis sobre a realidade tecnológica de empresas de países em desenvolvimento que ainda se encontram em processo de desenvolvimento de capacidades tecnológicas.

O Capítulo 8 finaliza apresentando as conclusões constatadas ao longo da dissertação, sobretudo no que se refere a recomendações voltadas para estudos e pesquisas que visem à mensuração da inovação tecnológica, bem como para estratégias empresariais e políticas governamentais voltadas para a inovação no contexto de países em desenvolvimento.
Neste capítulo são apresentados os conceitos e perspectivas utilizados nesta dissertação para examinar taxonomias de mensuração de capacidades tecnológicas e inovação. A primeira seção trata das perspectivas sobre tecnologia, através da exposição das definições e usos comumente atribuídos ao termo e sua delimitação no âmbito desta dissertação. A seção 2.2 mostra as perspetivas de inovação importantes ao escopo deste trabalho, apresentando, de um lado, as abordagens e modelos convencionais de inovação, normalmente aplicáveis a empresas tecnologicamente avançadas e ao contexto de países desenvolvidos; e, de outro lado, as características e peculiaridades do processo inovador em contexto de países em desenvolvimento, enfatizando a importância da aprendizagem e da capacitação tecnológicas. A seção 2.3 apresenta a trajetória de estudos voltados para a mensuração de capacidades tecnológicas no referido contexto.

2.1. Perspectivas Sobre Tecnologia

De acordo como Solomon (1984), há uma diversidade de definições e usos para a palavra tecnologia, algumas com escopo muito amplo, outras muito estreito. Algumas a caracterizam com base em nosso tempo, ignorando o que aconteceu anteriormente; outras a consideram como uma forma de controlar e influenciar o ambiente natural do homem, mas não levam em conta a natureza da tecnologia, como esta se relaciona com ciência e o sistema industrial; outras ainda falam sobre necessidades e tentativas de satisfazer desejos ou vontades, já que uma das funções básicas da tecnologia é criar novas necessidades e satisfazer aspirações.

O pensamento tecnológico começou a surgir com a revolução científica do século XVII, quando a ciência (revolução científica moderna) passou a reconhecer e condicionar a técnica como necessária ao seu próprio desenvolvimento, tornando impossível a separação entre ciência e prática. Assim, a tecnologia se estabeleceu como uma ciência da aplicação
de conhecimento racional – combinação entre ciência (conhecimento de laboratório) e técnica (conhecimento de fábrica) – para objetivos práticos (SOLOMON, 1984).

Neste sentido, é importante que se faça distinção entre informação e conhecimento, contrariamente à visão econômica tradicional que iguala os dois conceitos. De acordo com Tunzelmann (1995), informação pode ser representada pela soma total de “mensagens” geradas ao redor do mundo de forma geral, e é, a princípio, comercializável; enquanto conhecimento é geralmente não comercializável e resulta de processos de aprendizagem, que podem derivar tanto de experiências de produção passadas quanto da aquisição de novas informações. Assim, conhecimento e informação não são idênticos, mas fortemente complementares: o que a empresa é capaz de aprender a partir da quantidade de mensagens (informações) que estão disponíveis irá depender do conhecimento que já tem acumulado (ou seja, sua base de conhecimento existente) (TUNZELMANN, 1995).

Com a revolução industrial e o crescimento da mecanização, dominava a componente prática da tecnologia, que passou a se desenvolver na forma de manuais, enciclopédias, dicionários, cada vez mais voltados para o uso de engenheiros. Com o passar do tempo e modificação das estruturas e condições econômicas e sociais em todo o mundo, passou também a ser objeto de estudo e investigação pelo gerenciamento moderno, que passou a tentar compreender, e mesmo medir, sua importância, funções e repercussões dentro do sistema social (SOLOMON, 1984).

Dessa forma, tudo é técnica, mas nem toda técnica é tecnologia. Técnicas define a capacidade de produzir e fazer mesmo sem instrumentos; já a tecnologia engloba conhecimento acumulado, trabalho e habilidades, englobando não só os empreendimentos mais difíceis, mas também os esforços pacientes e contínuos; não só as mudanças rápidas que costumam ser chamadas de revolucionárias, mas também as lentes melhorias nos processos e ferramentas, além das inúmeras ações que podem não ter significância inovadora imediata mas que são o fruto de conhecimento acumulado. Assim, tecnologia é o resultado e a extensão de técnica, mas não sua equivalente nem substituta; é muito mais especializada e se refere a estágios mais avançados da técnica (SOLOMON, 1984).

Em sentido estreito é a aplicação de conhecimento a um campo técnico particular. Em sentido amplo, é a aplicação sistemática de conhecimento racional a objetivos práticos,
dado que neste conhecimento racional não se pode separar facilmente ou tratar isoladamente o componente científico do técnico. A relação entre ciência e tecnologia é complexa e ambígua: elas interagem e desenvolvem tanto numa direção quanto na outra; não implicando, portanto, na existência de dois sistemas distintos no qual um estaríamos hierárquico, prática e cronologicamente dependente do outro, mas numa relação bidirecional, onde os pesos e importância são somados de forma absoluta (SOLOMON, 1984).

Por outro lado, também há que se estabelecer uma relação entre tecnologia e produto. A maioria dos produtos individuais envolve uma variedade de tecnologias, e, em sentido oposto, muitas tecnologias são aplicáveis a uma variedade de produtos. Entretanto, tais conceitos, apesar de fortemente relacionados, também devem ser diferenciados. De um lado, tecnologia é representada pelo acúmulo de conhecimento de vários tipos e origens, conforme as definições anteriormente apresentadas, e de outro, produto é resultado da transformação dessas bases de conhecimento, ou seja, o que ocorre nas empresas é a transformação de conhecimento sobre tecnologia em conhecimento sobre produtos e, consequentemente, nos produtos em si: “os processos de produção arranjam certos itens da base de conhecimento [...] necessários para reunir componentes de tecnologia em produtos comercializáveis” (TUNZELMANN, 1995). Assim, conhecimento isolado sobre tecnologia não é suficiente para produzir produtos de uma forma eficiente, uma vez que a empresa pode ter acesso a informações de uma variedade de tecnologias relevantes a suas circunstâncias de produção. Portanto, precisa ser capaz de, inicialmente, rastrear as informações necessárias, em seguida convertê-las em conhecimento tecnológico e, posteriormente, utilizar, arranjar e adaptar essa base de conhecimento para produção, etapa esta onde pode residir grande parte da força competitiva das empresas, que depende da forma exclusiva e idiossincrática pela qual este arranjo/ajuste toma forma.

Assim, pode-se dizer que o conhecimento tecnológico resulta de processos de aprendizagem, sejam estes decorrentes de experiências passadas ou da incorporação de novos tipos de conhecimento, e, consequentemente, as fontes de aprendizagem em relação a novas tecnologias incluem, de forma simplificada, o aprender usando (learning by using), aprender fazendo (learning by doing) e aprendizado formal (científico) (TUNZELMANN, 1995).
2.2. Perspectivas Sobre Inovação

À luz das principais diferenças e relacionamentos entre técnica e tecnologia, a inclusão no debate de um terceiro elemento se faz necessária para que os termos técnica, tecnologia e inovação não sejam aplicados e utilizados de forma equivocada. De acordo com Pavitt (1985), *inovação* é um produto ou processo novo ou melhorado; *técnica* é um sistema de produção; e *tecnologia* é conhecimento de qualquer tipo referente à técnica.

Muito embora as bases de conhecimento tecnológicas tenham sido reconhecidas como importantes ao desenvolvimento econômico desde a revolução industrial, Tunzelmann (1995) destaca que a teoria neoclássica não apresenta nenhuma teoria especificamente voltada para tecnologia, tendo grande parte dos estudos se atrelado aos aspectos mais relacionados à técnica, ou seja, procuravam demonstrar a importância da mudança técnica para o crescimento econômico. Sem “definição e distinção clara entre a substituição de fatores de produção e progresso tecnológico genuíno”, pouco ou nada era tratado a respeito de inovação (TUNZELMANN, 1995).

Foi no início do século XX, mais especificamente, na década de 1930, que a disciplina econômica passou a dar maior atenção à agenda da inovação, sobretudo através das elaborações de Schumpeter. Influenciando as teorias de inovação, a perspectiva schumpeteriana aproximou e atrelou *desenvolvimento econômico e inovação*, onde esta influência e conduz aquele através um processo dinâmico, e não estático, por meio de processos de “destruição criativa”, onde as mudanças na técnica e na organização da produção, por exemplo, são resultado de “novas combinações”, que tanto podem ser a introdução de um novo método de produção ou a descoberta de uma nova maneira de lidar com aqueles já existentes (TUNZELMANN, 1995).

Assim, tendo como base a perspectiva schumpeteriana, as inovações costumam ser categorizadas entre *incrementais* e *radicais*. As inovações podem ser mais ou menos radicais dependendo do grau em que utiliza avanços fundamentais em ciência e tecnologia e novos conhecimentos e/ou transformam produtos, processos de produção e mercados (PAVITT, 1976), ou seja, são aquelas que, de acordo com Schumpeter, engendram rupturas mais intensas (OCDE, 2005). Tradicionalmente a inovação radical é associada a
maiores graus de novidade, a maiores riscos, maiores graus de incerteza e a maiores desafios gerenciais que a inovação incremental, esta última geralmente reconhecida como resultante de processos de melhorias e aprimoramentos de tecnologias já existentes e em uso, para adequá-las a necessidades específicas, situações particulares, demandas e requisitos mercadológicos.

Além disso, outra distinção importante para compreensão e aplicação corretas dos termos e conceitos é a que relaciona invenção e inovação. De acordo com Freeman (1982), uma invenção é uma ideia, um esboço ou modelo voltado para um dispositivo, produto, processo ou sistema novo ou aperfeiçoado, que pode ser patenteada, mas que não resulta necessariamente em inovação tecnológica. Já a inovação, em sentido econômico, emerge apenas quando ocorre a primeira transação comercial envolvendo o novo produto, processo ou sistema, ou seja, é somente quando a invenção atinge a etapa de comercialização e inserção no mercado que adota a formatação de uma inovação. Portanto, existe uma cadeia de eventos desde a invenção até sua especificação ou aplicação como inovação, o que frequentemente envolve um caminho longo e arriscado.

Por outro lado, Schumpeter, ao propor cinco tipos de inovação – (i) introdução de novos produtos; (ii) introdução de novos métodos de produção; (iii) abertura de novos mercados; (iv) desenvolvimento de novas fontes proveedoras de matérias-primas e outros insumos; e (v) criação de novas estruturas de mercado (OCDE, 2005) –, defendeu que o conceito de inovação não se restringe a produtos e processos, mas envolve, também, novas formas de gestão (para articulação das “novas combinações”), novos mercados e novos insumos de produção (FIGUEIREDO, 2005a).

Assim, diante dos conceitos relacionados à inovação e dos avanços proporcionados pela perspectiva schumpeteriana, Dosi (1988) adota uma perspectiva abrangente sobre inovação onde esta é descrita como um processo que envolve a busca, descoberta, experimentação, desenvolvimento, imitação e adoção de novos produtos, novos processos de produção e novos arranjos organizacionais. Neste trabalho será utilizada esta definição.

Partindo deste ponto de vista, Dosi (1988) propõe cinco propriedades inerentes ao processo inovador. Uma delas é a incerteza, caracterizada não somente pela falta de informação relevante a priori, mas também pela impossibilidade de traçar precisamente as
conseqüências e resultados antes da atividade de pesquisa e experimentação propriamente ditas. Outra propriedade diz respeito ao papel do conhecimento científico, cujos avanços e descobertas têm sido cada vez mais utilizados como oportunidades tecnológicas. Um terceiro elemento leva em consideração o papel cada vez importante dos arranjos organizacionais, onde as organizações formais e sua integração com outras empresas tornam-se o principal ambiente de inovação, em oposição à idéia dos inovadores individuais, onde apenas alguns indivíduos são responsáveis pelas inovações. A quarta propriedade leva em consideração a importância de aprender fazendo, onde as pessoas e organizações podem aprender como usar, melhorar e produzir pelo simples processo de fazer, através de atividades “informais” de solução de problemas, atendimento às especificações de usuários, pequenas mudanças para atender necessidades distintas. O último elemento destaca a cumulatividade do processo inovador, caracterizado como um processo de aprendizado, onde a natureza das tecnologias em uso define as direções da mudança tecnológica. Assim, a probabilidade de realizar avanços tecnológicos é uma função dos níveis tecnológicos já atingidos pela organização, ou seja, dependem de uma base de competências e trajetórias que foram sendo desenvolvidas e seguidas pela organização.

Em adição às características e propriedades da inovação, Pavitt (2003) identifica como sub-processos da inovação a produção de conhecimento (científico e tecnológico); a transformação de conhecimento em produtos, sistemas, processos e serviços; e a contínua adaptação às necessidades e demandas do mercado. Mais especificamente, ao nível de empresa, categoriza-os em três sub-processos amplos e sobrepostos: (1) cognitivo, que é como as empresas geram e mantêm conhecimento-experiência-prática para conduzir suas tarefas; (2) organizacional, voltado para a forma como as empresas fazem as coisas internamente ou em conjunto com outras organizações; e (3) econômico, que é como as empresas estabelecem incentivos internos para assegurar que as inovações procedam rapidamente e na direção “correta”. Assim, outra característica fundamental, mesmo levando em consideração seus sub-processos, é que os processos inovadores diferem em muitas dimensões, dependendo do setor, campo de conhecimento, tamanho da empresa, estratégia corporativa e experiência anterior, tipo de inovação, período histórico e país, ou seja, processos inovadores – sejam cognitivos, organizacionais ou econômicos – são contingentes.
2.2.1. Abordagens e modelos convencionais de inovação

As chamadas abordagens tradicionais de inovação costumam se basear em alguns conceitos e premissas das teorias clássicas/neoclássicas. Segundo este enfoque, de acordo com Lall e Teubal (1998), as atividades tecnológicas inovadoras ocorrem sob hipóteses simplificadas, apoiando-se na premissa de que as opções tecnológicas são conhecidas, as escolhas são feitas a fim de otimizar a alocação de recursos humanos, físicos e financeiros, e a tecnologia é absorvida e utilizada sem esforço nem custo posteriores.

Normalmente dão atenção primordial aos efeitos dos investimentos em capital físico e humano, tomados como determinantes centrais nos processos de inovação tecnológica. Tradicionalmente, consideram que grande parte da comercialização bem sucedida de P&D é resultado de um processo automático que começa com pesquisa científica e segue seqüencialmente para as etapas de desenvolvimento, financiamento, produção, inserção no mercado (CONCEIÇÃO; HEITOR; OLIVEIRA, 1998). De acordo com Polcuch (1999), este modelo linear de inovação trata-se de uma concepção economicista, predominantemente na década de 60, onde as etapas até a comercialização de novas tecnologias seguem um curso bem definido no tempo, através de uma relação direta e unidirecional, onde investimentos em P&D e os conhecimentos provenientes da pesquisa científica levariam a processos de invenção cujos resultados seriam a introdução de produtos e processos comercializáveis (CONDE; ARAÚJO-JORGE, 2003).

Empresas tecnologicamente inovadoras que operam em contexto de economias industrializadas seguem a trajetória típica de tais economias: “inovação-investimento-produção” (FIGUEIREDO, 2004a), onde a ênfase inicial é na inovação do produto propriamente dito, seguida de investimentos para desenvolvimento e aperfeiçoamento do produto inovador que obteve destaque no processo inicial, levando ao aumento da produção e diminuição da variabilidade dos produtos gerados na etapa inicial. Assim, inicia-se com alta taxa de inovação e evolui com o decréscimo desta taxa à medida que o foco se transfere para a etapa de produção, ou seja, disponibilização do produto para o mercado.

O modelo de Utterback e Abernathy (1975) propõe que as características do processo inovador irão corresponder sistematicamente com o estágio de desenvolvimento exibido
pela tecnologia de processo e de produção da empresa. A idéia básica do modelo de inovação de produto é que estes serão desenvolvidos ao longo do tempo de maneira previsível, com ênfase inicial na performance do produto (maximização de performance), caracterizada por alta taxa de inovações (radicais), seguido de ênfase na variedade do produto (maximização de vendas), com diminuição da taxa de inovação e baseada na diferenciação de produto, com alguns modelos começando a dominar, e depois na padronização e custos do produto (minimização de custos), onde as inovações são basicamente incrementais. O modelo de inovação de processo começa com níveis de produtividade baixos, mas se desenvolve, com o passar do tempo, em direção a níveis de produtividade melhorados, que resultam de mudanças concorrentes e incrementais em diversas variáveis do processo. Quando atinge a fase onde os produtos estão definidos e padronizados, mudanças são muito custosas já que o processo atingiu um nível elevado de integração, fazendo das taxas de inovação de processo normalmente mais lentas nesta fase. A idéia central é que um processo tende a evoluir ou mudar ao longo do tempo de uma maneira consistente e identificável.

Assim, pode-se notar que a evolução “natural” descrita pelo modelo acima se dá através de uma transição das inovações radicais para as inovações incrementais, onde o desenvolvimento de um produto dominante (inovação de produto) é seguido pela competição por preço e ênfase crescente na inovação de processo, para melhoria da produtividade e redução de custos. A trajetória do processo inovador descrita pelo modelo de Utterback e Abernathy (1975) pode ser melhor visualizada através da Figura 2.1.

Tushman e O’Reilly (1996) descrevem os padrões de evolução das organizações, definindo os ciclos tecnológicos como a dinâmica de inovação de produto, serviço e processo, projetos dominantes e eventos de substituição. O ciclo começa pela inovação de produto ou serviço que, à medida que ganham aceitação, provoca a emergência de um projeto dominante. Quando fica claro que um projeto dominante emergiu, a base de competição muda para inovação de processo, que guia a redução de custos e adiciona novas características. Assim, um evento de substituição causa uma inovação de produto, e um evento de projeto dominante causa inovação de processo.
Os autores argumentam que as organizações evoluem através de períodos de mudança incremental ou evolucionária pontuados por períodos de mudança descontínua ou revolucionária, sendo necessária, portanto, a criação e manutenção de organizações ambidestras, que são as organizações capazes de perseguir, simultaneamente, tanto inovações incrementais quanto radicais (descontínuas). Neste sentido, são indispensáveis habilidades organizacionais e gerenciais para competir em um mercado maduro (onde custo, eficiência e inovações incrementais são determinantes) e desenvolver novos produtos e serviços (onde inovação radical, velocidade e flexibilidade são cruciais). Dessa forma, tratam a mudança revolucionária como algo que irá acontecer mais cedo ou mais tarde, ou seja, que em algum momento as descontinuidades que dão origem às mudanças revolucionárias farão parte da organização.

Abernathy e Clark (1985) desenvolveram um modelo evolucionário para analisar as implicações competitivas da inovação. Um conceito básico por trás do modelo está o de transiliência, por meio do qual os autores defendem que a significância da inovação para a competitividade depende de sua capacidade de influenciar recursos, habilidades e conhecimentos existentes na empresa, com efeitos distintos na tecnologia e nos sistemas de produção. Através de um diagrama bidimensional, formado pela transiliência do mercado e a transiliência da tecnologia, cria um mapa com quatro quadrantes, onde cada um representa um tipo de inovação: arquitetural, nicho, regular e revolucionária, que tendem a estar associados a um ambiente competitivo diferente. A inovação **arquitetural** parte de sistemas de produção estabelecidos e abre novas ligações a mercados e usuários, caracterizando a criação de novas indústrias ou a reformulação de antigas. A inovação
denominada *nicho* é aquela capaz de abrir novas oportunidades de mercado através do uso, refinamento, melhoria e mudança de tecnologias existentes. Ou seja, uma mudança trivial na tecnologia, com impacto incremental nos sistemas de produção e conhecimento técnico. Entretanto, normalmente não é capaz de evitar cópia por parte dos competidores, tornando as vantagens desse tipo de inovação temporárias. A inovação *regular* é normalmente invisível, com efeito cumulativo em custo (economias de escala) e performance (aumento da produtividade e melhoria das capacidades de processo), envolvendo mudanças sobre competências técnicas e de produção estabelecidas e aplicada a mercados e consumidores existentes, visando reforçar habilidades e recursos existentes e as ligações com consumidores e mercados. A inovação *revolucionária* rompe e torna obsoletas competências técnicas e de produção existentes, sendo, entretanto, aplicada em mercados existentes.

Dessa forma, o modelo se assemelha a outros baseados em ciclos de desenvolvimento, partindo da emergência de novos produtos, seu posterior desenvolvimento, definição e amadurecimento, o que, no modelo em questão, representaria uma transição da inovação arquitetural até a regular. Diferentemente de modelos similares, sugere a existência de vetores de desenvolvimento industrial, em oposição à idéia de ciclo de vida linear e irreversível, permitindo a possibilidade de reversão no padrão de desenvolvimento industrial, ou seja, o retorno a fases anteriores do ciclo. Além disso, também sugere que cada tipo de inovação requer um tipo de habilidade gerencial e organizacional diferente.

De forma semelhante, Henderson e Clark (1990) tratam de forma específica da inovação arquitetural, como aquela que muda a arquitetura de um produto, ou seja, a forma como os componentes são ligados, permanecendo os conceitos de desenho e modelo dos componentes. Assim, fazem distinção entre produto como um sistema e produto como um conjunto de componentes, trazendo a idéia da necessidade de dois tipos de conhecimento, sendo, portanto, a fonte sobre como as inovações diferem uma da outra. Assim, adiciona mais dois tipos aos tradicionais conceitos de inovação: incremental, radical, arquitetural e modular (inovação que modifica somente os conceitos centrais de desenho de uma tecnologia, ou seja, modifica somente os componentes, sem alterar a forma com que se relacionam).
Apesar de especificar quatro tipos de inovação, os autores propõem que a distinção entre elas seja apenas uma questão de nível, onde uma inovação pode ser mais arquitetural e menos radical, ou seja, não assume a necessária divisão em quatro únicas possibilidades. Essa distinção é feita como base para análise da posição competitiva das empresas. Sendo assim, os autores sugerem que as inovações incrementais tendem a reforçar a posição competitiva de empresas estabelecidas, já que utiliza as bases de competências existentes; ao passo que novos entrantes têm mais facilidade diante das inovações radicais e arquiteturais, já que nas empresas estabelecidas o conhecimento arquitetural e de componente perdem utilidade por tornarem-se obsoletos, e o legado de conhecimento e as práticas existentes podem acabar por limitar e influenciar o novo aprendizado, pois assumem que o conhecimento arquitetural inserido nas rotinas e canais se torna inerte e difícil de mudar.

De forma paralela, Tushman e Anderson (1986) buscam avaliar de que forma o ambiente competitivo se modifica à medida que surgem descontinuidades tecnológicas, que podem ser fortes (caracterizadas por melhorias na performance/preço, baseadas no conhecimento existente dentro de uma classe de produto, e não tornam obsoletas as habilidades necessárias ao domínio das tecnologias antigas) ou destrutivas (requer novas habilidades, competências e conhecimentos tanto no desenvolvimento quanto na produção de seus produtos, alterando fundamentalmente o conjunto de competências relevantes) das competências tecnológicas das empresas estabelecidas. Seguindo na mesma linha de Tushman e O’Reilly (1996), indicam que o progresso tecnológico constitui um sistema evolucionário, pontuado por mudanças descontínuas, relativamente raras, que acionam um período de turbulência tecnológica. Quando surge uma nova classe de produto, a taxa de variação de produto é significativa, gerando um período de experimentação tecnológica e competição entre padrões, que persiste até a emergência de um modelo dominante, caracterizado pela síntese de um conjunto de conceitos experimentados, e dá fim ao período de turbulência tecnológica. Em seguida, o progresso tecnológico passa a ser guiado por numerosas inovações incrementais e de aperfeiçoamento, que fortalecem e estendem a tecnologia vigente e reforça a ordem técnica estabelecida.

Diante do ciclo ou estágios de progressão da tecnologia, os autores buscam associar o tipo de descontinuidade ao tipo de empresa com maior probabilidade de ser bem sucedida, chegando à conclusão de que as descontinuidades fortes (caracterizadas por melhorias na performance/preço, baseadas no conhecimento existente dentro de uma classe de produto, e não tornam obsoletas as habilidades necessárias ao domínio das tecnologias antigas) avançam
significativamente o estado da arte vigente, utilizando as bases de especialização e
conhecimento existentes, sendo, portanto, normalmente iniciada por empresas existentes
bem sucedidas. As descontinuidades destruidoras de competência, por outro lado, avançam
de forma significativa a fronteira tecnológica, mas com uma base de conhecimentos,
habilidades e competências que é inconsistente com a anterior, fazendo com que as novas
empresas levem vantagem sobre as oportunidades tecnológicas e sobre a letargia de
organizações existentes confinadas aos sucessos anteriores.

Outro modelo bastante difundido que descreve a substituição de uma tecnologia antiga por
uma nova é a curva-S de tecnologia. O modelo da curva-S de tecnologia indica que a
importância da melhoria de desempenho de um produto, em determinado período de tempo
ou devido a um esforço de engenharia, é diferente em cada estágio de maturidade da
technologia. Segundo o modelo, nos primeiros estágios de uma tecnologia, a taxa de
progresso no desempenho será relativamente lenta. À medida que a tecnologia se torna
melhor compreendida, controlada e difundida, a taxa de melhoria tecnológica será
acelerada. Mas, em seus estágios desenvolvidos, a tecnologia abordará assimptoticamente
um limite natural ou físico, de modo que, para conseguir melhorias, serão exigidos
períodos de tempo ou absorção do esforço de engenharia cada vez maiores
(CHRISTENSEN, 2004).

Assim, muitas são as abordagens baseadas na perspectiva de ciclo de vida organizacionais.
Tais modelos, portanto, assumem que as organizações seguem através de estágios
previsíveis, sendo, na maior parte das vezes, lineares, unidireccionais, sequenciais e
determinísticos, e, quase sempre, “implicam na inexorável progressão positiva dos estágios
até um ponto de chegada” (PHELPS; ADAM; BESSANT, 2007).

2.2.2. O contraposto de países em desenvolvimento

Inicialmente, é necessário definir o que são países em desenvolvimento no contexto desta
dissertação. Primeiramente, o conceito mais abrangente de desenvolvimento não é algo
fechado e uniformemente aceito, podendo tomar diversas perspectivas. Há uma

1 Este trabalho dos autores revisa e descreve, de forma detalhada, modelos de crescimento baseados na
perspectiva de ciclo de vida, alguns dos quais apresentados nesta seção.
diversidade de critérios para classificações de países, que depende, na maioria das vezes, dos objetivos analíticos e operacionais a que se destina. Classificações mais comuns são aquelas que buscam agrupar países de acordo com variações e diferenças relacionadas à taxa de crescimento, composição comercial, balança de pagamentos, competitividade, desenvolvimento humano, produto interno bruto (PIB) (ARCHIBUGI; COCO, 2005).

No caso do Banco Mundial, o critério principal para classificação de países diz respeito à Renda Interna Bruta per capita (ou, de acordo com a terminologia anterior, Produto Interno Bruto), considerado pelo Banco Mundial como o melhor indicador para o progresso e capacidade econômica. Neste sentido, são estabelecidos limiares de renda per capita baseados em uma relação entre qualidade de vida (por exemplo, incidência de pobreza e mortalidade infantil) de um lado e variáveis econômicas, incluindo a Renda Interna Bruta per capita, de outro. Assim, baseado neste critério, classifica as economias em “baixa renda” (aqueles com renda per capita até US$ 905); “renda média”, subdividido em médio inferior (renda per capita de US$ 906 a 3.595) e médio superior (renda per capita de US$ 3.596 a 11.115); e “alta renda” (renda per capita a partir de US$ 11.116) (BANCO MUNDIAL, 2008).

Em relatórios gerais do Banco Mundial, o termo “economias em desenvolvimento” tem sido utilizado para denotar o conjunto de economias de baixa e média renda. Entretanto, deixa claro que esta classificação não significa que todas os países classificados neste grupo encontram-se em processo de desenvolvimento, bem como também não define que aqueles que não estão no grupo necessariamente alcançaram algum estágio preferencial ou final de desenvolvimento. Isto porque são utilizados limiares baseados tanto em questões de natureza social e humana quanto em questões econômicas, e, portanto, nem todos os países do mesmo grupo apresentam uma experiência de desenvolvimento similar 2 (BANCO MUNDIAL, 2008).

De forma semelhante, não há uma convenção estabelecida no âmbito das Nações Unidas para a designação de regiões ou países como “desenvolvidos” ou “em desenvolvimento”.

2 Pela classificação do Banco Mundial, até 2003, o Brasil era considerado de “renda média superior”; de 2004 a 2007 caiu para “renda média inferior”; e em 2008 voltou a ser classificado como “renda média superior”.
A classificação em grupos de países tem como "objetivo principal a conveniência estatística e analítica, e não expressa, necessariamente, um julgamento sobre o estado de desenvolvimento alcançado por um país ou área particular no processo de desenvolvimento" (ONU, 2008).

A Conferência das Nações Unidas sobre Comércio e Desenvolvimento (United Nations Conference on Trade and Development - UNCTAD) publica, anualmente, o Relatório de Investimento Mundial (World Investment Report), que apresenta o seguinte grupamento de países, baseado na classificação do Escritório Estatístico das Nações Unidas: (i) países desenvolvidos – países membros da OCDE (com exceção do México, Coréia e Turquia), novos membros da União Européia que não se encontram no âmbito da OCDE (Chipre, Estônia, Letônia, Lituânia, Malta e Slovénia), e mais Andorra, Israel, Liechtenstein, Mônaco e San Marino; (ii) países em transição – sudeste da Europa e Antiga União Soviética; (iii) países em desenvolvimento – divididos em África do Sul, América Latina, Caribe, Sul e Leste da Ásia; (iv) países menos desenvolvidos (least developed), utilizado para as nações mais pobres (ONU, 2008).

De forma semelhante, a Organização de Desenvolvimento Industrial das Nações Unidas (United Nations Industrial Development Organization – UNIDO), que tem como principal objetivo a promoção e aceleração do desenvolvimento industrial em países em desenvolvimento e países com economias de transição, também adota esta classificação (economias desenvolvidas, economias em transição, economias em desenvolvimento e África Sub-Sahariana (excluindo a África do Sul)) (ONU, 2008). Por outro lado, o UNDP (Programa de Desenvolvimento das Nações Unidas) adota uma classificação de países baseada no Índice de Desenvolvimento Humano (IDH), nas categorias baixo, médio e elevado. Este índice incorpora, além do Produto Interno Bruto per capita, outras variáveis tal como expectativa de vida e índice de alfabetização ³. Este índice é utilizado para distinguir se um país é desenvolvido, em desenvolvimento ou subdesenvolvido, conforme

³ Segundo os dados de 2005, publicados em 2007, o Brasil foi promovido à categoria de países com “alto desenvolvimento”, apresentando um IDH de 0,800, o que o coloca na 70ª posição (última) do grupo de países com IDH alto, com a ressalva de que se encontra numa tendência de queda, o que o levaria ao grupo dos países com IDH médio.
a faixa/limiar em que se encontrar, além de servir para medir o impacto de políticas econômicas na qualidade de vida (ONU, 2008).

Assim, pode-se notar que o termo “em desenvolvimento”, em sentido geral, não é um rótulo para designar tipos de problemas específicos e/ou similares, mas depende do ângulo ou abordagem tratada. Mesmo dentro da categoria de países em desenvolvimento, pode-se perceber sub-categorias, onde são encontrados países com níveis distintos de desenvolvimento, mas cujo grupamento é variável conforme a lente que se esteja usando. Alguns são mais desenvolvidos economicamente, mas apresentam problemas e diferenças sociais graves, enquanto outros podem ser mais desenvolvidos socialmente, mas ainda não ter atingido níveis de desenvolvimento econômico competitivo no cenário mundial. Assim, de forma geral, são aqueles que vêm se desenvolvendo de forma consistente ao longo dos últimos anos e, consequentemente, têm apresentado um desenvolvimento e crescimento econômico considerável frente ao cenário mundial. Entretanto, ainda não são categorizados junto à elite dos países (países desenvolvidos) por dois fatores principais. Primeiro, porque o impacto econômico e tecnológico que representam no cenário internacional ainda é moderado; e segundo porque tal progresso não se reflete uniformemente em todas as esferas, sobretudo no que se refere aos graves problemas sociais que ainda enfrentam (CONTERAS, 1999; ONU, 2008; HOBDAY, 1995).

Diante da distinção exposta, de forma mais específica aos propósitos desta dissertação estão as diferenças entre países desenvolvidos e em desenvolvimento do ponto de vista tecnológico. Neste sentido, pode-se dizer que os antecedentes das abordagens de inovação voltadas para países em desenvolvimento se relacionam à intensificação dos estudos e pesquisas voltados para examinar o grau e nível de desenvolvimento dos países ocorrida a partir da década de 1960, que buscaram proceder à análises e investigação das etapas seguidas desde o início do processo de industrialização; identificação dos principais fatores que favoreceram e/ou impediram trajetórias bem sucedidas; comparações entre países, realizados, sobretudo, através da utilização dos indicadores disponíveis à época das pesquisas, que serviam como fontes de dados e elementos de embasamento. Assim, as pesquisas iniciais focavam no desenvolvimento industrial e econômico (GODIN, 2002).

A princípio, prevaleciam as teorias lineares de que o desenvolvimento de países mais atrasados, sobretudo no aspecto industrial, seguiria aquele dos países mais avançados,
teoria esta que tomava a Revolução Industrial inglesa como o padrão normal de desenvolvimento industrial, alcançado, especialmente, devido ao papel determinante da acumulação de capital naquele país proveniente do comércio e agricultura modernizada. Assim, para se atingir o nível de desenvolvimento dos países avançados, seria necessário que os países mais atrasados criassem as mesmas “pré-condições” para que a “evolução” pudesse se dar de forma bem sucedida, ou seja, para que a trajetória dos países mais desenvolvidos pudesse ser reproduzida. Por este ponto de vista, a compreensão do passado seria essencial para a criação de condições para o desenvolvimento dos países atrasados em direção a queles desenvolvidos, através de extrações automáticas de suas experiências, pré-requisitos e condições (GERSCHENKRON, 1962).

Um dos principais trabalhos que contribuiu para a quebra da hegemonia deste paradigma e serviu de base para estudos posteriores foi o desenvolvido por Gerschenkron (1962), no qual o autor se volta para a história econômica da Europa, buscando analisar o grau de atraso econômico apresentado por certos países europeus no período que vai do século XIX até o começo da Primeira Guerra Mundial. Seu principal argumento se baseia no fato de que o desenvolvimento de países atrasados será fundamentalmente diferente daquele traçado pelos países desenvolvidos, contrariando as concepções tradicionais. A crença em um curso de eventos invariável e em “um passado perfeitamente compreensível cujo fluxo era determinado por alguma lei histórica geral e simples foi abandonada” (GERSCHENKRON, 1962).

Portanto, um dos pontos de apoio de sua teoria está no argumento onde defende que as condições e características presentes no momento que os processos industriais dão início nos países desenvolvidos são essencialmente diferentes daquelas apresentadas nos países atrasados, principalmente com relação à velocidade (taxa) de desenvolvimento industrial e às estruturas produtivas e organizacionais originadas dos processos de industrialização (GERSCHENKRON, 1962), contrariando o determinismo de teorias baseadas em estágios, onde os seguidores adotariam seqüencialmente os mesmos estágios de desenvolvimento pelos quais passaram os países que iniciaram o processo de industrialização primeiramente. Assim, pode-se notar em sua teoria a importância atribuída ao contexto, ou seja, especificidades e características particulares de cada país, e à temporalidade ou momento histórico dos fatos, uma vez que defende que os determinantes de crescimento
variarão com o passar do tempo e com a lacuna entre líderes e seguidores (TUNZELMANN, 1995).

Além disso, Gerschenkron enfatizou o papel de fatores institucionais como essenciais para auxiliar os países de industrialização tardia em superar suas desvantagens e alcançar os líderes industrializados, sobretudo aqueles voltados para o suporte de capital e a promoção da industrialização. Assim, demonstrou a importância do papel do estado e das instituições de financiamento (bancos) nos processos de industrialização da Alemanha e da Rússia, que seguiram trajetórias diferentes. Na Alemanha, a criação de “bancos universais”, uma combinação dos sistemas bancários francês e inglês, contribuiu para a criação de capital e consequente avanço com relação a seu atraso econômico. Por outro lado, este modelo de financiamento não foi observado no caso da Rússia, cujos elementos e condições de atrasos diferiam substancialmente daqueles encontrados na Alemanha. Na Rússia, a escassez de capital de longo prazo para a industrialização forçou o governo a assumir o papel dos bancos, tendo o estado a “função de patrocinador do processo de industrialização”. Assim, Gerschenkron demonstrou que existem certos pré-requisitos ao desenvolvimento, mas que, na ausência de algum deles, substitutos podem ser encontrados ou outros instrumentos podem ser utilizados para superação da condição de atraso (GERSCHENKRON, 1962).

De forma geral, Gerschenkron (1962) busca explicar as origens e determinantes dos diferentes caminhos de desenvolvimento seguidos pelos países atrasados que se lançaram à industrialização. Assim, introduz conceitos úteis à compreensão dos processos de desenvolvimento e industrialização nos países mais atrasados, ao considerar a importância das especificidades do contexto; ao criticar a concepção marxista; ao defender a intervenção estatal para compensar maiores atrasos; ao demandar indicadores adequados; e ao identificar, de forma não muito explícita, estágios ou níveis de capacidades diferentes para diferentes funções tecnológicas. Apesar de focar diretamente os aspectos relacionados ao desenvolvimento pré-industrialização dos países atrasados, aspectos tecnológicos foram abordados ao destacar a maior propensão à industrialização naqueles países com maior acúmulo de inovações tecnológicas que, para os países atrasados, era representado, principalmente, por tecnologia adquirida externamente (importância da difusão). Portanto, apesar de não abordar especificamente e prioritariamente o tema da inovação tecnológica, alguns de seus conceitos podem ser encontrados nos diferentes modos de industrialização de
diferentes países (TUNZELMANN, 1995), principalmente aqueles relacionados a contexto, as diferenças nos níveis de capacidade apresentados, crítica ao modelo linear, estratégias governamentais para fomento à inovação e superação dos obstáculos baseadas em dados e avaliações derivadas de indicadores de inovação.

2.2.2.1. Aprendizagem e Capacidades Tecnológicas

Mais especificamente, no que se refere à distinção e contrastes entre países desenvolvidos e em desenvolvimento quanto aos aspectos de desenvolvimento tecnológico, alguns conceitos e abordagens propiciam e auxiliam uma compreensão mais clara e abrangente. Neste sentido, torna-se importante a questão da *aprendizagem tecnológica*, que normalmente se apresenta sob a ótica de um entre dois enfoques. O primeiro se refere aos caminhos e trajetórias ao longo dos quais transcorre a acumulação de capacidades tecnológicas, sendo que a forma que esta trajetória se desenvolve pode variar ao longo do tempo, ou seja, as capacidades tecnológicas podem ser acumuladas em diferentes direções e sob diferentes taxas. A segunda abordagem refere-se aos diversos processos de aquisição de conhecimento pelos indivíduos e como estes conhecimentos são transformados e convertidos ao nível organizacional. Assim, refere-se aos processos através dos quais aprendizagem individual é convertida em aprendizagem organizacional (FIGUEIREDO, 2001a). O conceito de aprendizagem tecnológica adotado neste trabalho está voltado para o segundo dentre os enfoques mencionados anteriormente. Portanto, aprendizagem tecnológica, aqui, se refere aos vários *processos* que permitem à empresa acumular capacidade tecnológica ao longo do tempo. É através destes processos que os “conhecimentos técnicos (tácitos) de indivíduos são transformados em sistemas físicos, processos de produção, procedimentos, rotinas e produtos e serviços da organização” (FIGUEIREDO, 2001a, 2004a).

Partindo deste pressuposto e em oposição às teorias neoclássicas, que tendem a assumir uma separação entre inovação e difusão, que não levam em conta os problemas de assimilação e adaptação de tecnologias adquiridas externamente, as abordagens não-convençcionais enfatizam o papel central dos esforços tecnológicos locais no domínio de novas tecnologias, adaptando-as a condições locais, aperfeiçoando-as, difundindo-as.
dentro da economia, explorando-as através do crescimento de exportação de produtos e diferenciação, ou exportando as próprias tecnologias (LALL, 1994).

As abordagens não-convencionais buscam inspiração na teoria evolucionária (ROSENBERG, 1976; NELSON; WINTER, 1982), que trata a inovação como um processo que se desenvolve ao longo de uma trajetória, relacionada de perto às habilidades das empresas, cujas características e traços organizacionais são transmitidos ao longo do tempo. Neste sentido, as escolhas tecnológicas feitas no passado, os conhecimentos e habilidades acumulados, a adaptação ao ambiente de atuação, tudo isso interage de forma complexa, tendo como resultado influência no comportamento futuro da organização. Assim, preocupam-se com processos de longo prazo e mudança progressiva, onde a realidade atual é conseqüência contínua da evolução dos eventos antecedentes.

Segundo este enfoque, as organizações são melhores nas mudanças em direção a “fazer mais do mesmo”, do que são em qualquer outro tipo de mudança. Daí justifica a atenção dada à rotinização de atividades como a forma mais importante de armazenamento do conhecimento operacional específico da organização. A significância das rotinas é que estas determinam possíveis comportamentos; têm a característica de serem herdadas, no sentido de que comportamentos futuros terão grande parte das características dos comportamentos passados; e são selecionáveis, já que, à medida que algumas rotinas se mostram melhores que outras, passam a ter sua importância aumentada ao longo do tempo (NELSON; WINTER, 1982).

Assim, segundo a teoria evolucionária, o conhecimento tecnológico não é compartilhado igualmente entre as empresas, e nem é fácil de ser imitado ou transferido. A transferência necessariamente requer aprendizagem porque tecnologias são tácitas, e seus princípios inerentes não são sempre claramente compreendidos. Segundo Lall e Teubal (1998), as empresas operam com conhecimento imperfeito, precisando de tempo e esforço para aprender a usar as tecnologias de forma eficiente e conduzir esforços tecnológicos. Portanto, aprendizagem e desenvolvimento de rotinas são processos incrementais que dependem da trajetória traçada, pois requerem decisões conscientes e deliberadas, além de envolverem processos de rotinas organizacionais e gerenciais, e não apenas os tecnológicos.
Associado aos esforços internos das empresas para adaptar e aperfeiçoar a tecnologia por elas adquirida está o conceito de *capacidade tecnológica*. Bell e Pavitt (1993) definem capacidade tecnológica como os recursos necessários para gerar e gerir a mudança tecnológica, incluindo habilidades, conhecimentos e experiências, estruturas institucionais e as redes de ligações. Assim, a década de 1990 marcou a preocupação com uma abordagem mais ampla do conceito de capacidades, passando a dar maior importância aos aspectos gerenciais e organizacionais, o que levou à perspectiva de diversas dimensões de capacidades tecnológicas, como mostra a Figura 2.2. (LALL, 1992; BELL; PAVITT, 1993, 1995; FIGUEIREDO, 2001a).

Figura 2.2 – Componentes das capacidades tecnológicas

Portanto, a capacidade tecnológica de uma empresa, está armazenada e acumulada em seus (i) sistemas técnico-físicos (plantas, fábrica, maquinaria, software, equipamentos); no (ii) capital humano, ou seja, no conhecimento tácito, experiências e habilidades destes indivíduos adquiridas ao longo do tempo, e que também abrange a qualificação formal; em seus (iii) sistemas organizacionais, gerenciais e institucionais, ou seja, está inserida nas rotinas, (em suas formas tácita e codificada), procedimentos, normas, produção, processos administrativos, técnicas de gestão da produção, fluxos de conhecimento, regras gerenciais, estrutura organizacional; e em seus (iv) produtos e serviços, que é a parte mais visível das capacidades tecnológicas e que reflete os outros componentes. Assim sendo, há uma relação inseparável entre esses quatro componentes das capacidades tecnológicas, que
têm como uma das principais características o fato de serem intrínsecas ao contexto da empresa, região ou país onde são desenvolvidas (FIGUEIREDO, 2004a).

De acordo com esta perspectiva, a capacidade tecnológica inclui atividades criativas inovadoras, descartando a visão que caracteriza a difusão como um processo distinto de inovação. Assim, difusão vista como a aquisição de produtos “prontos”, tecnologias “prontas”, juntamente com os conhecimentos e especificações necessários apenas à sua operação, corresponde a uma perspectiva limitada, já que difusão envolve muito mais, ou seja, envolve mudança técnica contínua, a fim de moldar a tecnologia adquirida a condições particulares de uso, além de melhorias subseqüentes para atingir padrões de performance mais elevados, podendo inclusive atingir a fase de geração.

Assim, difusão e inovação são conceitos complementares. A inovação é simplesmente o começo do processo de difusão. Ao longo do tempo, empresas desenvolvem inicialmente capacidades de rotina, que, se desenvolvidas de forma eficiente e através de um processo seqüencial e cumulativo, podem ser seguidas por inovação básica, inovação intermediária e inovação elevada, caso consigam acelerar para acompanhar a fronteira tecnológica e diminuir a lacuna tecnológica (FIGUEIREDO, 2004a).

Por outro lado, não se pode dizer que as diversas formas de aquisição externa de tecnologia por meio dos processos de difusão sejam possíveis substitutos para atividades inovativas endógenas; deve haver, por parte das empresas, “um esforço simultâneo e igualmente significativo de construir ou reforçar suas próprias bases internas de inovação” (MARTINS FILHO, 2003). Neste sentido, ligando os processos de difusão, transferência de tecnologia, capacidades e aprendizagem tecnológica, está o conceito de *capacidade absorvedora*, definido por Cohen e Levinthal (1990). Segundo eles, a conversão de conhecimento individual em aprendizado organizacional requer dois importantes elementos: uma base de conhecimento existente (tanto tácito quanto explícito) – que influencia os processos de aprendizagem de hoje e a natureza da aprendizagem no futuro-, e a intensidade dos esforços ou comprometimento – esforços conscientes dos indivíduos de uma empresa para internalizar os conhecimentos a que são expostos (KIM, 1997).

Neste mesmo sentido, segundo Kim (1998), as organizações são tidas como sistemas de aprendizagem, onde a capacidade de absorção determina a aprendizagem de uma firma.
Tal capacidade absorvedora é representada pela base de conhecimento anterior, que determina a habilidade em compreender, assimilar e usar novos conhecimentos, e a intensidade dos esforços de uma empresa em solucionar problemas. Portanto, o aprendizado organizacional ocorre nos níveis organizacional e individual. Os atores iniciais no processo de aprendizagem são os indivíduos, o que não quer dizer que o aprendizado organizacional corresponde à simples soma do aprendizado individual. As organizações aprendem quando as percepções e habilidades individuais se tornam inseridas nas rotinas e práticas organizacionais.

Intimamente ligados à capacidade das empresas em absorver tecnologia e conhecimentos externos, estão os arranjos e redes de colaboração onde as empresas encontram-se inseridas, servindo como importantes agentes na promoção e fornecimento dos meios para a acumulação de capacidades internas, à medida que facilitam o acesso a fontes de novas tecnologias e incentivam, consequentemente, a acumulação tecnológica. Por outro lado, também não são suficientes, sozinhos, par transformar as capacidades inovativas das empresas (MARTINS FILHO, 2003).

Portanto, as empresas, antes de tudo, têm de possuir não só a capacidade de absorver tecnologia e conhecimento adquiridos externamente, mas também os gerados em outros setores da própria empresa, pois a transferência de tecnologia e conhecimento não é um processo automático. Existem barreiras relacionadas às características do conhecimento tecnológico a ser transferido, ao conhecimento a priori da unidade receptora e também à disposição motivacional da subsidiária (que pode ser relutante em transferir conhecimento a outras unidades da empresa porque implicaria na perda de “monopólio da informação” dentro da empresa e seu status de “centro de competência” para determinada área). Uma difusão bem sucedida requer da unidade receptora um certo grau de capacidade absorvedora, isto é “habilidade de uma empresa em identificar, assimilar, e explorar conhecimento do ambiente”. Portanto, capacidade absorvedora implica a existência de uma base de conhecimento relacionado e um comprometimento para internalizar o conhecimento externo, ou seja, uma demanda por ele (CRISCUOLO, 2002).

Utilizando os conceitos de capacidade e aprendizagem tecnológica, Bell e Pavitt (1993) definem cinco categorias de empresas: (a) dominadas pelo fornecedor, onde a mudança tecnológica vem quase exclusivamente da aquisição de máquinas e equipamentos e outros
tipos de insumos, as escolhas tecnológicas refletem o fator custo, a acumulação é baseada em melhorias e modificações nos métodos de produção e insumos; (b) escala intensiva, onde a acumulação de capacidade se dá pela construção e operação de sistemas de produção complexos e/ou produtos; os processo e produtos tecnológicos são desenvolvidos de forma incremental baseados nas experiências de operações anteriores; (c) informação intensiva, onde a acumulação se dá pela capacidade de armazenar, processar e transferir informação, onde as melhorias tendem a ser baseadas na experiência e através de mudanças incrementais; (d) baseadas na ciência, onde a acumulação de capacidades tecnológicas ocorre através de laboratórios de P&D corporativos, altamente dependente de conhecimento, habilidade e técnicas das pesquisas acadêmicas; onde a transferência internacional requer capacidade para engenharia reversa, que por sua vez requer capacidade de atividades de P&D e desenho; (e) fornecedoras especializadas, que provêm produtos de alta performance, tais como máquinas, componentes, instrumentos ou software, onde a acumulação se dá pelo desenho, construção e uso operacional destes produtos e a preocupação recai na confiabilidade e performance.

Além disso, também definem que as atividades de aprendizagem tecnológica de cada uma das categorias se concentram em diferentes pontos: nas empresas dominadas pelo fornecedor, o foco recai sobre as operações de produção; nas empresas de escala intensiva, as melhorias de processo e produto são as principais preocupações; nas empresas baseadas na ciência, domina a exploração de pesquisa básica para desenvolvimento de produto e seus processos associados; enquanto nas empresas fornecedoras especializadas o desenvolvimento de equipamentos e componentes é a principal atividade.

Ainda segundo os autores, os países chamados de baixa renda tendem a explorar sua vantagem comparativa baseados no primeiro tipo de empresas, onde necessitam ser efetivos e eficazes na aquisição de tecnologia (1). Por outro lado, nos países de alta renda dominam os dois últimos tipos de empresas (2), sendo que os países em industrialização (ou países em desenvolvimento, como chamado neste trabalho) são caracterizados por se encontrarem em um processo de transição entre os dois extremos, ou seja, estão mudando progressivamente de uma base competitiva (1) para a outra (2), mas a taxas, direção e bases de infra-estrutura institucional diferentes (BELL; PAVITT, 1993).
Diante dos conceitos apresentados, pode-se dizer que esta perspectiva de aprendizagem e capacidades tecnológicas auxilia a compreensão de peculiaridades e características de países em desenvolvimento, (i) onde a aquisição e difusão de tecnologia, em sua forma abrangente (como esforço criativo para adaptação e melhoria para necessidades específicas), toma importância central; (ii) onde as capacidades produtivas e tecnológicas encontram-se, principalmente, nos estágios básicos e intermediários; e (iii) onde, apesar de existirem empresas em diversos níveis de desenvolvimento tecnológico, são dominantes as que ainda se encontram nos estágios básicos e intermediários de desenvolvimento de capacidades; ao contrário dos países desenvolvidos, caracterizados pelo domínio de empresas localizadas na fronteira tecnológica e, que, portanto, já possuem, em sua maioria, as capacidades mais avançadas. Assim, naturalmente, os dois grupos de países têm objetivos, atividades, preocupações e necessidades distintos, necessitando, consequentemente, de estratégias e análises diferenciadas.

2.2.2.2. Características tecnológicas das empresas em países em desenvolvimento: por que os modelos convencionais de inovação não são suficientes

Empresas de países em desenvolvimento podem ser consideradas, de forma geral, como aquelas que se inseriram tardiamente no processo de industrialização (*latecomer*). Assim, inicialmente, satisfazem as seguintes condições: (i) sua entrada tardia não foi uma questão de escolha, mas uma necessidade histórica; (ii) é essencialmente pobre de recursos (por exemplo, carência de tecnologia e acesso a mercados); (iii) sua intenção estratégica principal é focada no *catch-up*, ou seja, no alcance das empresas localizadas na fronteira e acompanhamento de suas trajetórias; (iv) tem algumas vantagens competitivas iniciais (por exemplo, baixo custo), que podem ser utilizadas para elevar sua posição na indústria escolhida. Portanto, são diferentes daquelas empresas que decidiram, estrategicamente, entrar mais tarde no mercado e daquelas que surgiram a partir de empresas já existentes (*spin-offs*), as quais já possuem certa quantidade de recursos, disponíveis no mercado ou herdados (MATHEWS, 2002).

Normalmente são empresas que iniciam suas atividades através de tecnologia adquirida de outras empresas de outros países, frequentemente daqueles desenvolvidos, com ênfase recaíndo na difusão e imitação. Como apresentado anteriormente, tecnologia não é um
bem público, fazendo parte dela tanto componentes codificados quanto tácitos; portanto, é intrínseca e, consequentemente, não é transferível de forma automática de um contexto para outro. De um lado, há o fornecedor da tecnologia, que, para seu desenvolvimento e produção, utilizou o conjunto de capacidades tecnológicas que possui, normalmente com um estoque considerável e dominando os níveis mais avançados relacionados à geração de tecnologia e inovação. De outro lado, está o receptor da tecnologia, no caso, empresas de países em desenvolvimento, que apresentam, em sua maioria, deficiência de recursos e, portanto, capacidades tecnológicas de menor complexidade, como demonstrado pela Figura 2.3.

Figura 2.3 – Processo de aquisição de tecnologia em empresas de países em desenvolvimento

Por outro lado, não se pode dizer que a aquisição externa de tecnologia é estratégia ou atividade exclusiva de empresas menos avançadas tecnologicamente. Empresas consideradas inovadoras, incluindo aquelas com capacidade de P&D, também utilizam aquisição externa de tecnologia como fonte adicional para inovações e melhorias de processos e produtos já existentes (MARTINS FILHO, 2003), uma vez que, obviamente, não são capazes de dominar e desenvolver todo e qualquer tipo de tecnologia de necessitam nem dominam todo tipo de conhecimento existentes. A diferença entre estas empresas e as latecomers está justamente no nível de dependência, frequência e exclusividade com que utilizam este tipo de recurso e fonte de tecnologia.

Em seu estágio inicial, as latecomers muitas vezes não possuem nem mesmo as capacidades tecnológicas mais básicas. Assim, têm que adotar um processo de
aprendizagem tecnológica, onde começam com a adoção de tecnologia importada, as quais vão sendo aperfeiçoadas, melhoradas e modificadas ao longo de tempo para se adequarem às novas necessidades, até que, futuramente, alcancem o estágio de geração de inovação (LALL, 1994). É através deste processo que empresas de países de industrialização tardia se desenvolvem gradualmente, ao longo do tempo, seguindo uma trajetória inversa daquela dos países industrializados, ou seja, sua trajetória é formada pela sequência: produção, investimento, inovação (FIGUEIREDO, 2004a).

Alinhado a essa perspectiva, Kim desenvolveu um modelo de três estágios para representar a trajetória tecnológica de países em desenvolvimento: aquisição, assimilação e aprimoramento. Assim, no estágio inicial de industrialização, tais países são caracterizados pela aquisição externa de tecnologias maduras de países desenvolvidos, onde as tarefas de produção são meramente relacionadas à montagem e conexão de tais tecnologias, resultando em produtos padronizados e não diferenciados, fazendo com que os esforços de engenharia (E) sejam enfatizados. À medida que esforços vão sendo despendidos para a assimilação de tais tecnologias, itens diferenciados e produtos relacionados passam a ser produzidos (gerando capacidades de engenharia-E e desenvolvimento-D), o que, em conjunto com o aumento de capacidade local, leva à melhorias na tecnologia (P-pesquisa, D&E), revertendo a sequência P, D&E de países desenvolvidos (KIM, 1997). O modelo de Kim, bem como a comparação com a trajetória tecnológica de empresas de economias industrializadas, é exemplificado através da Figura 2.4.

Portanto, uma das características fundamentais da inovação nos países em desenvolvimento é que a aquisição de tecnologia inserida em equipamentos representa o maior componente de inovação em tais países. Além disso, as atividades inovadoras mais frequentes são aquelas realizadas através dos ajustes e mudanças incrementais e contínuos na tecnologia adquirida para adequá-la a condições particulares ou atingir padrões de performance mais elevados (BELL; PAVITT, 1993). Assim, sobretudo neste contexto, "a tecnologia é um recurso inserido não apenas no capital físico, mas, igualmente importante, nos recursos e habilidades humanas, instituições e estruturas sociais. Não é um recurso dado ou estático, mas uma capacidade dinâmica usada para absorver, adaptar e avançar conhecimentos, experiências e habilidades existentes" (HOBDAY, 1995).
Figura 2.4 – Trajetórias tecnológicas: empresas de economias industrializadas versus empresas de economias emergentes

Neste sentido, uma vez que todos os países têm acesso ao mesmo conjunto internacional de conhecimentos técnicos e de equipamentos, um fator decisivo do desempenho industrial vincula-se ao distinto grau de aprendizado tecnológico pelos diferentes países (LALL, 2005). Ou seja, as estratégias tecnológicas de empresas de com inserção tardia no contexto de países em desenvolvimento gira em torno das seguintes questões: (i) estabelecimento de ligações como passo inicial para gerar oportunidades, visando assegurar acesso a recursos de uma rede mais ampla; (ii) alavancagem de recursos – transformação da difusão e transferência de tecnologia em oportunidades de capacitação e aprendizagem – para permitir explorar as ligações estabelecidas, visando assim recursos menos raros, mais
imitáveis e mais transferíveis⁴, e (iii) o engajamento em processos de aprendizagem, que envolve a análise das capacidades já possuídas e a absorção de recursos, para ser capaz de construir e ampliar suas capacidades (MATHEWS, 2002).

Desta forma, segundo Lall (1994), as teorias e abordagens que negligenciam a atividade tecnológica nos países em desenvolvimento, assumindo que a tecnologia está ampla e igualmente disponível a todos os países e empresas e que os países em desenvolvimento as obtêm sem problemas na assimilação, sem necessidades de adaptações, estão equivocadas. Ou seja, na perspectiva dos países em desenvolvimento, difusão e inovação não podem ser vistos como conceitos isolados e, sim, complementares, onde as empresas de economias emergentes desenvolvem inicialmente capacidades de rotina, que, se desenvolvidas de forma eficiente e através de um processo seqüencial e cumulativo, podem seguir até atingir as inovações mais avançadas (FIGUEIREDO, 2004a).

Neste sentido, podem ser identificadas, de forma geral, dois tipos e empresas: aquelas que já se encontram em estágios de geração de tecnologia e inovações, que são as empresas localizadas na fronteira tecnológica, bem como aquelas que ainda se encontram nos estágios menos avançados, desenvolvendo e aperfeiçoando suas capacidades através de esforços onde dominam as capacidades técnicas, de engenharia e desenvolvimento, em grande parte relacionadas à tecnologias existentes, buscando se aprofundar para se juntar ao grupo de empresas com competências tecnológicas mais complexas. Este segundo grupo de empresas encontra-se nos mais diversos estágios, umas ainda focadas no desenvolvimento de capacidades mais básicas, enquanto outras já se encontram em posição mais avançada, com domínio de capacidades um pouco mais complexas, mas ainda abaixo daquelas apresentadas pelas empresas tecnologicamente mais maduras. Ou seja, existem diversos níveis ou estágios de complexidade tecnológica apresentados pelas empresas, indo desde as mais básicas até as mais avançadas. A Figura 2.5 ilustra essa trajetória.

⁴ Contrariamente à visão da teoria baseada em recursos, pela qual a empresa procurará expandir sua vantagem competitiva baseando-se em recursos difíceis de serem imitados ou replicados, difíceis de serem substituídos ou transferidos, e raros (MATHEWS, 2002), o que se enquadra para as empresas localizadas na fronteira tecnológica e que já possuem, portanto, uma ampla gama de capacidades, inclusive aquelas de maior intensidade tecnológica, não tendo como ponto inicial a aquisição externa de recursos e tecnologia.
Entretanto, as empresas que ainda estão desenvolvendo suas capacidades e que, portanto, não atingiram a fronteira, podem ser destacadas em dois grupos: (i) aquelas em processo de catch-up, ou seja, buscando atingir a fronteira e aprofundar suas capacidades através de trajetórias tecnológicas existentes e (ii) aquelas que constroem sua própria trajetória, seja a partir de novas oportunidades abertas por descontinuidades tecnológicas ou pela inauguração de trajetórias completamente novas, sem nenhum ponto de referência ou fronteira para alcançar (BELL; FIGUEIREDO, 2008).

Figura 2.5 – Modelo ilustrativo da trajetória de acumulação de capacidades tecnológicas em empresas de economias emergentes

Assim, de forma análoga à apresentada pela Figura 2.5, onde as empresas de países em desenvolvimento seguem uma trajetória de acumulação de capacidades através de diversos níveis de complexidade tecnológica, iniciando desde os mais básicos até os mais avançados (localizados no topo da escada), Dutrénit (2004) distingue três estágios de acumulação de capacidades, como mostra a Figura 2.6.

Fonte: Bell (1997) apud Figueiredo (2004a)
Figura 2.6 – Espectro de capacidades tecnológicas

O primeiro estágio se relaciona à construção de uma base mínima de conhecimentos, concentrando-se no acúmulo de níveis de capacidades operacionais, básicos e intermediários (movimentos verticais), representando os estágios de grande parte das empresas de países em desenvolvimento, sendo, assim, o foco de grande parte da literatura voltada para este contexto (*developing country literature* - DCL). O estágio superior trata das capacidades estratégicas, que são aquelas capacidades tecnológicas inovativas utilizadas para distinguir a empresa competitivamente com base na vanguarda do conhecimento, referindo-se a empresas localizadas na fronteira tecnológica, tratando, portanto, das questões gerenciais voltadas para o sustento, manutenção e incremento das capacidades já existentes (movimentos horizontais) (*strategic management literature* - SML). Entre os dois estágios, encontram-se as empresas em processo de transição, que são aquelas que já acumularam uma base considerável de conhecimento tecnológico mas ainda estão abaixo da fronteira tecnológica, e estão engajadas na construção de capacidades estratégicas embrionárias, que são as capacidades inovativas que ainda são incipientes e não são utilizadas para distinguir a empresa competitivamente, mas que constituem uma base para a construção de capacidades estratégicas (DUTRÉNIT, 2004).
Portanto, em países em desenvolvimento estão presentes empresas localizadas em todos os pontos do espectro de capacidades tecnológicas. Existem aquelas empresas preocupadas com a construção de capacidades estratégicas e inovativas mais avançadas, tais como a Acer, Samsung, Petrobras, Aracruz, Embraer, Gerdau, Vale do Rio Doce, Usiminas, que operam e contribuem para empurrar e deslocar a fronteira tecnológica (BELL; FIGUEIREDO, 2008). Entretanto, dominam as empresas localizadas nos níveis mais básicos e intermediários, onde a construção de capacidades tecnológicas e os processos de aprendizagem no qual se engajam têm papel fundamental.

Sendo assim, Lall (2005) define dez importantes características referentes ao desenvolvimento das capacidades (ou aptidões) tecnológicas em termos empresariais em países em desenvolvimento:

1. o aprendizado é um processo real e significativo, consciente e intencional, vital para o desenvolvimento industrial;

2. uma vez que as empresas têm um conhecimento imperfeito, irregular e confuso das tecnologias que utilizam, cada uma possui uma experiência diferente de aprendizado, que depende de sua situação inicial e dos esforços posteriores;

3. as dimensões do custo e do risco para conhecer e dominar completamente uma tecnologia desenvolvida externamente dependem de quanto nova é a tecnologia em relação à base de conhecimento da empresa, do grau de desenvolvimento de fatores subjacentes dos mercados, da profundidade a que a empresa deseja chegar em seu aprendizado, e de quanto rápida for a mudança da própria tecnologia;

4. as condições de incerteza são enfrentadas através do desenvolvimento de rotinas organizacionais, de seu ajuste ao longo do tempo, do aprendizado a partir da experiência e da imitação de outras empresas; de forma que o aprendizado tende a depender de sua trajetória e ser cumulativo;

5. o processo de aprendizado é altamente específico à tecnologia, já que tecnologias diferentes podem envolver amplitudes diferentes de habilidades e conhecimentos;

6. diferentes tecnologias podem apresentar vários graus de dependência na interação com fontes externas de conhecimento ou informação;

7. o desenvolvimento de aptidões envolve esforços em todos os níveis (ou seja, todas as funções e atividades tecnológicas desempenhadas pelas empresas) e relações com outras empresas e instituições, que podem variar, tanto em forma, quanto em intensidade e complexidade;
8. o desenvolvimento tecnológico em um processo de aprendizado pode ocorrer em diversos graus de profundidade, desde as aptidões operacionais (know-how) até a capacidade de entender os princípios da tecnologia (know-why); quanto mais profundos os níveis de capacidades tecnológicas visados, mais altos tenderão a ser os custos, riscos e duração envolvidos;
9. o aprendizado tecnológico em uma empresa não ocorre de forma isolada, mas sim encontra-se repleto de externalidades e interconexões;
10. uma vez que as tecnologias mudam constantemente, o acesso a fontes externas de informação, tanto dentro de um país como com outros países, permanece essencial ao progresso tecnológico contínuo.

Dessa forma, além das peculiaridades recém expostas, diferenças adicionais podem ser encontradas quando confrontadas as características de países em desenvolvimento com a de países desenvolvidos, tais como a considerável quantidade de arranjos organizacionais informais para a condução de inovação; menor quantidade de projetos formais de P&D desenvolvidos; inovação principalmente baseada na aquisição de tecnologia inserida nos equipamentos adquiridos externamente; poucos recursos destinados às atividades de inovação; grande quantidade de empresas com potencial de inovação, que são aquelas que, apesar de terem feito esforços de inovação (atividades inovadoras), não atingiram resultados (inovações) durante o período de análise (LUGONES; PEIRANO, 2004a); a característica própria do tamanho e da estrutura de seus mercados, sendo significante a quantidade dos empreendimentos de pequena e média escala.

Diante das diferenças, e mesmo oposição ou reversão, entre as características tecnológicas da maioria da empresas dos países em desenvolvimento e aquelas de países desenvolvidos, há que se lançar mão de modelos e abordagens que sejam capacitados a tratar e considerar tais aspectos e peculiaridades, fazendo com que os modelos convencionais não sejam, sozinhos, suficientes para empresas com características tão distintas, necessitando, portanto, de métodos adicionais e complementares para dar conta desta tarefa. Neste sentido, há que se examinar até que ponto metodologias baseadas nos modelos tradicionais, que buscam mensurar a inovação no referido contexto, conseguem capturar nuances e peculiaridades da trajetória de desenvolvimento tecnológico dos países em desenvolvimento e, consequentemente, gerar informações realistas e fiéis que sejam capazes de direcionar ações e políticas de cunho tecnológico.
2.3. Trajetória de estudos de mensuração de capacidades tecnológicas em países em desenvolvimento

De forma paralela à evolução das teorias de inovação e das pesquisas e estudos sobre o tema, a década de 70 representou uma mudança de perspectiva também nas abordagens de mensuração de capacidades tecnológicas em países em desenvolvimento, passando de uma perspectiva estática, onde as escolhas tecnológicas eram baseadas em aspectos objetivos como custo, disponibilidade, facilidade de acesso e aquisição, para uma perspectiva mais dinâmica, dando início a um processo de transição que passou a enfocar os processos de construção e aprofundamento das capacidades tecnológicas ao longo do tempo, comparações entre empresas e análises intersetoriais, processos de aquisição e conversão de conhecimento, aspectos organizacionais da aprendizagem tecnológica, exame da taxa e direção da mudança tecnológica (BELL, 2006; FIGUEIREDO, 2001b).

Neste sentido, diversas abordagens surgiram ao longo dos últimos anos a fim de tratar da mensuração de capacidades tecnológicas. O desenvolvimento deste campo de estudo bem como as principais diferenças encontradas em sua trajetória se referem a dois pontos principais. O primeiro está relacionado aos componentes organizacionais e humanos das capacidades, cuja visão tradicional costuma identificá-los como as habilidades das empresas em operar, criar ou modificar a tecnologia que utilizam. Dessa forma, estudos voltados apenas para tal perspectiva acabam por negligenciar um fator importante de tais componentes, que se relaciona à incorporação das tecnologias utilizadas pela empresa, que irá diferir em cada um dos tipos de processos/atividades, e mesmo se tornar possível, conforme o nível de aprofundamento das capacidades (BELL, 2007).

Nesta mesma linha, a segunda grande diferença encontrada no desenvolvimento de tais estudos ao longo do tempo se refere ao tratamento e diferenciação de três das dimensões de capacidades. A primeira trata dos diferentes níveis de capacidades, que refletem um progresso ao longo de uma trajetória partindo de capacidades relativamente não criativas ou voltadas apenas para operação da tecnologia até aquelas mais avançadas, relacionadas à inovação criativa. A segunda dimensão busca analisar as capacidades para diferentes funções tecnológicas (como por exemplo, as necessárias a tecnologias de processo, de produto, de engenharia, de redes de ligação), e a terceira voltada aos diferentes estágios do
ciclo de vida de um projeto, sobretudo àquelas capacidades necessárias às etapas de investimento e de produção. Os estudos que buscaram tratar de tais dimensões ao longo do tempo diferem em muitos aspectos; alguns tratam apenas de uma delas, outros de duas em um formato bidimensional ou alguma forma combinada, e raros foram aqueles que utilizaram as três dimensões de forma sistemática (BELL, 2007).

Assim, um dos primeiros modelos de classificação de categorias de capacidades tecnológicas em países em desenvolvimento foi o desenvolvido por Hayami e Ruttan (1971). Centrado na agricultura, buscou enfocar capacidades mais gerais relacionadas a países (e não especificamente a empresas) e, através da distinção entre as capacidades dos países importadores de tecnologia nas diferentes fases do processo de transferência internacional de tecnologia, acabou por abordar a dimensão dos níveis de capacidades. Entretanto, o modelo somente avançava até as capacidades de adaptação e melhoria de tecnologias adquiridas externamente, não seguindo adiante até níveis de capacidades inovadores e mais criativos (BELL, 2007).

Em seguida, dois projetos principais podem ser destacados como uma evolução do modelo de avaliação de capacidades tecnológicas: os estudos do Programa de Pesquisa em Ciência e Tecnologia Ecla/IBD/IDRC/UNDP, realizado na América Latina, iniciado em 1975 e sintetizados em Katz (1987); e o projeto de pesquisa financiado pelo Banco Mundial – Aquisição de Competência Tecnológica, apresentados em World Development (1984), em empresas da Índia, Coréia, Brasil e México (FIGUEIREDO, 2001b; BELL, 2006, 2007). O primeiro contribuiu, principalmente, com uma análise dos caminhos de mudança tecnológica em um período de tempo, identificando não somente as trajetórias traçadas pelas empresas (muitas vezes com estagnações e reversões), mas também a velocidade (taxa) de tal evolução ao longo do tempo (FIGUEIREDO, 2001b). Além disso, enfatizou a importância das diversas áreas tecnológicas funcionais nas empresas e a construção de capacidades em cada uma delas, e demonstrou que as funções tecnológicas variavam conforme o tipo de indústria (BELL, 2007). O segundo identificou características dos processos de aprendizagem, processos de transferência de tecnologia e fatores estimuladores ou inibidores da inovação (DUTRÉNIT, 2004). Ambos, portanto, através de seus materiais empíricos e teóricos, forneceram as bases para estudos mais amplos, além de quebrarem os paradigmas dominantes que defendiam a insignificância das atividades inovativas em tais países, confirmando a existência de creatividade tecnológica local em
economias de industrialização recente (BELL, 2006). Entretanto, sobretudo quanto ao primeiro dos projetos, apesar de considerar a importância dos níveis em cada uma das funções tecnológicas, o desenvolvimento de capacidades era visto simplesmente como um deslocamento entre diferentes funções (BELL, 2007).

De forma paralela, alguns estudos buscaram enfatizar os esforços internos realizados pelas empresas – projeto e desenvolvimento de equipamentos e extensão de capacidades nominais (MAXWELL, 1981), aprimoramento e atualização de plantas existentes através da aquisição de nova instalação (DAHLMAN; FONSECA, 1978) –, demonstrando que os casos bem sucedidos eram decorrentes de esforços internos intensos, criativos e deliberados, contrariando as perspectivas tradicionais, além de confirmarem a existência de estratégias tecnológicas consistentes, de longo prazo e eficientes para aumento de capacidades em países em desenvolvimento (FIGUEIREDO, 2001b). Entretanto, ainda eram deficientes na cobertura dos mecanismos de aprendizagem, na comparação entre os caminhos traçados por diferentes empresas do desenvolvimento de suas capacidades e o tempo demandado, na análise em como a aprendizagem individual era convertida em aprendizagem organizacional, ignorando, portanto, as outras dimensões do processo de capacitação tecnológica, tais como a organizacional e a gerencial (FIGUEIREDO, 2001b).

Posteriormente, voltados para a sequência de estudos que tratam das diferentes dimensões de capacidades tecnológicas, podem ser destacados os trabalhos de Dahlman e Westphal (1982), cuja ênfase recaiu na trajetória de aprofundamento de capacidades tecnológicas a partir das mais básicas, voltadas para operação de tecnologias existentes, até as capacidades de inovação. Entretanto, a ideia de progresso em tal trajetória era vista como a passagem de um estágio de capacidade (produção, investimento e inovação) ao outro, desconsiderando a diferenciação dos níveis dentro de cada uma das categorias de desenvolvimento de capacidades. Ênfase e limitações similares também são encontradas em Amsden (2001). Portanto, as dimensões de capacidades tecnológicas – níveis, funções tecnológicas, estágios – ainda encontravam-se confusas, emaranhadas, sem a devida separação e diferenciação, ou tratadas de forma exclusiva (BELL, 2007).

Por outro lado, o final da década de 80 marcou a emergência de estudos voltados para a análise dos aspectos organizacionais da produção, baseados em princípios como, por exemplo, o Just-in-Time (JIT) e Qualidade Total (Total Quality Management - TQM),
avaliando como foram introduzidos nas empresas (HUMPHREY, 1995), e analisando temas como avaliação de qualidade, redução de estoque, descentralização e diminuição de níveis hierárquicos, trabalhadores em múltiplas funções, equipes de trabalho, sistemas de avaliação e recompensa para motivação de trabalhadores. Entretanto, mantinham o foco estático, ou seja, “não analisavam a implementação dos processos ao longo do tempo; tratavam as práticas organizacionais na forma de “técnicas prontas”, e não atingiam as dimensões organizacionais mais amplas” (FIGUEIREDO, 2001b, 2006).

Foi a partir da década de 1990 que a literatura voltada para países em desenvolvimento passou a adotar uma perspectiva mais ampla. Enquanto alguns revelavam a importância da mudança tecnológica, habilidades e conhecimento para a melhoria de performance (TIRALAP, 1990); a influência das características das empresas em seu comportamento tecnológico (GIRVAN; MARCELLE, 1990); os mecanismos de aquisição de conhecimento (SCOTT-KEMMIS, 1988); ainda mantinham limitações, sobretudo quanto às dimensões gerenciais e organizacionais das capacidades tecnológicas, superadas, em parte, em Tremblay (1994), porém continuando a desprezar as trajetórias de acumulação de capacidades e aprendizagem tecnológica (FIGUEIREDO, 2001b, 2006). Ao investigar como a inovação tecnológica ajuda a moldar estratégias para obtenção de vantagem competitiva, Martins Filho (2003) abordou também os aspectos gerenciais procurando identificar, ainda, (i) como a relação entre estes fatores afeta as chamadas competências essenciais⁵; (ii) as principais fontes de tecnologia e inovação utilizadas pelas empresas, relacionadas aos esforços das empresas para o desenvolvimento de competências; (iii) os principais obstáculos ao desenvolvimento de capacidades inovativas, sem se profundar, entretanto, em como esse desenvolvimento e aprendizagem se deu ao longo do tempo.

Neste sentido, ganha destaque o modelo desenvolvido por Lall (1987, 1992) que busca distinguir, de forma mais clara, entre funções e níveis de capacidades tecnológicas. Assim, para cada uma das categorias funcionais, elaborou um conjunto de capacidades representando diferentes níveis e graus de complexidade, e utilizou, também, a diferenciação em estágios do ciclo de vida do projeto, através da associação de grupos de funções a estágios particulares; utilizando, portanto, as três dimensões de capacidades

⁵ conceito desenvolvido por Prahalad e Hamel (1990), que se refere ao “aprendizado coletivo na organização, especialmente na coordenação das diversas habilidades de produção [...] que não diminuem com o uso, pelo contrário, se desenvolvem à medida que são aplicadas e compartilhadas” (MARTINS FILHO, 2003).
tecnológicas. Entretanto, algumas limitações ainda permaneciam. Ao criar apenas três níveis de capacidades, estes poderiam não ser suficientes para capturar a complexidade de cada nível e/ou poderiam acabar por incluir elementos de outro nível. Além disso, a separação dos estágios por grupos de funções tecnológicas distintas poderia levar a problemas relacionados ao fato de que algumas funções poderiam ser relevantes em mais de um estágio, apesar de serem consideradas em apenas um deles (BELL, 2007).

Assim, através de adaptações no modelo de Lall, estudos como os de Bell e Pavitt (1995) e Hobday (1995) também buscaram descrever os caminhos de acumulação de capacidades tecnológicas através de uma sequência de movimentos indo desde os níveis mais básicos de capacidades até os mais elevados, através de tipologias representando os estágios dos processos de aprendizagem e acumulação (FIGUEIREDO, 2001b; BELL, 2006). A fim de superar as principais limitações presentes no modelo de Lall, Bell e Pavitt (1995) distinguiram de forma mais clara as capacidades para usar/operar tecnologia das capacidades para mudá-la/criá-la, inserindo um novo nível e fazendo a distinção entre capacidades de produção básicas e capacidades tecnológicas; além de procederem a re-arranjos nas funções que possibilitaram a separação em estágios sem os problemas encontrados em Lall (BELL, 2007).

Por outro lado, Figueiredo (2001a) realizou um estudo comparativo das mudanças de capacidades em duas empresas de aço do Brasil. Além de examinar como as características dos processos e mecanismos de aprendizagem, sobretudo os esforços internos deliberados,
influenciavam na acumulação de capacidades tecnológicas ao longo do tempo e, conseqüentemente, na taxa e velocidade de aprimoramento da performance, identificou diferenças entre as empresas na taxa de movimento através dos diversos estágios e suas estratégias voltadas para aquisição e absorção de tecnologia.

Entretanto, apesar de começarem a surgir estudos enfocando as dimensões mais amplas de capacidades tecnológicas, estes, em geral, descrevem os caminhos de aprendizagem tecnológica sem a adequada atenção às dimensões organizacionais e gerenciais de capacitação tecnológica, às diferenças entre empresas em seus processos de acumulação, aos processos de aquisição e conversão de conhecimentos subjacentes (FIGUEIREDO, 2001b). Além disso, apesar de os trabalhos iniciais de Katz terem deixado clara a importância em se considerar este tipo de análise ao longo do tempo, já que “fica difícil identificar em períodos curtos de tempo a presença de movimentos em direção a capacidades mais profundas e tipos de atividades inovadoras mais avançadas” uma vez que a natureza qualitativa das atividades inovativas normalmente muda de forma lenta, grande parte dos estudos ainda adota uma abordagem onde as escalas de tempo envolvidas são negligenciadas, podendo levar frequentemente a julgamentos e conclusões falsamente negativos (BELL, 2006). Embora alguns estudos já tenham superado as principais limitações e contemem a taxa de mudança das empresas em direção ao aprofundamento de suas capacidades e intensificação das atividades inovativas, estes são insuficientes e escassos, necessitando de mais pesquisas neste sentido, voltados para cobrir um conjunto maior de empresas/setores/países, complementando os existentes e fornecendo informações mais completas para a tomada de decisões referentes a estratégias e políticas de inovação.

Frente ao cenário histórico referente aos antecedentes da literatura voltada para mensuração da inovação, em especial em contextos de países em desenvolvimento, pode-se perceber que, apesar de alguns poucos estudos terem avançado em direção a perspectivas mais amplas, ainda assim, há uma carência de estudos e pesquisas na literatura atual que enfoquem as atividades de países de economias emergentes com relação a aspectos de capacidades tecnológicas e de inovação de forma abrangente, adequada e dinâmica, pois muitos ainda consideram que nestes países a atividade inovadora, a capacitação e aprendizagem tecnológica são inexistentes e raros ou, mesmo, insignificantes; alguns utilizam-se de perspectivas e embasamento teórico limitados para a
realidade e contexto pesquisados; outros, ainda, abordam apenas alguns aspectos do processo inovador, negligenciando os demais elementos e, consequentemente, oferecendo uma visão parcial e, portanto, insuficiente do fenômeno. Portanto, grande parte dos resultados gerados acabam sendo incoerentes com o que é efetivamente praticado. Por outro lado, apesar das exceções existentes de estudos que consideram os aspectos mais amplos de capacitação e aprendizagem tecnológica, além da consideração de períodos mais longos de tempo a fim de verificarem a taxa de “evolução”, sozinhos eles não são suficientes para cobrir a lacuna ainda existente sobre o conhecimento dos processos de aprendizagem nos países em desenvolvimento (BELL, 2006).

Por outro lado, em diversos países de industrialização recente um número crescente de pesquisas e estudos vêm sendo realizados com o objetivo de mensurarem e rastrearem as capacidades inovadoras das empresas e a evolução dos sistemas de inovação, baseados em índices e indicadores através de uma visão de nível macro. Muitos dos quais são conduzidos, financiados e divulgados pelo governo, sobretudo aqueles de nível nacional e regional. Apesar de abrirem oportunidades, oferecerem diagnósticos e clarearem dificuldades antes insuperáveis, grande parte deles ainda é pautada em conceitos e metodologias não específicos à realidade tratada, tendo seus resultados e avaliações diversas restrições. Assim, também precisam ser elaboradas e repensadas medidas que cumpram o papel de suprir algumas das deficiências de tais levantamentos, sobretudo no que se refere ao nível de aprofundamento, enfoque, adequação e adaptação.
CAPÍTULO 3

DESENHO E MÉTODO DA DISSERTAÇÃO

Este capítulo tem a finalidade de clarificar como esta dissertação foi realizada. Para tanto, a seção 3.1 apresenta as questões que nortearam a execução deste trabalho; a seção 3.2 esclarece e justifica a opção pela pesquisa qualitativa; a seções 3.3 e 3.4 explicitam os tipos e fontes de informação utilizados na dissertação, respectivamente; e, finalmente, a seção 3.5 apresenta os procedimentos utilizados para a coleta de dados e informações.

3.1. Questões da Dissertação

1. Quais os méritos e limitações das metodologias baseadas em indicadores de inovação convencionalmente utilizados no exame de atividades tecnológicas de empresas no contexto de países em desenvolvimento?

2. Até que ponto métricas de mensuração à base de tipos e níveis de capacidades tecnológicas podem oferecer uma complementação às abordagens tradicionais no que se refere à compreensão do processo inovador em países em desenvolvimento?

3. À luz de 1 e 2, quais recomendações podem ser feitas para estudos futuros voltados para a mensuração dos aspectos da inovação e das capacidades tecnológicas e para as elaborações de estratégias tecnológicas – governamentais e empresariais – quando realizados em contextos de economias emergentes?

3.2. Método da Dissertação

Esta dissertação baseia-se principalmente em uma revisão crítica de evidências empíricas de estudos voltados para a mensuração de C&T e inovação à base de metodologias e tipologias distintas. Para tanto, pode-se dizer que este trabalho se insere no contexto de pesquisa qualitativa, que é aquela que se fundamenta principalmente em análises qualitativas (VIEIRA; ZOUAIN, 2004), baseando-se em uma variedade de tipos e fontes de dados para desenvolver-se, aprofundar-se e fundamentar-se, tendo como propósito
descrever, clarificar e explicar como e por que certos fenômenos acontecem (FIGUEIREDO, 2004b).

A pesquisa qualitativa tem como características a riqueza dos dados, a possibilidade de poder observar, registrar, analisar e correlacionar fatos ou fenômenos em sua totalidade, a fim de descobrir a frequência com que ocorrem, sua natureza e características (CERVO; BERVIAN, 2002 apud RUTHES; NASCIMENTO; CARVALHO; REIS, 2006), bem como facilitar a exploração de contradições e paradoxos. Assim, geralmente “oferece descrições ricas e bem fundamentadas, além de explicações sobre processos em contextos locais identificáveis” (VIEIRA; ZOUAIN, 2004).

A falta de exploração de um certo tema na literatura disponível, o caráter descritivo da pesquisa que se pretende empreender, ou a intenção de compreender um fenômeno complexo são elementos que tornam propício o emprego de métodos qualitativos (NEVES, 1996). Portanto, compreender e interpretar fenômenos, a partir de suas peculiaridades e contextos, é uma tarefa que pode utilizar a pesquisa qualitativa como instrumento.

Dessa forma, este tipo de pesquisa é capaz de auxiliar o pesquisador: no avanço em relação a concepções iniciais, ou seja, corroborando e aprofundando teorias existentes; na revisão da estrutura teórica na qual se baseia, expandindo ou selecionando seu arcabouço conceitual; ou mesmo na exposição de contradições e perspectivas distintas das comumente apresentadas, por adequarem-se melhor ao contexto pesquisado.

De acordo com Godoy (1995), são diversas as formas de se avançar no conhecimento de um fenômeno: (i) pela sua descrição, (ii) pela medição, (iii) análise de contexto, (iv) visão da estrutura, (v) comparação, dentre outros. Neste sentido, o presente trabalho se apóia em várias das formas acima especificadas, na medida em que busca descrever e examinar pesquisas baseadas em abordagens distintas, voltadas para a mensuração de I,C&T no contexto de países em desenvolvimento, permitindo avaliar até que ponto cada uma das abordagens pode contribuir para clarificar o tema sob análise, comparando, indiretamente, as possibilidades, vantagens e limitações de cada uma delas.

Assim, esta dissertação se volta para a descrição, compreensão e interpretação do tema da inovação, mais especificamente, a sua mensuração, frente ao contexto de países em
desenvolvimento sob enfoque de óticas distintas; a comparação com relação a outros contextos (nesse caso, o representando por países desenvolvidos e empresas localizadas na fronteira tecnológica); exposição de méritos e limitações no que diz respeito às metodologias de mensuração utilizadas frente ao contexto de análise; descrição da origem e funcionamento dos métodos tradicionais e das abordagens à base de conceitos distintos dos convencionais; além da descrição e análise crítica dos fundamentos e procedimentos de coleta e análise de dados das pesquisas e levantamentos sobre inovação tecnológica.

3.3. Tipos de Informação

A fim de responder às questões da dissertação, este estudo utiliza basicamente dados secundários provenientes dos resultados de estudos, pesquisas e levantamentos sobre o tema da inovação tecnológica conduzidos no âmbito de países em desenvolvimento. De um lado, faz-se uso de material teórico representado pelos modelos e bases conceituais de estudos e pesquisas teóricos que buscam examinar como se caracteriza o processo inovador em tais contextos. De outro, tem como insumos metodologias, modelos, resultados e conclusões de estudos e procedimentos empíricos relacionados à mensuração e análise da inovação no nível de empresas em processo de desenvolvimento tecnológico.

Através de uma revisão sistemática de estudos e trabalhos anteriores voltados para a mensuração da inovação, tanto no âmbito de contextos de países desenvolvidos quanto naqueles de países em desenvolvimento, sejam estes teóricos ou fontes de evidências empíricas, são extraídas e construídas fundamentações que servem de embasamento à descrição, análise e complementação realizadas por este trabalho: comparação de abordagens utilizadas em cada um dos contextos no que se refere à aplicabilidade, relevância e consistência de resultados, abrangência, foco; análise de pesquisas e levantamentos de inovação tecnológica realizados em países em desenvolvimento; descrição e explicação de modelos alternativos/complementares; exposição dos méritos e limitações de cada uma das propostas.

3.4. Fontes de Informação
Quanto às fontes de informação utilizadas ao longo desta dissertação, destacam-se:

- artigos de periódicos e livros de estudos teóricos e empíricos relacionados à mensuração de inovação e capacidades tecnológicas em contextos de países desenvolvidos e de países em desenvolvimento;
- documentos públicos e documentos extraídos da Internet;
- manuais utilizados como metodologia, e padronização, para os processos de coleta e análise de dados referentes à inovação tecnológica: Manual de Oslo, Manual Frascati e Manual de Bogotá;
- questionários, manuais metodológicos, instruções, e relatórios de pesquisas e levantamentos voltados para inovação tecnológica:
 - nacionais: Brasil (PINTEC - Pesquisa Industrial de Inovação Tecnológica e ECIB – Estudo da Competitividade da Indústria Brasileira) e Uruguai (EAI – Encuesta de Actividades de Innovación en la Industria);
 - regionais: Estado de São Paulo (PAEP - Pesquisa da Atividade Econômica Paulista) e relatório: “Indicadores de Ciência, Tecnologia e Inovação no Estado de São Paulo”, da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

3.5. Método de Coleta de Dados e Informações

Do ponto de vista dos procedimentos utilizados para a coleta de dados e informações, a pesquisa pode ser classificada, ao mesmo tempo, tanto como bibliográfica quanto documental, valendo-se, portanto, de dados secundários como fontes de informação. De acordo com Gil (1999), uma pesquisa é bibliográfica quando elaborada a partir de material já publicado, constituído principalmente de livros e artigos, ao passo que a pesquisa documental é elaborada a partir de materiais que não receberam ou receberam pouco tratamento analítico, e que podem ser reexaminados com vistas a uma interpretação nova ou complementar (GODOY, 1995).

Assim, através de extensa pesquisa na Internet, busca em bases de dados públicas, reunião de material recolhido em bibliotecas, disponibilização de material por parte dos autores ou
como parte do material distribuído como conteúdo curricular, um conjunto considerável de dados e informações puderam ser reunidos. Inicialmente, o procedimento baseou-se no levantamento das bases conceituais e teóricas que serviriam de apoio ao desenvolvimento da dissertação; ao mesmo tempo, foram pesquisados e examinados estudos empíricos que tratassem do tema de mensuração da inovação tecnológica, procurando reunir diferentes tipos de abordagem, métodos e períodos envolvidos, para que pudesse ser construída uma base crítica com vistas ao levantamento do histórico e evolução da área, bem como confronto entre os métodos e resultados encontrados à luz de diferentes perspectivas.

Em seguida, buscou-se utilizar experiências concretas de aplicação das abordagens tratadas. Quanto aos dados referentes aos levantamentos de inovação conduzidos em países em desenvolvimento, quatro pesquisas foram escolhidas de forma a que cada uma possuísse uma característica particular e que pudesse acrescentar fatos novos à análise. Assim, foram selecionadas três pesquisas de nível nacional: duas aplicadas no Brasil (a PINTEC, que busca tratar exclusivamente do fenômeno da inovação, utilizando a metodologia do Manual de Oslo, e a ECIB, que trata da competitividade da indústria brasileira, analisando, dentre um dos fatores, a capacitação para inovação), e a do Uruguai (EAI), que utiliza metodologia proposta para ser voltada para especificidades de países e empresas em contexto de industrialização tardia (o Manual de Bogotá). Com esta estratégia, procurou-se verificar até que ponto cada um dos modelos ou propostas metodológicas consegue contribuir para o fornecimento de resultados mais satisfatórios e condizentes à realidade e especificidade do contexto tratado. A quarta pesquisa selecionada refere-se ao levantamento regional do Estado de São Paulo (PAEP) que, apesar de não ser especificamente voltado para a questão da inovação, já que trata da atividade econômica paulista como um todo, apresenta seção específica para o tema de interesse desta dissertação. Sendo assim, a seleção desta experiência de mensuração procurou incluir na análise uma proposta que não fosse especificamente voltada para mensuração da inovação (PAEP), mas que tivesse um foco mais concentrado (empresas localizadas em uma região geográfica mais restrita), a fim de analisar até que ponto levantamentos que buscam tratar de questões mais amplas são capazes de fornecer informações e nuances a respeito de um determinado conteúdo, além de verificar se a aplicação em uma amostra mais restrita geograficamente facilita na consideração de especificidades regionais. Além disso, procurou incluir também uma pesquisa que utilizasse o conceito de capacidades (ECIB), a fim de verificar as contribuições que este
tipo de abordagem é capaz de fornecer na forma proposta. Assim, a escolha de *surveys* com abordagens diferentes foi propositalmente defendida, uma vez que poder-se-ia avaliar se a característica distintiva que cada uma possuía serviria de base para superação de problemas enfrentados por outras perspectivas.

Portanto, foram analisados cada um dos itens presentes no questionário aplicado nas empresas; o manual que normalmente acompanhava o questionário, contendo esclarecimentos sobre a metodologia, conceitos e definições utilizados; e a tabulação e análise dos resultados por parte das instituições e organizações responsáveis pela aplicação e condução da pesquisa. De posse deste material, foi possível fazer uma avaliação de tais dados confrontando-os aos conceitos e abordagens tipicamente desenvolvidos para aplicação em contexto de empresas em processo de construção e desenvolvimento de capacidades inovadoras.

Finalmente, foram selecionadas aplicações empíricas do modelo de mensuração à base de tipos e níveis de capacidades tecnológicas em diferentes setores industriais, para que fossem capazes de fornecer informações relevantes para as considerações e especificidades do contexto tratado, bem como pudessem ser confrontados com as possibilidades, méritos e limitações dos modelos convencionais. Assim, dois grupos de estudos foram selecionados: (i) estudos aprofundados no nível de empresas, caracterizados por estudos de caso simples ou comparativo, e (ii) estudos baseados em uma amostra de empresas de diferentes setores industriais.
A década de 1970 representou a intensificação da atenção e importância conferidos aos processos de acumulação de capacidades tecnológicas nas empresas bem como aos processos de aprendizagem subjacentes como fatores críticos para o desempenho competitivo das empresas. De um lado, encontram-se as empresas posicionadas na fronteira tecnológica, caracterizadas pelo domínio do conhecimento tecnológico de ponta, sendo responsáveis por grande parte da criação e geração de conhecimentos resultantes em inovações tecnológicas avançadas, sobretudo aquelas ditas radicais, que rompem o paradigma tecnológico existente, e acabam, desse modo, sendo uma das principais fontes de tais tecnologias para países e empresas em contextos de industrialização recente. De outro lado, encontram-se aquelas empresas que ainda estão em seu processo de construção e desenvolvimento de capacidades, baseadas, inicialmente, na aprendizagem voltada para o domínio da operação e utilização de tecnologias adquiridas externamente, seguida de esforços para melhorá-las e adaptá-las às suas necessidades, através de uma trajetória de aprendizagem na tentativa de atingirem níveis mais sofisticados de capacidades inovadoras (KIM, 1997; BELL, PAVITT, 1995; LALL, 1992; FIGUEIREDO, 2004a, 2002). Dessa forma, ao longo das últimas décadas, duas vertentes de estudos se destacaram: uma delas voltada para empresas de países em desenvolvimento, ou seja, aquelas em processo de desenvolvimento de suas capacidades, e a outra com enfoque em países desenvolvidos, mais especificamente, nas empresas localizadas na fronteira tecnológica (DUTRÉNIT, 2004; FIGUEIREDO, 2001b).

Diante do grupo de estudos e pesquisas voltados para o tratamento da inovação em contexto de países em desenvolvimento, Bell (2007) destaca dois grandes campos de estudo nessa área. Um deles tende a uma perspectiva de nível micro, se concentrando nas capacidades tecnológicas no nível de empreendimentos que usam e operam tecnologia, mas que podem, também, modificá-las e até mesmo criá-las (conforme apresentado no

6 De acordo com o autor, empreendimentos podem ser identificados como empresas industriais, para os casos onde a indústria é o contexto de análise, ou outros tipos de organização desempenhando atividades de produção em diferentes áreas.
capítulo 2). A outra vertente aborda a questão a partir de um nível macro, explorando a construção e interpretação de diversos tipos de índices e indicadores no nível de países, que é o foco deste capítulo.

Neste sentido, este capítulo tem como objetivo caracterizar a mensuração de intensidade tecnológica e inovação do ponto de vista de perspectivas que utilizam indicadores de C&T como estratégia de mensuração, diferentemente do apresentado no capítulo 2, baseado no conceito de capacidades tecnológicas e aprendizagem. Assim, a seção 4.1 apresenta a origem e evolução dos principais indicadores de C&T, ao passo que a seção 4.2 caracteriza as principais abordagens e estratégias de mensuração de C&T baseadas em indicadores existentes. Em seguida, na seção 4.3, tendo em vista que o foco desta dissertação se volta para aquelas empresas que ainda estão em seu processo de construção e desenvolvimento de capacidades, são apresentadas definições, méritos e limitações dos principais indicadores utilizados na literatura, sobretudo quando aplicados no contexto de países em desenvolvimento. Finalmente, a seção 4.4 faz um apêndice de alguns estudos e pesquisas baseados em tal vertente no contexto de países em desenvolvimento. Assim, a partir do exposto neste e no capítulo 2, pode-se obter uma visão geral das principais lentes empregadas em cada uma das abordagens de mensuração – indicadores de C&T e tipos e níveis de capacidades tecnológicas, bem como os avanços da literatura em cada um dos dois grupos de estudo.

4.1. Antecedentes dos Indicadores de C&T

Os indicadores em geral começaram a aparecer na economia, sobretudo sob a forma de dados e estatísticas como ferramentas matemáticas, na década de 1930, variando entre indicadores de crescimento, produtividade, emprego, inflação, dentre outros, como forma de avaliar e diagnosticar a evolução dos principais componentes da economia dos países, para que pudessem se posicionar frente aos demais. O surgimento e a compilação de tais indicadores influenciou, mais tarde, o desenvolvimento de estatísticas similares para ciência e tecnologia. Assim, costuma-se marcar a década de 1950 como o período onde as discussões sobre C&T passaram a se dar de forma mais profunda, analítica e contínua, à medida que foi confirmada e reconhecida sua importância, essencialmente para o desenvolvimento econômico e tecnológico (GODIN, 2003).
A partir da década de 1960, diante da intensificação e compreensão da importância dos elementos tecnológicos para o avanço dos países e de suas economias, os aspectos relacionados à inovação tecnológica tornaram-se o foco principal de grande parte dos estudos sobre o tema. Neste sentido, a história de mensuração de Ciência e Tecnologia tem sua origem em mais se cinquenta anos atrás, tendo como precursores a Fundação de Ciência Nacional (National Science Foundation - NSF) dos EUA na década de 1950 e organismos intergovernamentais tais como a Organização para a Cooperação e o Desenvolvimento Econômico (OCDE) nos anos 1960.

Oficialmente, foi o NSF (National Science Foundation) dos Estados Unidos que iniciou a medição de inovação utilizando a abordagem de resultados: identificação e contagem de inovações tecnológicas comercializáveis (e as características das empresas que as produziram). Após experiências preliminares nas décadas de 1930 e 1940, em 1951, os EUA, através do NSF, publicaram seu primeiro relatório sobre atividades de ciência e tecnologia (CLARYSSE; REMOVILLE, 1999). Com relação à inovação, em particular, o primeiro estudo do NSF foi realizado entre 1963 e 1967, através do exame das inovações técnicas, das características da empresa que as identificaram, das fontes de inovação (original ou adotada), da natureza (produto ou processo), dos custos, e do impacto nos processos de produção da empresa. Além disso, em 1973, o NSF publicou o primeiro relatório nacional de indicadores de C&T, chamado “Science Indicators”, cujo objetivo principal era desenvolver indicadores de C&T em termos da “capacidade e performance do empreendimento em contribuir para os objetivos nacionais”, com grande impacto e servindo de modelo para diversos países e organizações (GODIN, 2003).

Aproximadamente na mesma época dos primeiros estudos do NSF, começou o interesse dos países membros da OCDE na mensuração da inovação, já que estes consideravam que a performance em inovação era o fator chave para explicar as diferenças entre Estados Unidos e Europa (GODIN, 2002). Em 1961, a OCDE foi formada a fim de organizar e协调政策科学和技术政策之间的关系，并在各国成员之间，于1962年，发生了第一届专门讨论C&T发展指标的会议。1963年被公布为弗拉斯卡蒂手册，该手册提出了标准化的实践和方法学，用于C&T的测量。
levantamentos de P&D7. Inserida em sua elaboração, está a suposição do modelo linear de inovação que, ao pressupor um caráter sequencial e unidirecional ao processo de inovação, destaca o papel dos insumos de P&D como os principais, senão únicos, determinantes de atividades inovadoras bem sucedidas. Devido ao sucesso do Manual, uma série de esforços estatísticos e metodológicos semelhantes foi criada posteriormente, chamados de “Família Frascati” (COLECCHIA, 2006).

De forma semelhante, a Divisão de Estatística em Ciência e Tecnologia da UNESCO (United Nations Educational, Scientific and Cultural Organization) vem organizando sistematicamente a coleção, análise, publicação e padronização de dados sobre C&T desde 1965, sendo seu principal foco os insumos de capital humano e financeiro voltados para as atividades de P&D. Em 1966, foram experimentados entre os países membros os primeiros questionários que serviram de base para o estabelecimento de levantamentos periódicos padronizados, que, a partir de 1970, passaram a ser publicados regularmente pela UNESCO, criando uma base de dados muito utilizada para pesquisas, relatórios e análises (OCDE, 2002).

Do mesmo modo, desde 1968, os países escandinavos têm colaborado para coordenação de seus trabalhos na área de estatísticas de P&D. Em 1989, um grupo especial de trabalho foi formado para estudos sobre inovação, o Nordic Industrial Fund, que resultou em um levantamento de inovação em tais países através da aplicação de um questionário comum (OCDE, 2002).

Portanto, através de uma visão histórica, os indicadores de ciência e tecnologia emergiram em um período onde dominava a visão linear de inovação, amplamente apoiada, e implementada, através de recursos financeiros destinados a P&D (CLARYSSE; REMOVILLE, 1999). Assim, a competitividade e posição tecnológicas de um país eram medidas por seu resultado tecnológico (patentes, publicações) ou por sua posição de insumos (gastos em P&D, pessoal).

7 O Manual Frascati, bem como as demais estratégias metodológicas, serão apresentadas mais detalhadamente na seção seguinte desta dissertação.
Deste modo, diante do reconhecimento crescente da importância de se mensurar C&T e do surgimento de documentos e manuais com status de guia para essa mensuração, nas décadas de 1970 e 1980 vários relatórios não comparáveis estavam sendo desenvolvidos nos principais países europeus. Alguns eram publicados de forma irregular, em diferentes formatos e, muitos, em linguagem nacional (GRUPP; MOGEE, 2004). Este fato fortaleceu a necessidade de se buscar formar em um único relatório procedimentos e práticas que servissem como parâmetro para países da região, mas que não fossem apenas nos insumos relacionados à P&D, como fazia o Manual Frascati.

A partir da década de 1990, com o reconhecimento de limitações presentes em abordagens anteriores (como o Manual Frascati) e a necessidade de padronização de tais relatórios e documentos (sobretudo para fins de comparibilidade), novos indicadores de C&T passaram a fazer parte das agendas de estudos de acadêmicos, pesquisadores, estatísticos e formuladores de políticas (COLECCHIA, 2006). Isto levou ao surgimento de novos manuais e modelos de padronização para mensuração de C&T, ao mesmo tempo em que os já existentes eram revisados e ajustados.

De forma paralela aos ajustes efetuados por outras organizações, a partir de 1996, avaliações referentes ao programa da UNESCO sobre estatísticas de C&T concluíram que o mesmo deveria alinhar sua metodologia àquela do Manual Frascati, além de proceder a uma revisão internacional de políticas e estatísticas de C&T, priorizando futuros
desenvolvimentos de indicadores internacionais capazes de responder às necessidades de todos os países, em cooperação com outros organismos, tais como OCDE e Eurostat (OCDE, 2002).

Por fim, a Rede de Indicadores de Ciência e Tecnologia – Ibero-americana e Interamericana – (RICYT) foi criada em 1994 pelo Programa Ibero-americano de Ciência e Tecnologia para o Desenvolvimento (Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo - CYTED), da qual participam os países da América Latina em conjunto com Portugal e Espanha, com o objetivo de promover o desenvolvimento de instrumentos para mensuração e análise de ciência e tecnologia na América Latina e no Caribe, dentro de um contexto de ações regionais, intercâmbio de informações e cooperação internacional, visando ao aumento da utilização de seus estudos e resultados como um instrumento político para a tomada de decisões.

Tem como principais atividades a captação e divulgação de dados sobre indicadores de C&T, ações no sentido de promover estudos e discussões a fim de aprimorar os indicadores existentes para que sejam capazes de capturar especificidades do contexto ibero-americano, além de realizar seminários e congressos a fim de que sejam colocadas em prática discussões metodológicas sobre os problemas relacionados à ciência e tecnologia na América Latina, intensificando a troca de informações e experiências entre os membros. Um de seus principais resultados foi a publicação do Manual de Bogotá (RICYT, 2001).
Portanto, inicialmente, predominavam os chamados indicadores de \textit{insumo}, ou seja, aqueles voltados para o dimensionamento dos recursos financeiros e humanos investidos em ciência e tecnologia, limitando-se à identificação dos recursos aplicados à pesquisa tais como P&D, financiamento, estudantes de engenharia e disciplinas científicas, mão-de-obra; portanto, baseados no conceito linear de inovação. Posteriormente, foram desenvolvidos os chamados indicadores de \textit{resultado}, que, de início, limitavam-se a medir a produção científica, passando a incorporar, em seguida, a produção de patentes e a transferência de tecnologia entre países (Balanço Tecnológico). Com o tempo, percebeu-se a necessidade de capturar não somente as entradas e saídas do processo, mas também, e principalmente, o que ocorria na “caixa preta” representada pelas atividades intermediárias, fazendo com que passassem a enfocar as \textit{atividades inovativas} realizadas nas empresas.

\textbf{4.2. Principais Abordagens de Mensuração de C&T Baseadas em Indicadores}

\textit{4.2.1. Manual Frascati - Abordagem voltada para mensuração de P&D}

O Manual Frascati, fruto de uma convenção realizada pela OCDE e especialistas na área de estatísticas de P&D em 1963, teve sua primeira versão oficial na mesma data, tendo como principal objetivo a definição de padrões para a prática, classificação e finalidade de dados de entrada relacionados à P&D, voltando-se exclusivamente para a mensuração de
recursos humanos e financeiros dedicados a atividades de P&D. Volta-se, especificamente, para P&D e para as necessidades dos países membros da OCDE com relação à matéria, baseando-se, para tal, no modelo linear de inovação.

Portanto, o Manual Frascati encontra-se em sua sexta edição. VISANDO incorporar melhorias e proceder à ajustes no Manual, a fim de contemplar, de forma mais adequada, as variantes e influências cada vez maiores desse complexo fenômeno de mensuração de ciência e tecnologia, a mais recente versão dedica-se, em consonância com os objetivos principais de lidar, exclusivamente, com a mensuração de recursos humanos e financeiros destinados à P&D, a esforços maiores voltados para aperfeiçoamento das estatísticas de P&D no setor de serviços e na coleta de dados detalhados sobre recursos humanos dedicados à P&D. Além disso, fornece informações acerca dos tipos de dados que devem, ou não, ser coletados; a necessidade de se coletar e produzir dados que possam ser prontamente comparáveis; e a importância da interpretação correta dos dados para a produção de informações autênticas e confiáveis.

Assim, o Manual de Oslo é capaz de fornecer informações acerca de apenas uma das dimensões relacionadas ao desenvolvimento tecnológico, que é a P&D, relacionada às capacidades tecnológicas mais complexas. Portanto, ao prover subsídios para a geração de informações sobre o dispêndio de P&D e pessoal alocado em P&D, se concentra nestes dois aspectos da P&D, voltadas, principalmente, para informações quantitativas, já que não
estabelece relação com outros tipos de variáveis. Assim, preocupa-se isoladamente com um dentre os vários insumos do desenvolvimento tecnológico, sem se preocupar com os demais elementos relacionados aos resultados, às atividades e processo ao longo do tempo. Deste modo, o próprio manual reconhece que estatísticas de P&D, isoladamente, não são muito capazes de fornecer informações úteis e completas, devendo ser complementadas com outros tipos de informações, decorrendo, disto, a importância que dedica aos outros manuais publicados pela OCDE.

4.2.2. Manual de Canberra - Abordagem voltada para mensuração de recursos humanos dedicados à C&T

O Manual de Canberra, discutido por especialistas da OCDE em 1992 e 1993 e adotado oficialmente em 1995, destina-se à mensuração de recursos humanos dedicados a atividades científicas e tecnológicas. Até a década de 1980, a metodologia, coleta e análise de informações quantitativas voltadas para C&T na OCDE restringia-se ao pessoal dedicado apenas à P&D, ou seja, baseava-se em uma visão restrita de C&T, limitada à consideração de P&D.

Até então, não havia nenhum modelo amplamente aceito na OCDE para mensuração de recursos humanos em ciência e tecnologia, com poucos países mantendo uma definição formal destes e, consequentemente, pouca possibilidade de comparabilidade internacional. Neste sentido, o Manual prepara algumas definições e orientações básicas, dentre as quais destacam-se aquelas relacionadas a: (i) atividades a serem tratadas e cobertas pelos levantamentos; (ii) categorias de pessoal a serem incluídas; (iii) variáveis que auxiliem a compreensão do fluxo e estoque de recursos humanos – variáveis gerais, pessoais e de contexto; (iv) classificações sobre ocupações e/ou habilidades (formais ou adquiridas pela rotina e tarefas diárias); (v) fontes de dados auxiliares e (vi) orientações que permitam comparações.

O Manual engloba os “recursos humanos real ou potencialmente voltados para a geração sistemática, avanço, difusão e aplicação de conhecimento científico e tecnológico”, apresentando, para tal, dois enfoques, dentre os quais o mais amplo considera como recursos humanos qualquer um que tenha completado a educação secundária; já em sua forma mais específica, cobre apenas aqueles indivíduos com, no mínimo, nível de
qualificação universitária, com formação em ciências naturais ou engenharia. Portanto, não cobre todo o pessoal engajado em atividades ou ocupações de C&T, apenas aqueles com nível universitário (foco principal) ou nível técnico (de forma marginal ou secundária) (OCDE, 1995).

Neste sentido, de forma semelhante ao Manual Frascati, se concentra em apenas um dos componentes que fazem parte das capacidades tecnológicas de países e empresas e que representa apenas o lado dos inssumos: capital humano. Assim, consegue gerar informações sobre a quantidade de pessoal alocado em atividades de C&T, o tipo de atividade desenvolvida, a qualificação, e outras informações concernentes aos aspectos dos recursos de pessoal. Por outro lado, são informações pontuais e focadas, que, sozinhas, não dão conta de indicar o nível de desenvolvimento tecnológico do país ou empresa, e nem mesmo de seus recursos humanos, já que não procede a uma avaliação qualitativa, ao longo do tempo, mas volta-se para dados estatísticos e quantitativos agregados, que tendem a ser úteis no caso de ações mais gerais e especificamente voltadas para a matéria, dificultando, entretanto, relações e causalidades com outros tipos de informações ou resultados.

4.2.3. Manual de Oslo - Abordagem voltada para mensuração da inovação

Diferentemente dos manuais anteriormente apresentados, o Manual de Oslo representou uma estratégia no sentido de capturar informações acerca dos diversos aspectos relacionados à inovação, e não somente de um aspecto específico, de forma a abranger um conjunto mais amplo de elementos, numa tentativa de capturar e estabelecer relacionamentos entre os diversos componentes da inovação e, consequentemente, gerar informações mais úteis e completas. Assim, em 1992, a OCDE organizou, em colaboração com o Eurostat, um encontro para formatar um questionário padrão e uma lista de questões centrais que permitissem comparação internacional dos levantamentos sobre inovação na Europa. Foi elaborado, então, o Manual de Oslo, que representa a principal fonte internacional de procedimentos e diretrizes para a coleta e interpretação de dados sobre as atividades inovadoras na indústria. Seu objetivo era harmonizar metodologias nacionais e coletar informações padronizadas sobre as atividades inovadoras das empresas: o tipo de inovação conduzida, as fontes de conhecimento tecnológico, gastos e atividades
relacionadas, os objetivos da empresa, obstáculos e impactos da inovação e das atividades inovadoras (GODIN, 2002).

Visando incorporar novas dimensões às pesquisas de inovação, como resposta às mudanças de natureza e panorama da inovação ao longo do tempo, e, conseqüentemente, às necessidades de ampliação do escopo das pesquisas, o Manual passou por novas revisões, encontrando-se, atualmente, em sua terceira edição, que foi reorganizada para levar em consideração os principais progressos realizados para o entendimento do processo de inovação e seu impacto na economia (OCDE, 2005). Sua primeira edição foi publicada em 1992 e passou a orientar diversas pesquisas a partir de sua divulgação, incluindo o Community Innovation Survey (CIS) organizado e conduzido pela União Européia, com o objetivo de gerar informações para melhoria das políticas estratégicas de suporte à inovação. Através da experiência de tais pesquisas, uma segunda edição do Manual foi elaborada, em 1997, a fim de atualizar e adaptar conceitos, definições e a própria metodologia, para torná-los mais capazes de capturar a complexidade de fenômenos e fatores integrantes do processo de inovação, aprimorando o desenvolvimento de indicadores internacionalmente comparáveis.

A terceira edição, ao contar com uma maior quantidade e variedade de dados e com experiências de pesquisas anteriores, inseriu modificações e expandiu a estrutura de mensuração, enfatizando a interação com outras empresas e instituições relacionadas à inovação, reconhecendo a importância de indústrias menos intensivas em P&D, tais como
as de serviços e as de baixa tecnologia, incluindo as inovações organizacionais\(^8\) e de marketing, e inserindo considerações acerca das pesquisas de inovação conduzidas externamente aos países da OCDE, sobretudo nos países em desenvolvimento.

Com relação às inovações de serviços, foram revisados e alterados conceitos, definições e termos, já que se trata de um tipo particular de inovação, onde sua organização se dá de maneira menos formal, dominando as do tipo incremental. Ao mesmo tempo, reconhece a importância e essencialidade das inovações organizacionais, já que esta é uma dimensão fundamental da inovação, não somente como fator de apoio às inovações de produto e processo, como também ao desempenho da empresa, ao contribuir para a qualidade, eficiência, troca de informações, gerenciamento de conhecimentos e habilidades, coordenação para aprendizagem. Além disso, em muitos casos, a mudança organizacional torna-se um elemento imprescindível para adequação a novas realidades, aproveitamento de oportunidades, acompanhamento de tendências ou mesmo sobrevivência.

O Manual parte de uma discussão conceitual voltada para a compreensão da estrutura e do processo geral de inovação, definindo o escopo do manual como voltado para empresas comerciais, para inovação no âmbito da firma e para a consideração apenas de mudanças com grau de novidade considerável para a empresa. Admite, não obstante, a difusão como forma de aquisição de inovações de outras instituições, não cobrindo, entretanto, a difusão de uma nova tecnologia para outras partes ou divisões de uma mesma empresa. Apresenta:

\(^{8}\) A partir da terceira edição, passa a reconhecer a importância e essencialidade das inovações organizacionais como fator de apoio às inovações de produto e processo, ao desempenho da empresa, à qualidade, eficiência, troca de informações, gerenciamento de conhecimentos e habilidades, coordenação para aprendizagem, além de elemento imprescindível para adequação a novas realidades e aproveitamento de oportunidades.
(a) os tipos de inovação (produto, processo, marketing e organizacional), diferenciando-as entre si; (b) o que é e o que não é considerado inovação; (c) os graus de novidade de uma inovação (nova para a empresa, nova para o mercado e nova para o mundo), apontando como requisito mínimo para se considerar inovação a condição de “nova para a empresa”; (d) as condições para que uma empresa seja considerada inovadora e as formas de sua classificação (por atividade econômica, por tamanho, por tipo de instituição etc); (e) as interações no processo de inovação; (f) a mensuração e coleta de dados das atividades de inovação; (g) as atividades de inovação (P&D, aquisição de conhecimento, aquisição de máquinas e equipamentos, atividades de desenvolvimento e implementação para adoção de novos bens, serviços e processos, instalação de equipamentos e engenharia, dentre outras); (h) importância da detecção dos objetivos, obstáculos e resultados da inovação, dentre outras.

Pode-se perceber, portanto, que o Manual de Oslo sofreu modificações ao longo do tempo, mesmo em se tratando de questões conceituais, passando a incorporar elementos que o fizessem tratar a inovação de forma mais abrangente, a partir de perspetivas amplas e ajustadas a diferentes contextos. Assim, ao longo do tempo, passou a abordar elementos inerentes à inovação que não podiam ser negligenciados, tais como questões relacionadas à incerteza, apropriação, investimentos, influência no desempenho e vantagem competitiva, aprendizado организacional, difusão do conhecimento, transbordamentos, dentre outros.

Portanto, o Manual de Oslo está estruturado de forma a fornecer definições, conceitos e diretrizes sobre inovação e sobre as pesquisas destinadas a capturar este processo dentro das empresas. Entretanto, não apresenta uma forma fechada para condução das pesquisas ou um modelo padrão de questionário a ser aplicado, nem aponta as perguntas e abordagens a serem fielmente seguidas, mas oferece indicações e opções para a coleta e interpretação de dados, cabendo à entidade condutora da pesquisa selecionar o conjunto mais adequado aos propósitos pretendidos.

Com a publicação do Manual de Oslo e o exemplo de países da OCDE e da EU conduzindo suas pesquisas de inovação, diversos países em desenvolvimento também se lançaram na medição da inovação. Consequentemente, passaram a utilizar as bases

9 Esta noção de inovação passou a adotar uma perspectiva mais ampla, considerando os aspectos da difusão e os distintos graus de novidade das inovações: novo para a empresa e novo para o mercado.
metodológicas disponíveis, ganhando destaque o Manual de Oslo como guia de suas pesquisas. Entretanto, grande parte delas foi formatada e realizada levando em consideração algumas adaptações, para que fossem capazes de capturar os elementos e especificidades característicos de tais contextos. Assim, inicialmente, este grupo de países passou a utilizar as abordagens internacionais, mas sob alguma forma modificada/adaptada, sendo que cada um o fazia de forma distinta.

Neste sentido, reconhecendo as especificidades dos países em desenvolvimento e buscando evitar o comprometimento das tarefas de comparações internacionais pelo fato de cada país buscar alterar a metodologia existente para fins próprios, a nova versão do Manual de Oslo dedicou uma parte específica\(^\text{10}\) (Anexo A – pesquisas sobre inovação em países em desenvolvimento) para recomendações às pesquisas conduzidas por países em desenvolvimento, expondo as características da inovação no referido contexto, a importância das inovações incrementais (apesar de expor as dificuldades de medi-las), questões da informalidade das atividades de I,C&T, dentre outras especificidades. Ressalta, ainda, a dificuldade dos países em desenvolvimento com relação à disponibilização e aplicação de recursos financeiros em atividades de inovação por parte das empresas, já que esses são escassos e acabam por ter o governo como principal agente de execução de P&D e financiamento. Assim, recomenda que os processos de mensuração concentrem-se no processo de inovação, e não em seus resultados, e enfatiza os esforços e capacitações, bem como a importância de analisar os fatores que os dificultam ou facilitam. Portanto, destaca alguns pontos gerais nos quais os países em desenvolvimento se diferenciam daqueles da OCDE, o que, consequentemente, leva à necessidade de um formato de mensuração particular.

Diante do exposto, pode-se dizer que o Manual de Oslo busca reunir os diversos elementos componentes da inovação e seus processos subjacentes, de forma mais ou menos aprofundada, apesar de conferir maior destaque a alguns elementos, tais como a P&D. Assim, a partir de uma perspectiva abrangente, busca capturar diversas dimensões da inovação, incluindo os aspectos organizacionais, comumente negligenciados, produzindo informações agregadas capazes de gerar subsídios para decisões e estratégias de nível macro, tais como ações macroeconômicas, de incentivo a setores industriais, política

\(^{10}\) Teve como influência a publicação do Manual de Bogotá, apresentado em seguida.
cambial, financiamento e fomento à instituições de apoio, ou seja, ações mais gerais e amplas.

4.2.4. Manual de Bogotá - Abordagem voltada para mensuração da inovação no contexto de países em desenvolvimento

O Manual de Bogotá, apresentado oficialmente no ano de 2000, apresenta-se como uma proposta complementar ao Manual de Oslo para mensuração da inovação, com a finalidade de buscar um equilíbrio entre as bases conceitual e metodológica proporcionadas pelos manuais da OCDE (Manual de Oslo e Manual Frascati) e a incorporação de instrumentos e métodos específicos capazes de capturar as peculiaridades da conduta tecnológica e inovadora das empresas localizadas nos países da América Latina e Caribe. Assim, de um lado, busca assegurar a comparabilidade com estudos e pesquisas conduzidos em outros países e regiões e, de outro, procura detectar especificidades dos processos inovativos dos países ibero-amERICANOS.

Dentre os principais pontos dispostos no Manual destacam-se aqueles voltados para os processos e trajetórias tecnológicas das empresas, seus esforços, habilidades e capacitações; as limitações e obstáculos que dificultam resultados e desenvolvimento tecnológicos; e a consideração de um conceito mais amplo de inovação, que inclua difusão como parte importante do processo inovador, sobretudo em contextos onde as mudanças lentas, contínuas e incrementais são dominantes.

Ao mesmo tempo em que destaca os méritos do Manual de Oslo, sobretudo com relação à consideração das interações necessárias aos processos de inovação e à adoção do modelo interativo de inovação (em oposição ao modelo linear), apresenta considerações acerca de suas limitações, sendo as principais críticas àquele a desconsideração de aspectos voltados para as atividades e esforços desempenhados pelas empresas no sentido de aumentarem suas capacidades e acervo tecnológico; a definição de novidade para que possa ser considerada inovação; o conceito estrito de inovação. Ou seja, considera que um dos pontos fracos quando da aplicação do Manual de Oslo em países em desenvolvimento é a escassez de informações referentes ao esforço, aprendizagem e trajetória de acumulação tecnológica, ao mesmo tempo em que dedica pouca, ou nenhuma, atenção ao processo de difusão e às atividades criativas, adaptações e melhorias contínuas que este requer.
Assim, enquanto buscam adaptar a metodologia de captura de informações relacionadas à inovação visando o contexto de países em desenvolvimento, a forma geral e metodologia são basicamente as mesmas do Manual de Oslo, no que se refere à concentração em indicadores de C&T agregados, voltados de forma mais adequada para questões de nível macroeconômico e de caráter menos direcionado e mais amplo, sem focar em diferenças inter-setoriais e inter-empresariais mais específicas.

4.3. Principais Indicadores de C&T: Méritos e Limitações no Contexto de Países em Desenvolvimento

Assim, como apresentado, não obstante as grandes diferenças existentes entre os processos inovadores de países desenvolvidos e países em desenvolvimento, muitas vezes de forma reversa, não se pode dizer que a literatura voltada para empresas de países desenvolvidos é completamente descartável no tratamento de países em desenvolvimento; pelo contrário, tem muito a oferecer, como foi mostrado através da apresentação de conceitos desenvolvidos por pesquisadores no tratamento de contextos desenvolvidos, mas que também se aplicam a empresas de países em desenvolvimento, tal como a caracterização da natureza e das propriedades inerentes ao processo inovador, de Dosi (1988); o conceito de capacidade absorvedora, de Cohen e Levinthal (1990); a definição dos sub-processos da inovação, de Pavitt (2003), dentre outros que tratam das capacidades dinâmicas, da perspectiva evolucionária, da aprendizagem organizacional, tipos de aprendizagem etc. (FIGUEIREDO, 2006).

Por outro lado, uma tarefa fundamental de estudos e pesquisas que buscam tratar da inovação em empresas de países de industrialização tardia é a identificação e consciência das potencialidades, mas também das limitações de tais abordagens, de acordo com as características e peculiaridades do contexto sob exame bem como da finalidade dos dados e informações a serem obtidos com a pesquisa. Os principais problemas na transposição desta literatura para aplicação em contextos em desenvolvimento decorrem de dois pontos principais. Primeiro, tendem a se concentrar em empresas localizadas na fronteira tecnológica ou próximas a ela, e segundo, comumente adotam indicadores voltados para resultados inovadores ou estatísticas típicas de empresas avançadas (FIGUEIREDO,
2006). Neste sentido, esta seção apresenta os principais indicadores de C&T encontrados na literatura, especialmente nos manuais de mensuração da inovação, apresentando definições, méritos e limitações, sobretudo quando utilizados em contextos de empresas que ainda não estão localizadas na fronteira tecnológica.

Gastos/Estatísticas de P&D

A intensidade de P&D é o indicador mais importante utilizado pela OCDE para classificar empresas, e setores industriais, de acordo com sua intensidade tecnológica. Assim, grande ênfase costuma ser dada aos indicadores baseados em financiamentos e investimentos em P&D nos levantamentos de inovação. Em geral, quando se empregam indicadores de P&D, tem-se em mente o modelo linear de inovação, através do qual investimentos e recursos aplicados em P&D levarão automaticamente ao desenvolvimento tecnológico (SALAZAR; HOLBROOK, 2004), ou seja, considera-se que há um caminho quase “infallível” desde as atividades de P&D até a comercialização de produtos, e que recursos incrementais em P&D resultam em benefícios incrementais (HOLBROOK, 1997). Porém, inovação não é um processo linear, pelo contrário, os elementos da inovação interagem através dos vários estágios para combinar uma complexa rede de relacionamentos e atividades (ARCHIBUGI; PIANTA, 1996), constituindo muito mais do que simplesmente P&D.

Assim, não se pode tratar o processo inovador nos países em desenvolvimento como aqueles que são conduzidos nos países desenvolvidos. Os países desenvolvidos são caracterizados por economias fortemente especializadas, com concentração em setores de alta e média-alta intensidade tecnológica, ou seja, apresentam especializações competitivas, com foco naqueles setores onde conseguem obter maior vantagem competitiva, não sendo, necessariamente, líderes em todos os setores. Como consequência, seus sistemas de P&D buscam concentrar esforços em tais setores, com diferenças significativas frente aos demais. Por outro lado, em países em desenvolvimento, devido à relativa fraqueza dos setores de alta tecnologia, estes não concentram os esforços de P&D, o que, consequentemente, dificulta as condições de competição (FURTADO; CARVALHO, 2005).

Outra diferença fundamental com relação a P&D é que nos processos de inovação conduzidos em países desenvolvidos é preponderante a parcela privada de investimentos
em P&D, enquanto contextos de economias de industrialização recente caracterizam-se pela dependência de investimento público em P&D (CAMPOS; FURTADO, 2000). Além disso, ao contrário de empresas localizadas em países desenvolvidos, como as japonesas e americanas, onde o faturamento está fortemente relacionado e, até mesmo, condicionado a despesas em P&D, em países em desenvolvimento esta relação é inversa, ou seja, a despesa em P&D é que está atrelada ao faturamento (ANDREASSI; SBRAGIA, 2000).

Ainda com relação aos indicadores relativos a P&D, a análise de cientistas e engenheiros alocados em P&D em proporção à população também é bastante utilizada. Porém, sua utilidade é bastante restrita, pois a qualidade dos engenheiros e cientistas em P&D pode diferir entre países, e seu valor econômico pode depender do tipo de P&D em que estão engajados (LALL, 1994).

Outro aspecto sobre a adoção de estatísticas de P&D se refere ao fato de que a incidência de laboratórios de P&D formalmente organizados nos países de economia emergente é rara, se comparada a alguns setores industriais de países tecnologicamente avançados. Nos países em desenvolvimento, grande parte das atividades tecnológicas inovadoras é conduzida dentro das próprias empresas, em suas unidades organizacionais, nos departamentos de engenharia, de qualidade e manutenção (FIGUEIREDO, 2004a, 2005a). Assim, a utilização destas estatísticas não contabiliza algumas das principais fontes de acumulação de capacidades nos países emergentes, tais como as pesquisas de engenharia (não P&D) (LALL, 1994) e a absorção e adoção de conhecimento adquirido externamente (de um competidor, de outra indústria, do governo, de universidades ou outros países) (HOLBROOK, 1997).

Outra limitação das estatísticas de P&D, mesmo quando aplicadas em países desenvolvidos, é que os gastos em P&D são computados de acordo com o valor corrente da moeda, o que pode comprometer a comparação de dados, se houver taxas de inflação diferentes entre os países. Além disso, os custos dos insumos/entradas para P&D variam entre os países (PAVITT, 1976). Assim, a teoria por trás de tais indicadores costuma relacionar o investimento em P&D a resultados econômicos documentados em registros financeiros, patentes ou inovações materializadas, ou seja, aos aspectos codificados do processo de inovação (CAMPOS; FURTADO, 2000). De acordo com Salazar e Holbrook (2004), grande parte dos levantamentos sobre inovação foca o lado da oferta, ou seja, a
ênfase recaí nas atividades e gastos que geram resultados inovadores efetivos, sem levar em consideração a importância das políticas voltadas para entender como os relacionamentos são criados, estabelecidos e desenvolvidos ao longo do tempo, ou seja, os processos de colaboração e cooperação na inovação.

Nos países em desenvolvimento, uma das principais razões para a condução de levantamentos sobre inovação é fornecer informações para a tomada de decisões referentes a políticas públicas e para a modelagem de estratégias de negócio das empresas, com foco principal na geração, difusão, apropriação e uso do novo conhecimento nos negócios. Assim, as medidas devem focar mais no processo inovador do que nos resultados, e enfatizar como as capacidades, esforços e resultados se relacionam. Os esforços feitos pelas empresas (atividades inovadoras) e suas capacidades são iguais ou mais importantes de serem determinados do que os resultados (inovações).

Patentes e Propriedade Intelectual

A propriedade intelectual refere-se à proteção, garantida por lei, de criações da mente humana, com o objetivo de garantir ao inventor, temporariamente, direitos e poderes exclusivos de exploração de suas invenções e criações (GARNICA; OLIVEIRA; TORKOMIAN, 2006). Seus benefícios e importância variam conforme a natureza da economia, conforme o nível de desenvolvimento, e natureza da atividade, sendo vitais no contexto de indústrias onde é relativamente fácil a cópia de novos produtos, servindo como sustentação dos gastos com P&D e dos riscos associados, e menos importantes em indústrias onde as dificuldades e custos de imitação são elevados, não sendo, portanto, essenciais para a apropriação dos benefícios da inovação. (LALL, 2003).

Sendo as *patentes* um dos principais representantes dos direitos de propriedade, referindo-se ao subconjunto voltado para propriedade industrial e frequentemente utilizadas pelas empresas para proteção de seus produtos e processos perante a concorrência, estas passaram a ser outro parâmetro de inovação e capacidade tecnológica altamente utilizado, focado no resultado, por fornecerem detalhes estatísticos altamente quantificáveis, estarem disponíveis para longo período de tempo (PATEL, 1995) e serem documentos públicos.
Por razões legais, patentes são sistematicamente registradas em organismos governamentais (ARCHIBUGI; PIANTA, 1996). Particularmente, a quantidade de patentes registradas nos Estados Unidos é comumente utilizada como critério para medição da atividade tecnológica de determinado país. Porém, de acordo com Figueiredo (2004ª, 2005a), a aplicação de tal indicador para economias emergentes pode ser limitadora já que tais países não exportam significativamente produtos especializados, com marca própria, para os mercados dos EUA. Mesmo se consideradas as patentes aplicadas nacionalmente, que no caso do Brasil está sob responsabilidade do Instituto Nacional da Propriedade Industrial – INPI, a situação não se modifica consideravelmente, reforçando a pouca utilização de patentes como fonte de vantagem competitiva, o que, neste caso, é explicado, em parte, pelo tempo de processamento de um pedido de patente, que, segundo Guimarães e Contador (2002), tem levado, em média, 8 anos, retardando a apropriação dos direitos auferidos por uma patente.

Algumas outras limitações referentes às patentes estão relacionadas ao fato de que (i) nem todas as invenções são tecnicamente patenteáveis (por exemplo, no caso de software, que, em geral, estão legalmente protegidos por direito autorais); (ii) empresas, muitas vezes, utilizam outros métodos para proteger suas inovações (por exemplo, segredo industrial, lançamento pioneiro no mercado); (iii) o elevado custo para patentear uma invenção; (iv) o fato de que as invenções patenteadas realmente se transformam em inovações (ARCHIBUGI; PIANTA, 1996); (v) não capturam as atividades inovadoras das empresas, sendo, somente, indicadores de resultado.

Os documentos de patentes devem conter, como requisito legal, citações de outras patentes e referências a outros documentos, tais como artigos, resumos e livros, que representam os conhecimentos existentes que subsidiaram a invenção, servindo, portanto, como forma de limitar o escopo de reivindicação de novidade (BRUSONI; CRISCUOLO; GEUNA, 2003). Assim, a citação de patentes também costuma ser utilizada como indicador do fluxo de conhecimento, por representarem uma ligação com inovações anteriores ou conhecimentos pré-existentes nos quais o inventor se baseou, pois, ao indicar uma patente, o inventor está informando que o conhecimento contido na citada patente foi útil para o desenvolvimento de sua própria patente (CRISCUOLO, 2002).
Entretanto, muitos estudos sobre citações não são capazes de identificar precisamente aquelas citações escolhidas pelo inventor, pelo fato de o documento de patentes reportar as citações selecionadas pelo examinador, o que pode incluir todas, parte ou nenhuma das citações originalmente selecionadas e efetivamente utilizadas pelo inventor (BRUSONI; CRISCUOLO; GEUNA, 2003). Assim, conhecendo o procedimento, as empresas normalmente fazem as aplicações de patentes de forma estratégica, muitas vezes com ajuda de profissionais experientes no assunto, o que faz com que as citações reflitam a estratégia da empresa, e, nem sempre, as ligações e redes que foram utilizadas no desenvolvimento do invento. Ou seja, além de compartilharem muitas das limitações apresentadas pelas patentes, estudos que utilizam citações de patentes podem apresentar um resultado enviesado, pois podem estar interpretando e contabilizando patentes que nem sequer foram citadas no documento original do inventor ou que representam uma estratégia da empresa solicitante e não necessariamente uma fonte de conhecimento utilizada.

Apesar de as informações contidas em alguns documentos de patentes poderem ter sido incluídas de forma estratégica e não representarem, de fato, os conhecimentos utilizados para a invenção, mesmo em situações onde as informações dos mesmos poderiam servir como subsídio tecnológico àquelas empresas que pretendem ser inovadoras, estas não costumam ser utilizadas de forma habitual como instrumento para estimular a geração de novas ideias e nem como fonte de pesquisa para resposta sobre problemas técnicos pelas empresas. Segundo pesquisa realizada por Guimarães e Contador (2002), dentre os fatores inibidores, destacam-se o custo e tempo envolvidos nas pesquisas em documentos de patentes; desconhecimento do potencial tecnológico disponível nos mesmos e suas descrições técnicas; desconhecimento dos recursos disponíveis nas bases de dados existentes, inclusive as gratuitas; dificuldade devido à linguagem; falta de credibilidade no sistema de patentes como fonte de informação tecnológica, dentre outros.

Não obstante o fato de os direitos de propriedade intelectual fornecerem um sistema legal para acordos contratuais (LALL, 2003), há, ainda, autores que os criticam, não apenas como indicador de inovação tecnológica, mas também como fator de entrave ao desenvolvimento e progresso tecnológico. Neste sentido, Rathmann et. al (2006) destacam situações desvantajosas referentes ao uso de direitos de propriedade, royalties e patentes sobretudo quando se leva em consideração a importância da difusão, essencial e
predominante nos processos de inovação nos países em desenvolvimento, mais voltados para o domínio, adaptação e melhorias de tecnologias importadas.

Dentre elas, as conseqüências mais desfavoráveis à difusão seriam as barreiras à transferência de tecnologia do centro (de onde são produzidas) para a periferia, que têm que pagar preços elevados pelo direito de uso de tecnologias específicas e requerem a existência de agentes locais capazes de adquirir, absorver e desenvolver as novas tecnologias (LALL, 2003); possível criação de mercados para produtos “casados”, podendo acarretar em dependência tecnológica, pois a compra de tecnologia principal pode levar ao desencadeamento de compra de produtos complementares, serviços de manutenção, treinamentos e melhorias. Assim, patentes e direitos de propriedade não têm o mesmo efeito estimulador que costuma aparecer em países desenvolvidos, pelo contrário, ao constranger os processos de aprendizagem (através da imitação e engenharia reversa) e poderem atuar como obstáculo ou travamento à difusão tecnológica (LALL, 2003), podem levar à perpetuação da subordinação da periferia ao centro por meio da tecnologia.

Segundo Garnica et. al (2006), há previsão de dois tipos de patentes no Brasil: a de “privilégio de invenção” e a de “modelo de utilidade”, sendo que a primeira possui maior conteúdo tecnológico, consistindo, sobretudo, na solução de um problema técnico, com prazo de validade de 20 anos; e a segunda, voltada para criações que resultem em melhorias funcionais no uso ou fabricação, com proteção garantida por 15 anos e dotada de menos intensidade tecnológica, assemelhando-se, portanto, às melhorias/inovações incrementais. Entretanto, apesar da distinção existente, normalmente são tratadas de forma indiscriminada apesar do caráter e resultados diversos, ou seja, usa-se o termo patentes para referir, de forma geral, a ambos os tipos, o que pode levar a informações agregadas incapazes de gerar conclusões relevantes e específicas, já que cada uma tem seu próprio impacto e importância.

Outra restrição à utilização de patentes, de forma geral e indistinta, como indicador de capacidade e inovação tecnológica, é sua concentração em determinados setores. Por exemplo, a indústria farmacêutica é, tradicionalmente, um setor que investe de forma considerável em pesquisa, possuindo taxas elevadas de concessão de patentes e registros de marcas nos órgãos competentes (RUTHES et. al, 2006). De acordo com Archibugi e Pianta (1996), P&D e as patentes estão concentradas em grandes empresas: menos de 700
empresas do mundo são responsáveis por cerca de 60% das patentes mundiais. Dessa forma, novamente, a consideração apenas quantitativa das patentes, sem levar em conta os demais fatores envolvidos, ou seja, sem concomitante análise do setor e demais aspectos inerentes, pode fornecer dados incompletos, sem informações relevantes sobre como, por exemplo, a concentração industrial e a estrutura de mercado se relacionam com inovação.

Produção Científica

Uma das principais vantagens desse indicador é a facilidade de serem coletados e a possibilidade de classificá-los como fonte de conhecimento codificado. Entretanto, novamente com relação a uma análise “linear”, um bom desempenho com relação à produção científica na academia, sobretudo com relação à quantidade de publicações, não implica, necessariamente, uma aplicação dos conhecimentos gerados, também bem sucedida, na prática empresarial. Além disso, o fato de os indicadores de C&T estarem demasiadamente centrados no número de publicações pode estar levando ao estímulo da publicação pela publicação, ou seja, pelo simples fato de se produzir em mais quantidade, sem grande preocupação com o que se produz, ou seja, “a produção com um fim em si mesma” (MOSTAFA; MARANON, 1993 *apud* BICALHO-MOREIRA; FERREIRA, 2000).

Assim, existem dois desafios a serem enfrentados neste sentido: preservar, intensificar e avançar a capacidade acadêmica frente à sua posição em relação à fronteira tecnológica e identificar e desenvolver interlocutores na esfera empresarial capazes de absorver os avanços e conhecimentos gerados (PACHECO; CRUZ, 2005).

Outro ponto relacionado a tal indicador, é a forte correlação que costuma ser conferida entre a produção científica, esforços de P&D nas indústrias e patentes, no que diz respeito à inovação tecnológica. De acordo com Guimarães e Gomes (2002), baseados em dados de patentes industriais americanas, onde 73% provêm de pesquisas do setor acadêmico e apenas 27% de pesquisas industriais, as publicações científicas indicam a capacitação e a qualificação científica de um país e são garantia de produção de novos conhecimentos, fundamentando a geração de novas patentes.
Apesar de países em desenvolvimento, tais como o Brasil, estarem aumentando significativamente sua participação em número de publicações científicas qualificadas, a consideração de tal quantificação não pode ser tomada como tendo real impacto e relevância da prática industrial com a conseqüente geração de P&D, patentes e inovações. Assim, este argumento não pode ser generalizado para todos os tipos de países e economias, pois acarretaria, novamente, na consideração de um modelo linear de inovação, de caráter seqüencial e unidirecional, além do fato de também não poder ser generalizado para todos os setores, já que a produção científica tem maior concentração em determinados setores e matérias. Além disso, devido a diferenças sócio-culturais, grande parte dos cientistas de países em desenvolvimento trabalha em condições diferentes daqueles dos países desenvolvidos, com objetivos de trabalho muitas vezes distintos, por vezes relacionados a temas e problemas locais/regionais, os quais nem sempre são de interesse de revistas e periódicos científicos de circulação e consolidação internacional (BICALHO-MOREIRA; FERREIRA, 2000).

Ainda, tal argumento toma, quase exclusivamente, o relacionamento formal entre Universidade e Empresa, sendo os principais resultados desta interação as patentes e os contratos de transferência formal de conhecimento e tecnologia. Assim, conhecimento tecnológico incorporado, que é apenas uma das possibilidades de transferência e interação entre pesquisa acadêmica e indústria, é tomado como prioritário em detrimento de conhecimentos desincorporados que normalmente estão associados a este tipo de relacionamento que, pela variedade de formatos em que pode se expressar, representa grande parcela do conhecimento não só adquirido mas também gerado nessa interação (FURTADO et al., 2002).

Outro aspecto que normalmente faz com que a utilização de números indicativos da produção científica seja criticada como indicador de inovação tecnológica é o fator relacionado ao tempo médio entre a elaboração, submissão a um periódico, avaliação e publicação de um artigo, variando dependendo do rigor e concorrência do periódico (RATHMANN et al., 2006). Assim, a contabilização do número de publicações em determinado período pode não representar os conhecimentos e temas realmente tratados no período ao qual se dedica o levantamento, levando a vieses na análise, uma vez que pode ocorrer uma lacuna considerável entre as diversas fases do processo de publicação, dificultando uma compreensão adequada do real impacto das publicações frente ao
desempenho tecnológico do período, bem como suas interações com outras variáveis levantadas.

Ao mesmo tempo, em grande parte dos países, sobretudo naqueles em desenvolvimento, os recursos e incentivos à pesquisa e publicação são escassos, o que os leva a se concentrarem em determinadas instituições e regiões. No caso do Brasil, de acordo com o estudo de Rossoni et al. (2006), apenas cinco instituições foram responsáveis por cerca de um terço das publicações do período pesquisado (2000-2005), sendo, estas, instituições públicas de ensino superior das regiões Sul e Sudeste do país. Com isso, há uma certa polarização inclusive dos temas tratados nas publicações, além do fato de a concentração em regiões específicas dificultar o processo de troca e “transbordamento” de conhecimento entre as diversas redes de interação.

Assim, em oposição à alternativa baseada somente no volume das atividades científicas, é apontada outra baseada em avaliações de performance, que tendem a enfocar “volume de resultados de pesquisas, qualidade, impacto e utilidade em termos de geração de benefícios econômicos, tecnológicos e sociais” (GEUNA; MARTIN, 2003). Entretanto, este tipo de avaliação também apresenta limitações, além da possibilidade de concentração de recursos em um número menor de instituições, tais como: (i) encorajamento à competição em uma mesma vertente temática, mais aceitável em periódicos internacionais, o que dificultaria, consequentemente, o desenvolvimento de novas idéias e abordagens, em busca de pesquisas mais “seguras” e publicáveis; (ii) aumento da lacuna entre ensino e pesquisa, caso as “recompensas” favoreçam uma das atividades em detrimento da outra; (iii) interferência na condução das atividades acadêmicas por parte do governo, pois, ao deter decisões acerca do montante, destino e formato do repasse de recursos, pode acabar direcionando os enfoques das pesquisas (GEUNA; MARTIN, 2003).

Além disso, a fim de contornar limitações quanto ao uso de indicadores apenas quantitativos de publicações científicas bem como aos problemas tradicionais relacionados à avaliação de publicações no que diz respeito à sua qualidade, dois outros métodos para qualificação das pesquisas científicas podem ser encontrados na literatura: um envolve a avaliação por parte de outros pesquisadores (peer review) e, o outro, a análise de citações.
Vertentes defensoras da *análise de citações* como indicador da qualidade de publicações pregam que a referência de um artigo por artigos subsequentes indica o impacto e influência alcançada pelo artigo influenciador (MARTIN; IRVINE, 1983). Entretanto, algumas limitações podem ser apontadas quando este tipo de indicador é aplicado. A existência de um certo corporativismo não pode ser negligenciada, ou seja, alguns autores procuram citar e mencionar trabalhos de pesquisadores que fazem parte da mesma instituição da qual são membros, pois ao elevar seus parceiros institucionais, o nome da instituição e, conseqüentemente, o seu próprio, ganham destaque. Além disso, outros problemas podem ser citados, tais como certa tendência à auto-citação; barreiras linguísticas; impossibilidade de conhecer todos os trabalhos existentes e/ou publicados sobre o tema; dificuldade de avaliação e distinção entre citações “positivas” e “negativas” (ou seja, aquelas que realmente serviram de base à publicação e reforço aos argumentos apresentados frente aquelas com as quais se contrapõe e expõe limitações); citações de segunda mão (aquelas citadas em outros artigos e apropriadas, muitas vezes, sem dar crédito àquele que originalmente fez a citação) (VELHO, 2006).

Já a *avaliação por parte de cientistas* costuma ser o método preferido pelos pesquisadores e cientistas, baseando-se nas percepções individuais dos mesmos com relação à contribuição e importância dos artigos avaliados ao progresso científico. De forma similar, este tipo de avaliação também apresenta alguns problemas, dentre eles as pressões políticas pela comunidade científica quando da avaliação de trabalhos de “colegas” acadêmicos; a seleção de um conjunto representativo de “avaliadores”, já que não se pode tomar todos os cientistas como analistas de todas as publicações; contaminação das avaliações segundo preferências e interesses dos avaliadores, que muitas vezes é realizada de maneira informal e/ou baseada simplesmente no histórico e reputação do pesquisador avaliado (MARTIN; IRVINE, 1983).

Tamanho da Empresa

Um dos dados que costuma estar presente em quase todos os levantamentos de inovação que têm a empresa como nível de análise é o tamanho da empresa. Costuma-se associar positivamente o tamanho da empresa com sua capacidade de inovar, tendo como justificativa a maior disponibilidade de crédito ou autofinanciamento para as atividades inovadoras, ganhos de maior escala e escopo, facilidade na formação e manutenção de
departamentos formais de P&D (COHEN, 1995 *apud* KANNEBLEY; PORTO; PAZELLO, 2005).

Entretanto, esta visão também adquire um caráter determinista, ao passo que normalmente assume que o tamanho da empresa é fator crucial na determinação de seu comportamento. Por outro lado, existem aqueles que consideram que as pequenas e médias empresas apresentam algumas vantagens frente às grandes empresas, dentre as quais destacam-se as vantagens *comportamentais* na criação e difusão de inovações, contrapondo as vantagens *materiais* das grandes empresas (RUFFONI; DIAS; RUFFONI, 2006). Todavia, o tamanho da empresa não deve ser tomado como variável isolada, mas sim devidamente complementada com demais índices que fortaleçam e auxiliem as interpretações dos dados.

Tão ou mais importante que o tamanho da empresa, são as evidências que permitem verificar as ações desempenhadas e desenvolvidas pelas empresas a fim de aumentarem seu arcabouço tecnológico, de conhecimentos e habilidades, como, por exemplo, os tipos de ações que prevalecem nas empresas: as de caráter *defensivo* – reorganização administrativa, racionalização de pessoal, redução da produção, complemento da oferta com importações, ou *ofensivo* – tentativas de incorporação de melhorias tecnológicas em produtos e/ou processos, melhoria do nível de qualidade, fortalecimento da estrutura e dos vínculos com outros agentes, dentre outras (ANLLÓ; GOLDBERG; LUGONES, 1999). Portanto, analisar as capacidades atuais e de projeção no longo prazo parecem mais cabíveis, em termos de obtenção de informações úteis, do que simplesmente uma classificação baseada no tamanho da empresa.

Origem do capital e Orientação de mercado

Outra questão que normalmente está presente nos levantamentos sobre inovação refere-se à origem do capital da empresa, mais precisamente, à localização da matriz. Acredita-se, geralmente, que as empresas multinacionais são mais propensas à inovação que as empresas locais, sobretudo quando inseridas em contexto de países em desenvolvimento, por possuírem maior acesso à tecnologia, recursos e programas de treinamento organizacional e gerencial, além de tenderem a concentrar as atividades de pesquisa no país de origem (KANNEBLEY; PORTO; PAZELLO, 2005). Isso acaba criando dois tipos
de determinismo: (i) o que define as empresas multinacionais como mais inovadoras em detrimento das empresas locais, cujos esforços tecnológicos se direcionariam, quase exclusivamente, para adaptações (melhorias incrementais) de tecnologias e produtos ao mercado doméstico; (ii) e o segundo relacionado a um “esvaziamento” de capacidades domésticas e enfraquecimento do sistema de inovação local, levando a um empobrecimento da base tecnológica nacional e evasão de conhecimento (CRISCUOLO, 2002).

Além disso, existe o argumento de que o licenciamento de tecnologia externa leva somente ao desenvolvimento de capacidades de produção e de engenharia e não induz ao desenvolvimento de capacidades em P&D, levando as empresas nacionais a replicatedem as mesmas capacidades das filiais/multinacionais, já que buscam tecnologia no exterior para fazer frente à concorrência e apresentarem produtos competitivos (ERBER, 2001); o que não leva em consideração a importância da difusão e das melhorias incrementais na tecnologia adquirida para adaptação a necessidades e situações específicas.

Assim, através de uma visão restrita sobre inovação, ao considerar como marginais as melhorias incrementais, argumentos baseados exclusivamente em tais indicadores desconsideram partes essenciais do processo inovador, tais como a difusão e “transbordamentos” (spillover), e centralizam suas bases teóricas em perspectivas lineares de inovação, com foco principal nas atividades de P&D. Argumentos convencionais vêem os investimentos estrangeiros diretos (FDI – foreign direct investment) como transferência internacional de tecnologia da matriz para subsidiárias, desconsiderando que tal “escoamento” também reflete uma acumulação ativa e criação de conhecimento por parte da subsidiária (BELL; MARIN, 2006), ou seja, não é um processo onde a subsidiária assume papel inerte, mas sim se adapta e cria condições para o desenvolvimento tecnológico posterior. Portanto, a apuração de valores absolutos que representem o montante investido não pode ser tomada como fonte primária de informação referente a atividade inovativa de empresas, já que, o que importa não é a existência de FDI, mas sim o que as subsidiárias realmente fazem quando estes são aplicados, o que, por sua vez, depende de toda a sua base e trajetória tecnológica além de sua capacidade de absorção.

Assim, é importante que este item esteja presente nos levantamentos, mas não pode ser tratado como um indicador isolado e determinista de inovação tecnológica, ou capacidade
tecnológica, mas sim como informação complementar, auxiliar, como subsídio para possíveis inferências e explicações de resultados. Não pode ser tratado como fator determinante do comportamento da empresa, do mesmo modo como é feito com relação à P&D no modelo linear de inovação, no qual prevalece a crença de que empresas multinacionais ou orientadas para exportação são mais inovadoras que empresas locais voltadas para o mercado interno.

Gastos com máquinas e equipamentos

A contabilização dos gastos das empresas com máquinas e equipamentos costuma ser defendida como um indicador do esforço tecnológico da empresa no sentido de ampliar sua capacidade, considerado, sobretudo, nas pesquisas que tomam a difusão como um componente importante do processo de inovação. Não obstante o mérito de buscar capturar tecnologia incorporada em materiais e componentes adquiridos externamente, este tipo de mensuração deve ser cuidadosamente realizado e seus resultados analisados de forma criteriosa, já que a pura consideração de números representando valores brutos não é capaz de fornecer informações esclarecedoras.

De um lado, no valor dos equipamentos estão embutidos uma série de “custos” com os quais a empresa fabricante incorre, muitos dos quais não estão relacionados ao dispêndio de conhecimento e habilidades no desenho, fabricação, melhorias nos equipamentos adquiridos, bem como está inserida também a própria margem de lucro do fornecedor; além daquelas aquisições visando a reposição de peças ou equipamentos por desgaste ou simples manutenção. E de outro, é difícil distinguir entre investimento de capital em tecnologias antigas e novas, ou seja, o montante da tecnologia incorporada referente a determinado nível de novidade e aperfeiçoamento considerados inovador. Diante disso, normalmente são contabilizados os gastos totais, sem separação ou “qualificação” dos valores efetivos (PAVITT, 1976).

Allocação e qualificação de recursos humanos

A utilização de estatísticas educacionais como indicadoras da atividade tecnológica das empresas também é comum, através de indicadores que fornecem informações detalhadas acerca do acervo educacional dos indivíduos, sobretudo aqueles com educação superior em
engenharia e ciência, já que engenheiros e cientistas costumam ser tomados como os representantes das principais carreiras relacionadas à tecnologia avançada (JACOBSSON; OSKARSSON, 1995). Além disso, costuma-se contabilizar a qualificação dos indivíduos com relação às suas especializações, ou seja, a quantidade de títulos possuídos, tais como pós graduação *latu sensu*, mestrandos e doutorados, além da localização de tais pessoas dentro da empresa, teoricamente inseridas nos departamentos e unidades mais “nobres”, nomeadamente aqueles formalmente voltados para atividades relacionadas à tecnologia e inovação.

Apesar de concordar que o uso de tais indicadores pode introduzir certo viés já que pode não capturar atividades tecnológicas menos baseadas em ciência, mas não necessariamente não-inovadoras, Jacobsson e Oskarsson (1995) acreditam que sua utilização pode trazer diversas vantagens, tais como fornecer um indicativo da atividade em uma área tecnológica particular independente de medições sobre os bens produzidos, gastos formais em P&D, patentes e publicações.

Entretanto, tais concepções consideram que engenheiros e cientistas, bem como aqueles com títulos de especializações, estão alocados, principalmente, em atividades de natureza tecnológica (áreas técnicas, P&D ou desenvolvimento de produtos/processos), gerando, novamente, a perspectiva linear onde a simples existência e localização “adequada” de especialistas é suficiente para geração de *resultados* ou capacitação tecnológicos. Embora, de certa forma, aplicável à realidade de contextos desenvolvidos, onde atividades tecnológicas e de P&D são fortes e formalmente apoiadas e organizadas, esta teoria não encontra aderência suficiente para generalizações em grande parte das empresas de países em desenvolvimento, onde normalmente as pessoas trabalham em diversas funções ao mesmo tempo, atuando em diferentes áreas, e não especificamente naquelas nas quais são formadas ou naquelas diretamente relacionadas a atividades tecnológicas inovadoras. Além disso, devido à diferença na composição setorial da economia de países com características de industrialização recente, tais profissionais não são, necessariamente, alocados em setores industriais, tendo o setor de serviços e setor público grande parcela dos mesmos. E, ainda, não são discutidas a qualidade das especializações, incluídas apenas de forma quantitativa nos relatórios de pesquisa.
Treinamentos formais

Os *treinamentos em instituições formais* também costumam ser contabilizados para efeitos de mensuração. Porém, utilizados isoladamente, não levam em consideração o treinamento dentro da empresa, em suas operações diárias, através do processo de aprender fazendo e usando (*learn by doing* e *learn by using*), que tipicamente são as principais fontes de desenvolvimento e capacitação nas empresas de economias emergentes.

De acordo com Figueiredo (2004ª, 2005a), uma das limitações de abordagens baseadas em indicadores convencionais é que não captam as características dos elementos do tecido organizacional, já que é a base organizacional da empresa que influencia o sucesso ou fracasso do engajamento em atividades inovadoras, pois é onde a capacidade tecnológica é desenvolvida, acumulada e sustentada.

Empresa como perspectiva de análise

Segundo Salazar e Holbrook (2004), o Manual de Oslo utiliza a abordagem de sistemas de inovação, definido como “a rede de agentes e conjunto de políticas e instituições que afetam a introdução de nova tecnologia na economia (...), inclui políticas de transferência de tecnologia, (...) importação de bens de capital, investimento estrangeiro, redes de instituições públicas e privadas, agências de suporte e fomento a atividades científica e tecnológica, além da pesquisa e desenvolvimento, difusão e criação de capital técnico humano” (DAHLMAN; FRISCHTAK, 1993). Porém, apesar da utilização dos sistemas de inovação como perspectiva teórica e conceitual, os métodos de mensuração baseados neste manual coletam pouca informação sobre a dinâmica dos sistemas regionais e nacionais de inovação, e utilizam a empresa como nível de análise.

Ainda no contexto da abordagem de sistema de inovação, Tomlinson (2000) questiona a utilização da empresa individual como nível de análise, já que as inovações têm sido cada vez mais desenvolvidas através de uma rede de empresas e instituições, devido às possibilidades que a adoção de um modelo de inovação distribuído representa na diluição de custos e riscos associados à inovação.
Nos dias atuais, as inovações ocorrem cada vez mais como resultado de interações com outras empresas e instituições. Assim, os levantamentos devem levar em consideração as capacidades de ligação das empresas, que de acordo com Lall (1994), representam as habilidades das empresas em transmitir e receber informações, habilidades e tecnologias de fornecedores, universidades, institutos de P&D, consultores, outras empresas, etc, o que é essencial para sua performance competitiva e tecnológica. Assim, dados sobre quais são os parceiros, os tipos de atividades desenvolvidas, sua localização e importância devem ser capturados nos levantamentos a fim de abordar as redes e interações nas quais as empresas estão envolvidas e possibilitar que se trace um panorama do processo inovador e tecnológico como um todo, e não somente perante a perspectiva da empresa.

4.4. Trajetória de Estudos de Inovação Baseados em Indicadores de C&T em Países em Desenvolvimento

Como visto na seção que tratou dos antecedentes dos indicadores de C&T e das abordagens (manuais) tradicionais de mensuração, ao mesmo tempo em sofriam modificações (desde o foco em insumos, resultados até atingir as atividades e processos de inovação; adoção de perspectiva ampla de inovação a partir de suas diversas dimensões; incorporação de ajustes a fim de tratar situações e peculiaridades, dentre outras), as pesquisas e levantamentos de inovação realizados nos países, ao redor do mundo, incluindo aqueles conduzidos nos países em desenvolvimento, buscavam acompanhar esta tendência, já que seguiam, em sua maioria, as metodologias e pressupostos das referidas abordagens. Na América Latina, a construção de séries históricas de indicadores a partir da aplicação de levantamentos especificamente voltados para a inovação começou a ser observada a partir da década de 1990, tendo grande parte deles adotado o Manual de Oslo como referencial metodológico básico (BAPTISTA, 2005).

De tal modo, replicando a tendência e os moldes de manuais e pesquisas internacionais, grande parte dos estudos que buscavam fazer análise e monitoramento do desempenho e potencial tecnológico de contextos de industrialização recente, sobretudo quanto aos aspectos da inovação, passaram a utilizar fontes de informações e indicadores derivados de tais manuais. Assim, estudos que enfocam as estatísticas de P&D são comumente desenvolvidos, com diferenciados enfoques, dentre os quais pode ser citado o de Andreassi
e Sbragia (2000), que busca traçar um paralelo entre o esforço de inovação, caracterizado por indicadores de intensidade de P&D (gastos com P&D) e resultado de P&D (patentes), e os resultados obtidos pelas empresas. Em seu trabalho, são construídas hipóteses baseadas em perspectivas tradicionais associadas a tais indicadores (tal como a defesa de que quanto maiores os dispêndios em P&D, mais patentes serão produzidas e, portanto, melhor será o posicionamento competitivo da empresa), e testadas sobre a base de dados da ANPEI. Os resultados indicam que os investimentos em P&D estão fortemente associados com a receita da empresa, como era de se esperar em casos de empresas localizadas no contexto selecionado, além de mostrar que os gastos desta natureza se relacionavam positivamente à competitividade da empresa. Assim, os resultados indicaram um fenômeno comum da realidade de empresas em contexto de economias em desenvolvimento, qual seja, que os gastos em P&D estão fortemente atrelados, nesta direção, ao faturamento da empresa (ANDREASSI; SBRAGIA, 2000). Portanto, a análise dos autores se baseia em apenas um dos muitos aspectos e elementos da inovação, que é a P&D (altamente relacionada e relevante para um grupo reduzido de empresas, representadas por aquelas que se encontram em estágios avançados de desenvolvimento tecnológico), o que, levando em consideração o contexto pesquisado, torna a relevância de tais informações, de forma única e isolada, um tanto comprometida.

De forma semelhante, Rathmann et al. (2006) buscam relacionar o panorama nacional acerca da competitividade externa com dados sobre os investimentos públicos e privados em P&D, número de doutores colocados no mercado, número de patentes e de publicações no período analisado. Baseados em informações condizentes à realidade dos países da OCDE, que vêm aumentando os dispêndios dedicados à P&D, procederam a uma análise estatística para o exame das relações propostas, chegando a resultados que indicam que há um incremento das exportações associado ao incremento das demais variáveis testadas. Entretanto, a direção dessa relação pode estar equivocada, uma vez que em grande parte das empresas de países em desenvolvimento, ainda em estágio de acumulação de capacidades, os gastos em P&D, e a conseqüente colocação de patentes e de publicações, normalmente estão associados ao faturamento da empresa, e não ao contrário. E ainda, trata-se de uma visão limitada, pois não se pode dizer que estes indicadores são os únicos componentes capazes de influenciar o desempenho e competitividade de empresas e países; uma série de outras variáveis influencia, por vezes de forma muito mais determinante e realista.
Ainda com relação à utilização de dados referentes a P&D, Gomel e Sbragia (2006) realizam análises semelhantes em um setor específico, ou seja, avaliam a questão dos investimentos em P&D no desempenho exportador da indústria brasileira de software. Para tanto, tratam P&D como uma dimensão de capacidade tecnológica. Os resultados demonstram que o nível de investimentos em P&D não estava associado significativamente ao desempenho exportador das empresas, contrariamente (guardados os devidos enfoques) ao que apontaram os estudos anteriormente apresentados. Assim, apesar de não considerarem as dimensões mais amplas da inovação (e o conjunto de elementos que compõe as capacidades tecnológicas), característica típica de uma visão restrita e linear, onde os gastos em P&D tornam-se preocupação central, chegam a resultados característicos da maioria das empresas em países em desenvolvimento, ou seja, de que os investimentos em P&D são escassos, intermitentes, imprevistos, o que, portanto, não determina essa modalidade de inovação como o principal determinante dos resultados destes tipos de empresas.

Diversos também são os estudos que se baseiam em estatísticas de patentes como o determinante dos resultados das atividades inovadoras desempenhadas pelas empresas. Guimarães e Contador (2002) buscam avaliar por que as empresas brasileiras ainda não “atentaram para a importância da exploração das patentes como fonte de informação tecnológica”, procedendo, para tanto, a uma pesquisa através da aplicação de questionário eletrônico visando identificar os fatores motivadores e inibidores da exploração das patentes. De acordo com sua pesquisa, os resultados mostraram um nível elevado de desconhecimento por parte das empresas quanto às possibilidades advindas com as patentes, expondo os principais fatores apontados como motivadores ou inibidores. Portanto, chegam à conclusão que a utilização da estratégia de patentes por parte das empresas é escassa, procurando identificar os principais fatores que determinam esse fenômeno. Assim, também utilizam uma visão estreita de inovação, focada nos resultados e não nas atividades desempenhadas pelas empresas, sem atentar para o fato de que a razão de tal resultado, mais uma vez típica de países em desenvolvimento, é que a produção e depósito de patentes tende a ser mais praticada em empresas que se encontram em níveis avançados de desenvolvimento de capacidades tecnológicas, o que não é o caso da maioria das empresas pesquisadas. Por outro lado, tratam a produção de patentes como uma questão de escolha, onde a empresa simplesmente decide se vai ou não gerar conhecimento
passível de proteção via patenteamento. Todavia, as empresas do contexto pesquisado encontram-se em outro estágio, com outros tipos de preocupações, pois ainda se encontram em processo de desenvolvimento de capacidades, muitas das quais não possuem nem mesmo aquelas mais básicas, ao passo que a geração de patentes tende a surgir quando a empresa se encontra em níveis avançados, com domínio das capacidades de geração e criação de conhecimento e tecnologia novos.

Quanto aos estudos que utilizam indicadores de publicações, sobretudo aqueles voltados para o tratamento do desempenho tecnológico de universidades e instituições de pesquisa, podem ser citados os de Martin e Irvine (1983), que defendem que as informações acerca de produções científicas sejam a medida principal para indicar os resultados alcançados por tais instituições, e que sistemas de avaliação e mensuração devem utilizar este indicador como um dos principais parâmetros. Assim, tomam somente o produto final, a inovação ou a publicação (no caso em questão), como medida do esforço tecnológico e científico, além de não levar em conta os problemas intrínsecos a este tipo de indicador, como exposto anteriormente.

Nesta mesma linha, Schwartzman (1984) trata da política brasileira de publicações científicas e técnicas, retratando os principais critérios que devem ser considerados quando da qualificação das publicações e os problemas encontrados neste processo. Gomes e Guimarães (2002) buscaram confrontar o crescimento experimentado pelo Brasil no segmento de C&T nos últimos anos com o aumento do número de publicações científicas qualificadas. Assim, procedem à qualificação das áreas que tiveram desempenho mais acentuado no Brasil e sua comparação com outros países. Os resultados encontrados destacam as áreas com melhor índice como aquelas com elevado potencial de inovação tecnológica. Ou seja, a lógica do desempenho inovador continua a recair sobre abordagens limitadoras, que buscam avaliar somente os resultados finais de um processo cumulativo, contínuo e não-linear, que depende e segue várias etapas e estágios, em diversas direções, até conseguir atingir níveis de geração, ou seja, o foco continua sendo aquelas empresas/setores/instituições que já se encontram em estágio de produção de conhecimento, sendo que desempenho em C&T aborda fatores muito mais complexos.

Por outro lado, alguns estudos buscaram construir seus próprios indicadores, tal como Archibugi e Coco (2004), que, apesar de tentar incorporar a natureza da mudança
tecnológica, as capacidades e esforços tecnológicos, a cumulatividade da trajetória de desenvolvimento de capacidades, acabou por utilizar uma composição de diversos outros indicadores, muitos dos quais reunindo aqueles tradicionais e/ou mais aplicáveis à lógica de países da fronteira tecnológica, tais como patentes, artigos científicos, matrículas em ciências e engenharias, escolaridade média, dentre outros.

De forma paralela aos estudos que buscam aplicar indicadores de C&T a grupos de empresas para avaliar alguns aspectos do desempenho inovador, os levantamentos de inovação também passaram a ser objeto de estudo de pesquisadores, tanto no que se refere ao aprofundamento da análise de seus dados e resultados, quanto na utilização das bases de dados e conclusões geradas para extrapolações e aplicações sob outros enfoques. Bernardes (2003) descreve a evolução dos levantamentos de inovação e exemplifica através do levantamento regional da atividade econômica do Estado de São Paulo (PAEP), enquanto Gusmão (2004) trata dos indicadores desenvolvidos pela Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP. Ambos consideram a experiência de tais levantamentos bem como seus resultados satisfatórios, sem reconhecer e expor suas limitações, sobretudo a que se refere aos dados encontrados frente à metodologia (Manual de Oslo) e os indicadores utilizados (dispêndio e pessoal alocado em P&D, escolaridade dos empregados, produção científica e tecnológica, vendas relacionadas a novos produtos, comércio de produtos de alta tecnologia, adoção de inovação tecnológica, dentre outros).

Voltados para a mesma linha, Pacheco e Cruz (2005) oferecem informações acerca da indústria do Estado de São Paulo como a de maior taxa de inovação e maior intensidade tecnológica do país. Para esta conclusão, utiliza os indicadores da atividade científica e tecnológica de São Paulo relacionados à quantidade de instituições de pesquisa, tamanho da comunidade científica e tecnológica, quantidade de pesquisadores e sua titulação, concentração da produção científica, atividades de P&D, ou seja, todos indicadores agregados que tendem a capturar atividades e comportamentos tecnológicos típicos de empresas mais avançadas tecnologicamente, sem buscar explicar informações focadas e mais detalhadas no nível de empresas.

De forma semelhante, Tironi (2005) e Sicsú e Melo (2004) buscam fornecer alternativas de políticas de inovação baseadas nos resultados oferecidos pela PINTEC – pesquisa de nível nacional realizada no Brasil, que utiliza o Manual de Oslo como metodologia. Portanto, baseiam-se em indicadores, de forma geral, voltados para aspectos de nível macro e com
tendência a enfocar os resultados da inovação bem como as atividades tipicamente inovadoras, tais como a relação de empresas inovadoras frente à origem do capital da empresa, o número de empregados, dados relacionados à P&D, separação das inovações incrementais das radicais. Assim, não conferem a devida atenção àquelas empresas que não obtiveram nenhum tipo de resultado inovador, mas que, por outro lado, podem estar engajadas em atividades inovativas que as levem ao desenvolvimento de capacidades tecnológicas. Ainda, não fazem referência às limitações que a utilização de tal base de informações pode oferecer, ou seja, parecem não ter consciência das peculiaridades do contexto tratado nem de como o enfoque de tais dados deve ser direcionado. Utilizando a mesma base de dados, Kannebley, Porto e Pazello (2005) buscam caracterizar as empresas inovadoras brasileiras baseados nos resultados da PINTEC. Assim, utilizando procedimentos estatísticos, chegam à conclusão de que os principais determinantes da inovação são a orientação para exportação, tamanho da empresa, origem do capital e diferenças inter-industriais. Novamente, recaem na visão estreita de inovação, através de uma abordagem estática, desconsiderando as dimensões mais amplas de inovação, sobretudo aquelas de capacidades tecnológicas, sua construção ao longo do tempo, as inovações organizacionais, as redes de cooperação, fontes de tecnologia, nível de aprofundamento tecnológico das atividades desenvolvidas, etc.

Ruthes et. al (2006) buscam comparar a gestão da inovação tecnológica de uma empresa do setor farmacêutico e de fitoterápicos, por meio de dados primários obtidos com aplicação de entrevistas e questionário na empresa, com as informações obtidas junto à PINTEC, utilizando informações e dados relacionados à P&D. Alguns indicadores apresentaram resultados congruentes aos da PINTEC enquanto outros destoaram da média nacional. Assim, alguns problemas do estudo podem ser destacados. Ao utilizar apenas um grupo de indicadores, aqueles voltados para as atividades de P&D, a investigação do desempenho tecnológico e inovador fica comprometida, já que é necessário um conjunto mais amplo de informações para que se possa chegar a alguma conclusão relevante sobre o tema. Além disso, compara seus resultados com uma base obtida a partir de mesma perspectiva, e, portanto, não considera suas limitações ou mesmo menciona-as. Por outro lado, apesar de a pesquisa se concentrar em apenas uma empresa de um setor específico, com possibilidade de investigação mais aprofundada, diferentemente da PINTEC, que busca capturar informações sobre diversas empresas em diversos setores, não utiliza indicadores e abordagens mais elaborados, desperdiçando a possibilidade de
aproposfundamento das conclusões, concentrando-se nos dados de P&D como sendo os principais responsáveis pelo comportamento inovador da empresa.

Em sentido análogo, Bianchi (2004) utiliza como fonte de dados os resultados da pesquisa uruguaia, tendo como objetivo elaborar uma ferramenta de mensuração que capture as dimensões do conceito de capacidades de inovação. Para tanto, faz uma composição de oito indicadores para a construção de um “índice de capacidades inovativas”. Entretanto, dentre os diversos problemas, podem ser destacados: a utilização de dados que foram capturados sob uma ótica inadequada ao conceito visado; a consideração somente das empresas inovadoras; a seleção dos indicadores, limitados em quantidade, o que, naturalmente, acaba negligenciando diversos outros elementos da inovação igualmente importantes; a utilização de ponderadores para os indicadores escolhidos, aplicando maior ou menor “importância” e relevância, conferindo subjetividade aos resultados.

Assim, de forma geral, tais pesquisas, ao utilizar abordagens simplistas, baseadas em perspectiva linear e estática e/ou utilizando, na maioria das vezes, dados e indicadores incompletos, inadequados ou restritivos, com foco no resultado e nas atividades inovadoras, podem ter a adequação e aplicabilidade de suas análises e conclusões prejudicada. De forma semelhante, uma vez que o propósito dos levantamentos de inovação é servir como fonte de informação fidedigna para tomada de decisões, as abordagens e indicadores utilizados passaram a suscitar um conjunto de indagações quanto à aderência de metodologias desenvolvidas para economias avançadas quando aplicadas em países em desenvolvimento.

considerações sobre as limitações da aplicação do Manual de Oslo aos países em desenvolvimento, formulando propostas para adequação deste às peculiaridades de tais países.

Inserindo-se no debate sobre as limitações dos estudos convencionais, novas perspectivas passaram a ser enfocadas, tais como aspectos do entorno das empresas que contribuíam para as atividades inovativas (BIANCHI, 2004); questionamentos de levantamentos de inovação no contexto de economias emergentes enquanto utilizadores de metodologias tradicionais de países desenvolvidos, através da exposição de (i) limitações, (ii) aspectos não abordados (tais como informações sobre o acúmulo de capacidades tecnológicas, obstáculos enfrentados, impacto das melhorias tecnológicas, redes de capacitação informal, mudanças no entorno competitivo da empresa, dentre outros), (iii) além de adequações necessárias (relacionadas à consideração de especificidades de tais contextos apesar da necessidade de comparabilidade) (ANLLÓ; GOLDBERG; LUGONES, 1999).

Nesta linha, Brisolla (2000) aponta os “sete pecados capitais” dos indicadores de inovação comumente utilizados em países em desenvolvimento: (1) tomar a variável que representa o fenômeno (o indicador) como idêntica ao fenômeno que se quer analisar; (2) aplicar na América Latina estilos de análises construídos para os países centrais; (3) escolher variáveis que não podem ser obtidas, que sejam pouco explicativas ou difíceis de serem respondidas; (4) processar a informação sem ter desenvolvido um plano inicial que oriente toda a reflexão posterior; (5) construir um levantamento tão específico que não possa ser comparável a nível regional ou internacional; (6) parar a análise no nível das unidades produtivas e não fazer um estudo das variáveis relativas aos setores industriais e às variáveis sistêmicas que intervêm o processo inovador das empresas; e (7) não incorporar à análise de inovação suas características atuais: cooperação e inovações gerenciais. Entretanto, tais limitações não são aplicáveis ao principal manual de mensuração da inovação, o Manual de Oslo, que passou a considerar as especificidades de países em desenvolvimento; passou a adotar uma visão abrangente de inovação; representa uma metodologia amplamente estudada, pensada e aplicada, que não reflete a ausência de plano inicial; realiza análise de diversas variáveis sistêmicas; além de incorporar as inovações gerenciais em sua análise.
Nessa mesma linha, Terra et. al (2000) e Furtado e Carvalho (2005) procedem à comparação de outros contextos com o brasileiro. Os primeiros comparam os contextos norte americano e brasileiro de indução à inovação, marcando, sobretudo, as diferenças legais entre ambos; enquanto os segundos compararam a intensidade tecnológica da indústria brasileira com aquela de países centrais, encontrando diferenças essenciais na intensidade de P&D, nos setores de concentração de esforços tecnológicos, na liderança nos setores de maior intensidade tecnológica, no conteúdo codificado/tácito da tecnologia, e nas políticas públicas. Ruffoni et al. (2006) buscaram tratar da capacitação tecnológica em pequenas e médias empresas (PMEs) pelo conceito amplo de inovação. A partir de um estudo de caso único, chega a conclusões de que o tamanho da empresa não pode ser fator determinante para o desempenho inovador, mostrando que as PMEs podem ser mais ou menos inovadoras do que as grandes empresas, e apontam para a importância de dimensões no processo de aprendizado tecnológico e acumulação de competências tais como: gestão flexível e participativa; busca permanente e organizada de informações; treinamento e qualificação dos recursos humanos; aproveitamento da proximidade geográfica de outras empresas e instituições; estrutura enxuta; e relacionamento favorável com instituições facilitadoras. Assim, apesar de levar em conta que as atividades inovadoras de nível intermediário são uma pré-condição para que a empresa alcance um nível mais avançado de inovação, à medida que procede ao exame de um caso único, e, portanto, não generalizável, fornece apenas uma visão parcial, necessitando de outras pesquisas capazes de gerar comparações com outras empresas e mesmo com outros setores.

Outros estudos focam no reforço de questionamentos quanto à aplicação dos indicadores tradicionais para tratar de empresas localizadas em contextos de industrialização recente. Brusoni, Criscuolo e Geuna (2003) defendem a necessidade de coordenação e integração de processos de aprendizagem heterogêneos, já que as bases de conhecimento relevante para as atividades inovadoras das empresas tornam-se cada vez maior. Por outro lado, trata das patentes e suas citações, um importante indicador comumente utilizado, mostrando as principais limitações que podem surgir quando informações sobre desempenho inovador são coletadas utilizando este tipo de indicador. Por outro lado, Holbrook (1997) critica o foco em investimentos em P&D para o caso de nações em desenvolvimento, contrariando as perspectivas baseadas no modelo linear de inovação. Além disso, defende que os indicadores de ciência e tecnologia devem possuir um mínimo de funções, tais como capacidade de sinalização ou monitoramento dos desenvolvimentos atuais e tendências do
sistema e seu ambiente; capacidade de subsidiar e justificar alocação de recursos destinados à P&D bem como avaliação da performance obtida frente às políticas e planejamentos adotados; legitimação, ou seja, como fonte de apoio às decisões políticas e estratégias.

No mesmo sentido, Godin (2002) defende a consideração da inovação como *atividade*, ou seja, o tratamento não somente das inovações específicas, mas todo o conjunto de atividades que as envolvem; além de criticar as medidas de atividades de P&D e a forma de elaboração, condução e análise das pesquisa de inovação nacionais. Da mesma forma, Salazar (2004) apresenta suas principais críticas referentes aos indicadores convencionais, os critérios a serem levados em consideração quando da elaboração e utilização de indicadores de inovação, a necessidade de melhorias das técnicas utilizadas nos levantamentos de C&T, a tendência que as formas de medir a atividade inovadora e quantificar os esforços de inovação devem seguir, enfim, resume um conjunto de recomendações a serem adicionadas/complementadas aos manuais tradicionais com vistas à sua melhor adaptação na captura de informações relevantes e realistas acerca das empresas de países em desenvolvimento.

Por outro lado, seria um grande erro ou mesmo imprudência generalizar os estudos baseados em indicadores de C&T ou em bases de dados obtidas a partir da aplicação de levantamentos de inovação nos “moldes convencionais” como inadequados, descartáveis ou inaplicáveis. Pelo contrário, apresentam inúmeros méritos e formas e meios de aplicação. Diversos estudos baseados neste tipo de abordagem apresentam resultados robustos e reveladores, tais como alguns dos acima expostos. Outro exemplo é o de Bell e Marin (2006), que utiliza os dados do Levantamento Nacional de Inovação da Argentina, referente ao período de 1998 a 2000, para construir um conjunto de indicadores da performance econômica e comportamento tecnológico de 333 subsidiárias de empresas multinacionais localizadas naquele país e de sua integração funcional com (i) a corporação global, (ii) os mercados globais e (iii) a economia local11. Assim, visando medir a escala,
intesidade, efetividade e outros atributos das atividades de inovação, utilizou-se os seguintes grupos de indicadores: (i) entradas da inovação; (ii) capital humano; (iii) resultados dos esforços inovadores e (iv) interações relacionadas à inovação. Os resultados deste exame mostraram aspectos que vão em sentido oposto à concepções tradicionais e comumente aceitas: foi verificado que a existência de forte integração pode estar associada positivamente a altos níveis de atividades tecnológicas locais e que maior localização de funções nas subsidiárias não está associada, necessariamente, a níveis mais elevados de atividade tecnológica local nas subsidiárias. Por outro lado, os autores também entendem que os resultados encontrados não devem ser analisados isoladamente, de uma forma estreita e determinista, pois reconhece que é necessário entender os processos por trás dos resultados encontrados a partir de pesquisas estáticas, o processo histórico que determinou às empresas atingirem o ponto onde se encontram, as motivações e as trajetórias de empresas que, apesar de semelhantes, seguiram caminhos e comportamentos distintos.

Assim, de forma geral, apesar do surgimento de diversos estudos preocupados em questionar, adaptar e complementar perspectivas convencionais de mensuração da inovação tecnológica quando utilizada em contextos de industrialização recente, estes ainda são escassos na literatura, além de grande parte ainda estar voltada simplesmente para a exposição de suas limitações e desvantagens, muitos dos quais focando apenas na parte conceitual, sem apresentação de alternativas e aplicações práticas que sirvam de modelo para a superação dos problemas identificados. Além disso, são escassos estudos à base de indicadores de C&T que busquem complementação em outras metodologias e/ou métricas que dêem conta de capturar dimensões e nuances que indicadores simples não conseguem alcançar, já que estes tendem a fornecer informações agregadas, voltadas para questões e perspectivas de nível macro, gerando informações capazes de tratar de um grupo mais ou menos uniforme de empresas, sem adentrar nas especificidades de cada uma, nas questões intra-organizacionais, ou então, voltados para algum aspecto específico (utilizando grupos de indicadores específicos) sem considerar na análise aspectos associados mais amplos e igualmente influentes e determinantes.
Este capítulo tem como objetivo principal responder diretamente à primeira das questões norteadoras desta dissertação. Para tanto, a partir do exame de levantamentos (surveys) de inovação conduzidos no âmbito de países em desenvolvimento, busca avaliar de que forma contribuem para a compreensão e mapeamento de seus processos de inovação e desenvolvimento tecnológico. Neste sentido, foram selecionados quatro levantamentos de inovação realizados na América Latina.

Frente ao histórico de pesquisas de inovação nos países desenvolvidos, local também das discussões iniciais e elaboração dos primeiros manuais e bases metodológicas para tais levantamentos, pode-se dizer que as pesquisas de inovação na América Latina são relativamente novas. A década de 1990 representou o período de iniciação da maioria das pesquisas. Argentina, Brasil, Colômbia, Chile, Cuba, México, Panamá, Peru, Uruguai e Venezuela são os países da região que realizaram este tipo de exercício de medição (BAPTISTA, 2005).

Diante deste quadro, este trabalho optou por selecionar pesquisas representativas para fins da análise proposta, ou seja, pesquisas que possuíssem algum fator característico e peculiar com relação às outras selecionadas, a fim de enriquecer a apreciação crítica pretendida,
permitindo avaliar em que dimensões tal fator contribui, ou não, para o aprimoramento desse tipo de pesquisa e obtenção de dados de melhor qualidade. As pesquisas escolhidas foram: ECIB (pesquisa de nível nacional conduzida no Brasil que trata da capacitação para inovação como um dos fatores condicionantes da competitividade da indústria brasileira), PINTEC (pesquisa de nível nacional conduzida no Brasil baseada no Manual de Oslo voltada para mensuração da inovação tecnológica industrial), PAEP (pesquisa de nível regional conduzida no Estado de São Paulo baseada no Manual de Oslo para mensuração da atividade econômica paulista) e EAI (pesquisa de nível nacional conduzida no Uruguai baseada no Manual de Bogotá destinada à mensuração das atividades de inovação das empresas uruguaianas), buscando avaliar, principalmente, questões da abrangência da pesquisa (nível nacional e nível regional), abordagem metodológica (Manual de Oslo e Manual de Bogotá) e perspectiva de mensuração (indicadores de C&T e capacidades inovadoras).

Neste sentido, pode-se provocar duas hipóteses: (i) que as pesquisas (levantamentos) com menor abrangência (que, no caso dos surveys selecionados nesta dissertação, seria o voltado para um único Estado), conseguem capturar informações mais detalhadas e específicas que aquelas de nível nacional; e (ii) que pesquisas baseadas no Manual de Bogotá ajustam-se mais ao contexto de países em desenvolvimento e, portanto, oferecem informações mais realistas e relevantes que aquelas baseadas no Manual de Oslo.

Para cada um dos levantamentos, procedeu-se a uma breve descrição das características gerais da pesquisa, seguida dos principais méritos e limitações identificados a partir da análise de seus documentos metodológicos, do questionário aplicado nas empresas, dos resultados publicados e disponibilizados pelos órgãos organizadores e condutores, e de estudos e pesquisas que os utilizaram como base ou fonte de informações.

5.1. ECIB – Conceitos e Metodologia

O ECIB – Estudo da Competitividade da Indústria Brasileira surgiu como um modelo nacional para estudar e mensurar a competitividade das indústrias brasileiras, tendo sido viabilizado pelo Governo, no âmbito do Ministério da Ciência e Tecnologia, com o
objetivo de “avaliar a situação das indústrias brasileiras e buscar soluções e medidas práticas a serem aplicadas para adequar a indústria nacional à economia internacional”. O trabalho contou com o apoio do Banco Mundial e de um consórcio integrado por 13 instituições lideradas pela Unicamp e pela UFRJ, tendo sido contratado pela FINEP com recursos da parcela nacional do Programa de Apoio ao Desenvolvimento Científico e Tecnológico (PADCT) (FINEP, 2008).

No modelo desenvolvido para o ECIB, a competitividade é vista como “a produtividade das empresas ligada à capacidade dos governos, ao comportamento da sociedade e aos recursos naturais e construídos, e aferida por indicadores nacionais e internacionais, permitindo conquistar e assegurar fatias do mercado”. Assim, diferente de abordagens tradicionais onde a competitividade é definida por questões relacionadas a preços, custos, salários e taxas de câmbio, para o ECIB ela representa a “capacidade de uma empresa em formular e implementar estratégias competitivas que lhe permitam ampliar, ou mesmo, conservar uma posição sustentável no mercado” (FINEP, 2008).

O modelo do ECIB aborda a visão contextual, onde o desempenho competitivo de uma empresa, indústria ou país é condicionado por um conjunto de fatores que podem ser subdivididos em fatores internos à empresa, fatores estruturais e fatores sistêmicos. Os fatores internos à empresa são aqueles que estão sob sua esfera de decisão, incluindo os que dizem respeito à estratégia e gestão, capacitação para inovação, capacidade produtiva e recursos humanos. Os fatores estruturais são aqueles que não são inteiramente controlados pela empresa, mas que estão parcialmente sob sua área de influência, tais como questões relativas a mercado (taxa de crescimento, distribuição, renda, etc), configuração da indústria (concentração, escala de operação, relação com consumidores, fornecedores e concorrentes, etc), e regulação da concorrência e regime de incentivos (estrutura de incentivos, barreiras, rivalidade). Por último, aborda os fatores sistêmicos, que são aqueles situados fora do âmbito das empresas e da estrutura industrial da qual fazem parte, tais como a ordenação macroeconômica, as infra-estruturas, o sistema político-institucional e as características sócio-econômicas dos mercados nacionais; sendo, portanto, específicos a cada contexto nacional (FINEP, 2008).

Motivada pela carência de dados estatísticos e de indicadores de desempenho confiáveis, pela defasagem de dados (muitos dos dados foram coletados na década de 70 ou no início
de 80), e pela conseqüente necessidade de um sistema atualizado de informações que embasem estudos e possibilitem comparações de resultados com os de competidores, a execução do ECIB foi operacionalizada através da constituição de dois blocos de estudos: Análise da Indústria e Análise dos Fatores Sistêmicos. Assim, analisa e avalia o desempenho competitivo da região e não a competitividade de uma empresa isolada. Neste sentido, procurou, de forma geral: (i) diagnosticar a competitividade da indústria nacional através da análise de seus fatores determinantes e da dinâmica tecnológica e de mercado; (ii) identificar limitações e potencialidades de incorporação pela empresa brasileira de práticas competitivas contemporâneas; (iii) delinear estratégias e sugerir linhas de ação e instrumentos para o enfrentamento dos desafios competitivos (FINEP, 2008).

A execução da pesquisa compreendeu o período de agosto de 1992 a dezembro de 1993, através de uma ampla pesquisa de campo e de entrevistas, realizada de modo a permitir a avaliação da estratégia, capacitação e desempenho competitivo da indústria e seus determinantes. Para tanto, foi aplicado um questionário a uma amostra de cerca de 1500 empresas, de 33 setores industriais, das quais obteve-se respostas de 661 delas. A amostra foi estratificada segundo os setores selecionados, valor da produção e variáveis indicativas de porte. Assim, optou-se por uma amostra probabilística e não-proporcional para garantir a possibilidade de análise de cada setor e comparação entre os segmentos (FINEP, 2008).

Os resultados da aplicação da pesquisa são apresentados em 33 Notas Técnicas Setoriais (resultado da Análise da Indústria) e 33 Temáticas (resultado da Análise dos Fatores Sistêmicos), onde foram propostas políticas e medidas específicas para cada setor/tema, contendo avaliação internacional e perspectivas, análise da situação brasileira, indicadores e proposição de políticas (FINEP, 2008).

Assim, uma das principais propostas do ECIB é o acompanhamento da evolução da competitividade da indústria brasileira. Para tanto, apresenta um conjunto de indicadores destinados à compreensão do estágio atual e das perspectivas da competitividade na economia brasileira, visando a organização da geração e divulgação periódicas de informações. Tomando como base trabalhos desenvolvidos em diversos organismos governamentais, especialmente nos EUA e OCDE, trabalhos desenvolvidos no Brasil e indicadores utilizados em levantamentos (surveys) nacionais e internacionais, o ECIB
adotou a opção por um conjunto abrangente de indicadores, cobrindo as diversas dimensões e níveis do fenômeno da competitividade (FINEP, 2008).

Neste sentido, priorizou indicadores (i) que permitissem comparações internacionais; (ii) viáveis economicamente, ou seja, maior utilização de indicadores “genéricos” do que “específicos”; (iii) passíveis de ampla divulgação, apesar da preocupação em preservar informações consideradas sigilosas; (iv) eficientes, abrangentes e simples. Além disso, organizou os indicadores em três grupos: indicadores de desempenho – relacionados à participação do agente no mercado nacional e no comércio internacional; indicadores de eficiência – relacionados a preços, custos, produtividade técnica e econômica; e indicadores de capacitação – associados aos avanços tecnológicos, formas de organização empresarial, cooperação inter-empresarial, nível e composição dos investimentos públicos e privados (FINEP, 2008).

Para efeitos dos objetivos desta dissertação, serão examinadas a abordagem, questões, avaliações e recomendações do ECIB voltadas para as capacidades inovativas e tecnológicas abordadas pela pesquisa, com enfoque nos indicadores de capacitação utilizados (gastos públicos e privados em P&D; gastos em educação; gastos com compra ou licenciamento de tecnologia estrangeira; gastos em treinamento de recursos humanos; número de patentes solicitadas e concedidas; idade tecnológica dos equipamentos; taxa de escolaridade; pessoal ocupado em atividades de P&D).

5.1.1. Méritos e Limitações do ECIB

O ECIB tem como um dos principais méritos o fato de ser a primeira pesquisa de nível nacional abrangendo a captura de informações acerca do tema da inovação. Apesar de não ter sido planejada e desenhada exclusivamente para tratar dos aspectos inovadores das empresas, uma vez que se volta para um tema mais amplo – a competitividade, a matéria tem importância considerável dentro do escopo do estudo, além de servir como um importante indutor do debate sobre questões relacionadas à inovação, tanto no que se refere à necessidade e continuidade de políticas e estratégias voltadas para a inovação.
quanto à conscientização da própria sociedade, servindo, inclusive, como fonte e orientação para pesquisas futuras.

Outra questão fundamental do ECIB é a importância que confere ao acompanhamento sistemático das questões analisadas, oferecendo, para tanto, como um dos principais instrumentos, um conjunto de indicadores, cuja seleção baseou-se na escolha daqueles mais genéricos, com possibilidades de comparações internacionais. Assim, uma vez que o ECIB se volta para a análise do desempenho competitivo de regiões (ou setores), e não da empresa individual e isolada, comparações internacionais tornam-se uma etapa importante e essencial para políticas públicas e estratégias empresariais de nível mais abrangente, sobretudo considerando os termos gerais e atuais impostos pela globalização. Portanto, além de aspectos mais direcionados ao tema em análise, o ECIB também leva em consideração aspectos macroeconômicos, tais como a influência dos juros, variação cambial, linhas de crédito, política tarifária e tributária, dentre outros, importantes para análise, ambientação e interpretação dos resultados, especialmente quando do exercício de comparabilidade internacional.

No que se refere aos aspectos conceituais relacionados à competitividade e inovação, o ECIB apresenta diversas considerações que refletem concepções mais abrangentes. De forma mais geral, um exemplo disso é o tratamento conceitual da competitividade no ECIB que, diferentemente das filiações conceituais que privilegiam o desempenho (onde se destaca a participação de mercado) ou a eficiência (onde os coeficientes técnicos são priorizados) através de uma visão estática, procura tratar o fenômeno de forma dinâmica, onde tanto “desempenho quanto eficiência são resultados de capacitações acumuladas”. Defende, portanto, a adoção de uma visão dinâmica, onde trata o sucesso competitivo da empresa como função da criação e renovação de vantagens competitivas, as quais, por sua vez, requerem tempo para serem alcançadas. Assim, aplicável às vantagens associadas à inovação, leva em conta a cumulatividade das vantagens competitivas adquiridas pelas empresas, onde o desempenho passado, nas diversas esferas de atuação e funções desempenhadas, tem influência nas capacidades correntes da empresa. Portanto, um dos principais méritos do ECIB é a consideração da noção de capacidades acumuladas ao longo do tempo, o que, como visto anteriormente, se aplica à lógica de países em desenvolvimento, cujas empresas, em sua maioria, são caracterizadas por ainda se...
encontrarem em processo de construção e desenvolvimento inclusive das capacidades mais básicas.

De forma semelhante, além de não abordar apenas o estágio atual das empresas, ao se importar com o passado e a cumulatividade de competências, explicita, nesse contexto, a importância da *aprendizagem*. Neste sentido, inclui o papel da difusão e da comercialização de tecnologias, reconhecendo-os como essenciais a este processo de aprendizagem que tem como conseqüência o acúmulo de competências cada vez mais sofisticadas, onde as pequenas variações de produtos, ou seja, inovações incrementais de forma geral, têm papel central e essencial. Portanto, o ECIB não ignora, como o faz a maioria das abordagens baseadas em generalizações simplistas, uma das principais características de empresas de países em desenvolvimento, relacionada ao fato de que a maioria delas inicia suas operações sem contar, muitas vezes, com as capacidades mais básicas e que, consequentemente, tecnologias adquiridas externamente são o ponto inicial e fator chave para o aprendizado e capacitação cumulativos, uma vez que é através destes esforços iniciais de aprender a usar e operar a tecnologia adquirida, internalizar este aprendizado nas rotinas organizacionais, proceder a ajustes e adaptações para adequá-las a situações e necessidades específicas, é que serão criadas condições (capacidades) para o engajamento em atividades cada vez mais sofisticadas.

De forma específica, o ECIB define a *capacitação em inovação* como a capacidade de “desenvolver, adquirir, absorver e difundir tecnologias de produtos e processos pertinentes à sua atividade econômica” (FINEP, 2008), corroborando, assim, a importância da aquisição externa de tecnologia e da difusão como uma das estratégias básicas de empresas em países em desenvolvimento. Além disso, inclui neste escopo a importância da capacidade de internalização das referidas atividades, já que a aquisição de tecnologia de terceiros não pode ser vista como substituta para atividades inovativas internas, contribuindo apenas temporariamente para as posições competitivas em trajetórias de mudanças tecnológicas aceleradas e contínuas. Isso inclui, indiretamente, a essencialidade da capacidade para absorver este conhecimento externo e mesmo difundi-lo internamente à empresa, e não somente de forma isolada, mas como parte das estratégias contínuas e constantes das empresas.
Por outro lado, nesta definição, o ECIB não inclui de forma explícita os arranjos organizacionais e os componentes humanos como sendo parte essencial das capacidades para inovação, os quais, como visto no capítulo 2, representam dois dos quatro elementos básicos que compõe as capacidades tecnológicas (produtos e serviços, indivíduos, sistemas técnico-físicos e sistemas organizacionais e gerenciais). Entretanto, apesar de não tratá-los de forma explícita, considera as mudanças e inovações organizacionais/gerenciais como parte importante da capacitação, sobretudo no que se refere à possibilidade de gerarem ganhos potenciais e efeitos contínuos, incrementais e cumulativos em qualidade e produtividade. Além disso, também pondera sobre a importância do conhecimento tácito, não codificável e específico dos indivíduos, que torna a atividade inovativa mais localizada e específica.

Adicionalmente, neste cenário onde a aprendizagem, capacitação ao longo do tempo e aquisição externa de tecnologia têm papel fundamental, o ECIB reconhece um outro componente fundamental neste processo: as redes de cooperação, como possíveis instrumentos para a promoção dos meios para acumulação de capacidades, sobretudo como provedoras de um acesso mais rápido a capacidades tecnológicas que não estejam bem desenvolvidas. Neste ponto, também destaca a importância de que a geração de resultados, advindos dos benefícios e externalidades que os programas cooperativos oferecem, requer capacitação suficiente dentro das empresas, que, segundo o ECIB, tem a P&D como elemento fundamental.

Um outro ponto de mérito do ECIB é o reconhecimento da importância do papel do governo como criador, indutor, fomentador e apoiador de ações voltadas para competitividade e inovação, sobretudo na forma de financiamentos e investimentos, que se torna essencial no contexto de países em desenvolvimento, diante das dificuldades da maioria das empresas, limitadas pelo faturamento e pelo alto impacto de riscos e incertezas. No Brasil, o setor público representa a principal fonte de recursos para C&T, responsável por 80% dos dispêndios na área12. Assim, ao mesmo tempo em que reconhece que o estado pode atuar como promotor das trajetórias de aprendizado e capacitação tecnológica, deixa claro que a base para o desenvolvimento e acumulação de competências é a própria empresa, resultando na necessidade também de estratégias empresariais nesse

12 Cabe lembrar que os dados referem-se ao início da década de 1990, para o período de 1992-1993.
sentido. Entretanto, trata a questão do apoio governamental mais em termos de financiamento e dispêndios – apesar de expor as demais dimensões onde o setor público pode atuar, não procurando levantar as políticas governamentais mais utilizadas, os efeitos gerados (positivos e negativos), ou seja, não verifica até que ponto estratégias e ações governamentais implementadas têm tido aderência e impacto nas necessidades e atividades das empresas.

Dessa forma, o ECIB adota uma visão conceitual abrangente sobre o tema da competitividade e, mais especificamente aos interesses desta dissertação, da inovação, através de uma visão baseada em capacidades e aprendizagem acumuladas, consideração da importância dos aspectos tácitos, da difusão, da aquisição externa de tecnologia, das mudanças incrementais, das inovações gerenciais e organizacionais, das redes de cooperação, do papel do governo, dentre outros. Em contrapartida, no que se refere aos aspectos práticos da pesquisa, materializados pelos indicadores propostos para captura e acompanhamento sistemático das informações, poucas são as referidas dimensões capturadas.

Na seleção de indicadores, a proposta do ECIB optou por indicadores que “mensurassem diretamente as capacitações dos agentes envolvidos, seja através da medição dos recursos efetivamente destinados ao seu desenvolvimento – inputs, seja através da medida dos resultados dos respectivos esforços – outputs”. Assim, diferentemente das perspectivas teóricas defendidas pelo ECIB, onde a capacitação e aprendizagem ao longo do tempo se destacaram como pilar central, o enfoque empírico recaiu sobre os resultados e insumos do processo, sem buscar capturar de forma detalhada informações sobre as atividades desempenhadas e as trajetórias traçadas pelas empresas ao longo do tempo, ou seja, sem a perspectiva dinâmica, abrangente e multidimensional das capacidades tecnológicas.

De forma geral, pode-se dizer que os problemas principais do ECIB se relacionam a dois aspectos. O primeiro se refere à grande ênfase conferida à P&D, um dos indicadores mais utilizados pelo ECIB na medição da capacitação tecnológica, voltado para a participação dos gastos em P&D no faturamento da empresa (aspectos empresariais), no produto de indústrias (aspectos setoriais) ou no PIB do país (aspectos sistêmicos). Apesar de abordar dois tipos principais de capacidades – capacidades em engenharia e capacidades em P&D, o foco recai quase que exclusivamente na segunda delas.
Porém, como verificado no capítulo 4, além do principal problema com relação ao enfoque em P&D (relativo ao fato de que normalmente maiores engajamentos em atividades de P&D estão associados a empresas localizadas próximas ou inseridas na fronteira tecnológica, já que se trata de capacidades inovadoras avançadas), há outros problemas tradicionais à utilização de indicadores de P&D em países em desenvolvimento, que não podem ser ignorados, tais como (i) a pequena quantidade de P&D formalmente organizada nas empresas, onde os resultados aparecem muitas vezes durante suas atividades rotineiras (FIGUEIREDO, 2004a, 2005a), através de estratégias emergentes; (ii) os problemas referentes ao caráter aproximado dos valores e dispêndios em P&D informados, agravado no caso das empresas menores, que podem ser mal interpretados, já que não realizam estas atividades de forma sistemática; (iii) a dependência e vinculação dos recursos à receita (ANDREASSI; SBRAGIA, 2000), o que dificulta um planejamento eficiente e de longo prazo deste tipo de atividade, já que depende de referencial (receita) não conhecido exatamente a priori; (iv) domínio de outros tipos de atividades que não P&D (LALL, 1994).

O outro principal problema está no fato de os indicadores estarem muito relacionados a aspectos quantitativos, sobretudo aqueles relacionados a dispêndio, a valores financeiros, que carrega muitas limitações dentre as quais destacam-se o caráter muitas vezes aproximado das informações financeiras, dificuldade em separar e qualificar os investimentos, em quantificar o informal, em separar custos operacional e tecnológico, dentre outros indicados no capítulo 4. Dentre os treze indicadores de capacitação indicados pelo ECIB, seis solicitam informações relacionadas a gastos das empresas em determinadas atividades (treinamento, P&D, equipamentos, aquisição/licenciamento de tecnologia externa). Assim, os indicadores recomendados, em geral, procuram tratar aspectos quantitativos, sem levar em consideração a qualidade, frequência, influência, efeitos, obstáculos, das atividades a que se relacionam.

De forma geral, apesar de considerar a questão das capacidades, reconhecer a importância da cumulatividade e da aprendizagem, os indicadores utilizados pelo ECIB não dão conta de capturar esta dinâmica nem todas as dimensões envolvidas e consideradas como importantes e essenciais nas exposições e indicações da pesquisa. Portanto, apesar de tratadas em caráter conceitual e teórico, tais questões não foram incluídas de forma sistemática nas etapas de avaliação da situação atual nem nos indicadores propostos para a
continuidade das avaliações, apenas consideradas como orientações gerais em avaliações, estratégias e políticas posteriores que possam tomar o exercício da ECIB como ponto de partida. Assim, tem como maior mérito as recomendações conceituais, sobretudo no que se refere à análise dos resultados encontrados e como guia teórico adotado, que não se refletem nitidamente na condução prática da pesquisa. Portanto, apesar de defender a necessidade de uma perspectiva dinâmica, mencionar aspectos relacionados à velocidade e à taxa de mudanças, não o faz de forma detalhada nem aplicada no escopo da pesquisa.

Neste sentido, pode-se dizer que o ECIB se volta mais para um dentre dois tipos de estratégias principais, qual seja, a definição de ações e políticas mais gerais e abrangentes, visando a setores/regiões/nichos, em detrimento de questões mais específicas de empresas isoladas ou de aspectos intra-organizacionais. Apesar de reconhecer que existem grandes assimetrias entre empresas, sobretudo com relação a seus fatores internos, heterogeneidade de gestão, capacitação produtiva e inovacional, busca tratar as empresas da amostra setorialmente, agrupando-as conforme suas similaridades. A adoção de uma visão sistêmica reforça este direcionamento, ao considerar, tratar e propor recomendações para fatores situados fora do âmbito das empresas, mas que contribuem para afetar seu desempenho, tais como a “ordenação macroeconômica, as infra-estruturas, o sistema político-institucional e as características sócio-econômicas dos mercados nacionais”. Assim, preocupa-se mais com aspectos de nível macro, com uma visão a partir de uma lente mais exterior, adentrando menos nas peculiaridades de empresas particulares e mais em questões que possam servir e cobrir uma gama maior de empresas, a fim de mapear o sistema nacional de competitividade e inovação de forma geral e fornecer ações, medidas e recomendações com propósitos menos específicos e mais abrangentes.

5.2. PINTEC – Conceitos e Metodologia

A PINTEC – Pesquisa Industrial de Inovação Tecnológica representa o primeiro levantamento nacional especificamente voltado para avaliação do processo de inovação tecnológica conduzido na indústria brasileira. É realizada e conduzida pelo Instituto Brasileiro de Geografia e Estatística (IBGE) em conjunto com o Ministério da Ciência e Tecnologia (MCT), a Financiadora de Estudos e Projetos (FINEP) e o Ministério do
Planjamento, tendo como objetivo geral levantar informações sobre distintos aspectos do processo de inovação tecnológica nas empresas brasileiras, visando à elaboração de indicadores nacionais e regionais, com comparabilidade internacional, e fornecendo ferramentas para as empresas definirem suas estratégias e para o desenvolvimento e instrumentação de políticas públicas (IBGE, 2006a).

A pesquisa foi concebida como a primeira iniciativa de grande vulto para identificação e mapeamento, de forma mais abrangente, dos números e indicadores das atividades inovadoras nas empresas, tendo como característica a consideração e exploração tanto da dimensão tecnológica como econômica do processo inovativo. Deriva do crescente interesse em abordar o fenômeno da inovação com base no instrumental analítico da teoria econômica, servindo, portanto, como um importante passo nacional no sentido de ampliação desse esforço (TIRONI, 2005).

Assim, além de ser justificada pela necessidade de governos e empresas disporem de informações sistemáticas e detalhadas acerca das atividades inovadoras desenvolvidas na indústria nacional, a pesquisa também é defendida devido à relevância do tema, sobretudo quanto ao aspecto econômico, uma vez que inovação é cada vez mais vista como “fenômeno fundamental” do crescimento econômico (IBGE, 2003).

disso, inicialmente idealizada para ser realizada a cada três anos, a partir dessa nova edição, decidiu-se pela diminuição de sua periodicidade, que passa de trienal para bianual.

Tendo em vista que quando da realização desta etapa da dissertação, voltada para análise da PINTEC como um dos levantamentos de inovação no contexto de países em desenvolvimento, a PINTEC 2005 ainda não havia sido concluída nem seus resultados divulgados, o objeto de estudo desta seção será a PINTEC 2003, por ser esta a edição finalizada à época da seleção e análise dos surveys por este trabalho, ou seja, é a que possuía dados e resultados disponíveis e completos e, portanto, passíveis de análises e avaliações.

Como referencial conceitual e metodológico, a pesquisa segue as diretrizes definidas pelo Manual de Oslo (OCDE/EUROSTAT de 1997 para as primeiras edições e OCDE, 2005 para a 3ª edição), que se concentra na inovação tecnológica de produtos e processos, e também se apóia na *Community Innovation Survey* (CIS), mais especificamente em sua terceira versão (CIS III que compreende o período de 1998 a 2000), que é a pesquisa aplicada nos países da Comunidade Européia cujo modelo foi proposto pelo EUROSTAT. Tal embasamento costuma ser justificado em virtude da padronização oferecida pelo Manual, internacionalmente aceito e consolidado, permitindo, portanto, a comparabilidade dos resultados a outras realidades, inclusive as obtidas em levantamentos internacionais.

O questionário para a coleta dos dados da PINTEC 2003 é composto de 196 questões, distribuídas em 13 capítulos, destinados a coletar informações referentes a: características da empresa; produtos e processos tecnologicamente novos ou substancialmente aperfeiçoados; inovação de produto e processo, projetos incompletos e abandonados; atividades inovativas; fontes de financiamento das atividades inovativas; atividades internas de P&D; impactos das inovações; fontes de informação; cooperação para inovação; apoio do governo; patentes e outros métodos de proteção; problemas e obstáculos à inovação; e outras importantes mudanças estratégicas e organizacionais (IBGE, 2006c).

A unidade de análise da pesquisa é a empresa industrial. Baseada no cadastro de empresas do IBGE, onde são identificadas de acordo com o setor ou divisão industrial a que pertencem, para a PINTEC 2003 foram selecionadas cerca de 11,3 mil empresas,
escolhidas dentre empresas industriais ativas, atuantes no território nacional, com o emprego de 10 ou mais pessoas, conforme sugestão do Manual de Oslo. Para as empresas com mais de uma unidade local foram identificadas as atividades realizadas em todas elas bem como mensurados seus impactos na empresa como um todo.

Como método de captura das informações escolheu-se a entrevista direta a fim de assegurar uniformidade na compreensão da pesquisa, sobretudo quanto aos aspectos conceituais. Assim, as informações solicitadas foram respondidas por meio de visita à empresa (para empresas de grande porte, isto é, com 500 ou mais pessoas) ou via telefone, através de entrevista com o profissional da empresa, previamente identificado, detentor das informações requeridas pela pesquisa, metodologia justificada por seus formuladores visando à correção de possíveis enganos no momento da resposta, além de buscar evitar que falhas no preenchimento do questionário por falta ou má compreensão de conceitos pudessem prejudicar a fidelidade das informações (FINEP, 2007).

Assim, para analisar a PINTEC 2003, cujo desenho e metodologia são calcados no Manual de Oslo (OCDE; 2005), logo, em uma perspectiva convencional, serão considerados o modelo teórico adotado por esta dissertação, incluindo as limitações dos indicadores convencionais de inovação levantadas no capítulo 4. Portanto, a análise do questionário empregado na pesquisa e dos dados e resultados apresentados pelos institutos responsáveis por sua condução fornece um panorama geral da inovação de acordo com a metodologia utilizada, ou seja, são respostas e informações que refletem a lente utilizada na condução do levantamento, divulgação e interpretação de seus resultados.

5.2.1. Méritos e Limitações da PINTEC

Um dos principais méritos da PINTEC reside no fato de ser a primeira pesquisa brasileira de âmbito nacional com o objetivo de levantar, exclusivamente, informações acerca das atividades inovadoras da indústria brasileira, ou seja, anterior a ela não havia um esforço nacional conjunto nem deliberado neste sentido, deixando a cargo de estudos locais, regionais ou setoriais a busca por este tipo de informação, muitas vezes inseridos dentro de um único capítulo de pesquisas mais abrangentes ou com enfoque distinto da gestão da
inovação. Assim, representa uma iniciativa que reflete a consciência nacional sobre a importância que a inovação vem assumindo, sobretudo no aspecto de sua mensuração, caracterizando o valor e seriedade na busca por insumos e instrumentos que auxiliem a tomada de decisões estratégicas bem como a elaboração de políticas públicas voltadas para a matéria e, consequentemente, para o crescimento econômico do país.

A adoção de uma metodologia internacionalmente reconhecida e utilizada costuma ser considerada um dos grandes destaques para a PINTEC. Entretanto, como outras características da pesquisa, a utilização do Manual de Oslo como base metodológica ao mesmo tempo em que possui seus méritos, em outros termos também pode ser tida como limitação. Dentre os pontos positivos, está o uso de um manual acabado, preparado, testado e atualizado, que pode ter representado uma redução do tempo para execução da pesquisa inicial, se comparado a uma situação que não partisse de nenhum projeto base, ou seja, que necessitasse de toda uma mobilização para elaboração de um manual próprio anterior à condução da pesquisa propriamente dita. Por outro lado, como foi elaborado inicialmente visando sua aplicação em países desenvolvidos, mais especificamente, em empresas localizadas na fronteira tecnológica, as características, enfoque, forma de captura e análise de informações tendem a ser voltados para tais economias e empresas e sua aplicação em contextos de países em desenvolvimento pode ficar comprometida caso não sejam tomadas medidas em sentido contrário, mesmo em se considerando as versão recente que inclui adaptações para sua aplicação em contextos de economias em desenvolvimento.

Outro aspecto que costuma conferir destaque ao Manual de Oslo se relaciona à comparabilidade. Sobretudo para questões estratégicas, dados isolados não costumam oferecer informações relevantes; uma vez que não se tenha um parâmetro a que se possa confrontar e nivelar, tornam-se difíceis julgamentos de desempenho. Normalmente, quando são feitas análises, avaliações ou mesmo mensurações de inovação, busca-se posicionar tanto empresas, setores ou países em relação aos demais. E para que este posicionamento relativo possa ser feito, só devem ser comparados objetos sujeitos ao mesmo tipo de investigação, baseados nos mesmos princípios e sob a mesma lente crítica. Assim, a adoção do mesmo manual utilizado em grande parte dos levantamentos de inovação ao redor do mundo facilita a tarefa de comparação, pois dados e perspectivas tornam-se compatíveis para tal propósito. Entretanto, até que ponto a comparabilidade
deve ser priorizada em detrimento da relevância e adequação das informações obtidas, da captura de especificidades? Até que ponto compensa prescindir de métodos e técnicas próprios ou modificados que sejam capazes de capturar as peculiaridades de contextos de economias emergentes e levar a informações fiéis? Ou seja, deve-se buscar um equilíbrio ou compromisso entre comparabilidade e captura de informações relevantes e específicas ao contexto tratado.

Outro ponto a favor do Manual de Oslo é que este vai além da base definida pelo Manual Frascati que, apesar de se voltar especificamente para os aspectos de P&D, acabava sendo o principal modelo para pesquisas de inovação, mesmo considerando que inovação e P&D se encontravam em uma cadeia de progressão linear, ou seja, a execução de P&D tendo como conseqüência certa a inovação. Neste sentido, o Manual de Oslo recomenda a abordagem baseada no sujeito, utilizada pela PINTEC, a fim de se capturar dados e informações sobre as atividades inovadoras realizadas pela empresa (o sujeito), ou seja, não se preocupa exclusivamente com os insumos ou resultados da inovação, mas também com os projetos e atividades em andamento e até mesmo aqueles abandonados, mas cujas atividades demandaram esforços e puderam servir como fonte de aprendizagem para construção e incremento de capacidades inovativas. Além disso, não se preocupa apenas em analisar os casos de sucesso e os fatores que favoreceram as inovações, mas também aborda os problemas e obstáculos à inovação, responsáveis pela ausência de realização de atividades inovadoras, abandono de projetos inacabados ou mesmo falhas e insucesso, seja na etapa de desenvolvimento ou em qualquer das outras até a introdução no mercado. Através do conhecimento das principais dificuldades enfrentadas pelas empresas, estratégias empresariais e políticas e programas governamentais de fomento à inovação podem ser elaboradas a fim de auxiliar as empresas na superação de tais barreiras.

A estruturação da pesquisa também pode ser tomada como ponto positivo, pois a divisão em blocos separados por temas ou assuntos principais facilita tanto a resposta às questões, uma vez que os respondentes mais adequados a cada assunto podem ser acionados como forma de garantir a fidelidade e consistência das respostas, quanto a análise individual de cada um deles, já que para determinados diagnósticos podem ser selecionados apenas um grupo de questões e suas respectivas respostas relacionados ao assunto desejado, podendo, inclusive, utilizá-los em uma análise conjunta ou complementar com dados provenientes de outras pesquisas e levantamentos.
Segundo a PINTEC, inovação tecnológica é definida pela introdução no mercado de um produto (bem ou serviço) tecnologicamente novo ou substancialmente aprimorado ou pela introdução na empresa de um processo produtivo tecnologicamente novo ou substancialmente aprimorado; podendo ter sido desenvolvida pela empresa ou adquirida de outra empresa/instituição que a desenvolveu (IBGE, 2006c). Assim, esta versão da PINTEC adota a visão mais ampla de inovação, ao levar em consideração e reconhecer que os mecanismos de difusão fazem parte da realidade das empresas brasileiras como uma das principais fontes de inovação. Dados como a importância de P&D adquirida externamente pela empresa, aquisição de máquinas e equipamentos, aquisição externa de tecnologia, são levados em consideração como uma importante fonte inovadora para a empresa e como característica central dos processos de inovação das empresas de países de economias emergentes.

Além da essencialidade da difusão nos processos inovadores de países em desenvolvimento, outro ponto importante reconhecido pela PINTEC é o fato de que as empresas dificilmente desenvolvem algum projeto inovador completamente sozinhas, normalmente se engajando em parcerias e cooperação no desenvolvimento de tais atividades, o que contribui para diluição dos custos e riscos e incremento de habilidades e capacidades na medida em que a interação, a troca e o auxílio mútuo são cruciais para o sucesso do projeto. Um destaque para a PINTEC é que engloba este tópico em uma seção específica para tratar das cooperações para inovação, destacando o parceiro, a importância da aliança, a localização e o objeto da cooperação.

Relacionado a isso, questões referentes ao responsável pela inovação (a própria empresa ou outras empresas), sua localização e o tipo de benefício introduzido, são contempladas na pesquisa a fim de capturar parte dos mecanismos utilizados pela empresa, bem como as melhorias provenientes de ligações com outras empresas, reflexo, também do reconhecimento de que as empresas não são ilhas isoladas e dependem de insumos (informações, conhecimentos, manuais, equipamentos, pessoal) de outras empresas, sejam estes formais ou informais. Além disso, outros indicadores específicos para as fontes de informação utilizadas pelas empresas, seu grau de importância e localização, também informam as redes em que a empresa está inserida e que contribui para seu processo de aprendizagem e capacitação.
Como o estabelecimento formal de atividades e iniciativas voltadas para a inovação não é parte essencial nem garantida das estratégias empresariais, tendo em vista os custos e riscos envolvidos e a escassez de recursos para tal fim, muitas vezes condicionado ao faturamento e, portanto, incerto e por vezes esporádico, grande parte dos incentivos, tanto financeiros quanto de outras ordens, fica à cargo do governo nos países de economias emergentes. Sendo assim, o apoio do governo às empresas é outro item importante contemplado na PINTEC. Tendo em vista a importância dos programas de governo para as atividades inovadoras nas empresas de países em desenvolvimento, é importante que se busque informações sobre como tais programas são vistos e utilizados pelas empresas, pois através da análise deste feedback pode-se conduzir melhorias, adequações e substituições na forma de atuação governamental, auxiliando a elaboração de suas políticas. Assim, com os resultados, pode-se investigar quais são as estratégias mais utilizadas e eficazes, quais os resultados provenientes de sua adoção, quais setores mais (e menos) privilegiados pelas estratégias do governo, a fim de balancear e ajustar possíveis distorções, além de permitir a análise real da participação efetiva do governo. O resultado da PINTEC 2003 mostra que 18,7% das empresas inovadoras utilizaram o apoio do governo em suas atividades inovativas. Apesar de ser maior do que o da pesquisa anterior (16,9%), este resultado mostra uma baixa utilização dos programas de governo voltados para inovação, o que pode refletir a inadequação dos mesmos, insuficiência ou mesmo falta de identificação ou reconhecimento de sua existência por parte das empresas, e pode indicar a necessidade de suprir esta deficiência, ampliando-os e melhorando-os, pois ainda há muito espaço para o incremento de sua utilização.

Um ponto positivo adicional da PINTEC é a inclusão de itens que buscam avaliar as mudanças estratégicas e organizacionais, que, como visto na literatura de referência, também colaboram para o processo de inovação, ou seja, é através de tais mudanças que podem ser estabelecidas diretrizes ou correção de problemas que acabem por fomentar (ou inibir) o processo inovador. Assim, as mudanças puramente organizacionais e gerenciais foram investigadas em um bloco dedicado a levantar a natureza destas mudanças. Entretanto, utiliza uma escala nominal do tipo “sim” e “não”, que somente consegue informar o tipo da mudança, mas não sua frequência, o esforço que isso representou para a empresa nem seu impacto direto. No bloco voltado para as atividades inovativas, apenas as mudanças organizacionais que geraram diretamente inovações de produto e de processo foram incluídas, pois representavam “esforços deliberados da empresa para a melhoria do
seu acervo tecnológico e, conseqüentemente, para o desenvolvimento e implementação de produtos ou processos tecnologicamente novos ou significativamente aperfeiçoados” (IBGE, 2006c). Assim, apesar de consideradas, as mudanças que não implicam, diretamente, em atividades inovadoras, mas que representam como as empresas conduzem seus processos internamente ou em conjunto com outras instituições, que regem suas rotinas e que podem determinar e contribuir para aprendizagem da empresa, incremento de habilidades e capacidades tecnológicas, não são capturadas.

Sendo assim, na análise do método e dos dados (resultados) da PINTEC, pode-se notar que a pesquisa já incorpora diversas modificações indicadas como necessárias, a fim de levar em conta a realidade de economias distintas daquelas dos países desenvolvidos, como sugere a versão atual do Manual de Oslo, que contém um anexo especificamente voltado para questões referentes a países em desenvolvimento.

Como mencionado e apresentado, uma mesma característica da PINTEC pode apresentar tanto méritos quanto limitações, dependendo da perspectiva analisada. Entretanto, em algumas outras questões, apesar de enfocar aspectos importantes da inovação, tem suas limitações reforçadas. Grande parte delas decorre do fato de que, por utilizar o Manual de Oslo como metodologia, a PINTEC tende a se concentrar em aspectos mais característicos de empresas localizadas na fronteira tecnológica ou próximas a ela. Como enfatizado no capítulo 2, empresas de países em desenvolvimento caracterizam-se por ainda estarem desenvolvimento suas competências, sobretudo aquelas intermediárias, sendo minoria as empresas que dominam as capacidades mais avançadas. Portanto, uma vez que muitos dos indicadores que utiliza não procuram capturar tais níveis intermediários de capacidades, característico da maioria das empresas, algumas críticas voltadas para os indicadores tradicionais de mensuração da inovação quando utilizados em contexto de economias de industrialização tardia se aplicam na PINTEC.

No que diz respeito à estruturação e condução da pesquisa, apesar da formatação em blocos do questionário apresentado às empresas de acordo com assuntos específicos, as informações solicitadas, muitas vezes, não constam de registros formais, ficando a cargo da avaliação e estimativa do responsável pelas respostas. Nestes casos, corre-se o risco de as respostas serem formadas a partir da opinião pessoal dos respondentes, podendo ser baseadas em percepções individuais ou particulares de determinado grupo de pessoas, podendo levar a inconsistências e subjetividades nas respostas, onde nem sempre os
aspectos positivos e negativos são considerados e visualizados de forma objetiva. Entretanto, toda pesquisa corre este tipo de risco, ainda mais quando trata de assuntos complexos, dos quais fazem parte uma série de questões e implicações, muitas derivadas umas das outras, como é o caso de levantamentos de inovação. Apesar da tentativa de crítica dos dados pelos responsáveis por aplicar o questionário nas empresas (IBGE, 2003), o confronto com a prática seria a maneira mais desejável, mas como são raros os registros formais de tais atividades, até porque muitas delas são tácitas e já se encontram inseridas nas rotinas e atividades organizacionais, a solução mais factível é a busca por respondentes especialistas no assunto tratado. Na PINTEC 2003, grande parte dos entrevistados foi composta por gerentes (37,91%) e diretores (22,69%), que deveriam, idealmente, dispor de tempo para a pesquisa e conhecimento detalhado, inclusive dos aspectos tácitos e informais, das atividades da empresa, dos relacionamentos, dos fluxos internos e externos, ou seja, conhecimentos que, muitas vezes, pessoas de cargos decisórios e estratégicos têm de maneira mais global. Dessa forma, dificilmente um único respondente seria capaz de fornecer informações precisas e livre de opiniões pessoais para todos os itens, sendo o mais indicado a distribuição dos blocos para as pessoas específicas no assunto.

No tópico referente às informações acerca das características da empresa, ganha destaque a questão sobre a origem do capital, normalmente presente neste tipo de levantamento e, para os casos de países em desenvolvimento onde a presença de multinacionais costuma ser forte, é comum a visão tendente a considerar empresas com capital estrangeiro como as mais propensas a inovar, dada a maior facilidade de acesso a recursos financeiros, conhecimentos e parcerias externas, além de maior exposição ao mercado e competição internacional. Entretanto, o resultado da PINTEC 2003 mostra um resultado distinto, onde 94% das empresas inovadoras são de capital nacional, contrariando perspectivas tradicionais.

Com relação aos tópicos específicos de inovação, pede-se para responder se a empresa introduziu um produto (ou processo) tecnologicamente novo ou significativamente aperfeiçoado, e identificar se a inovação (de produto ou processo) é nova para a empresa ou para o mercado no qual atua. Este tipo de questão carrega dois problemas relacionados à subjetividade de interpretação, pois se trata de “conceitos amorfos” (COSTA, 2003). A distinção entre o que é novo e o que é significativamente melhorado, bem como a noção de “mercado”, pode diferir substancialmente entre empresas, que podem interpretar tais
termos e conceitos de forma diferente, podendo variar de acordo com o tipo, tamanho e orientação da empresa, por exemplo.

O tópico referente às atividades inovativas, que reflete a abordagem do sujeito adotada pela pesquisa e, portanto, uma perspectiva mais ampla, considera como tais as atividades de P&D, tanto internas como as adquiridas externamente, a aquisição de conhecimentos externos, a aquisição de máquinas e equipamentos, os treinamentos, dentre outras. Para cada um, são solicitadas informações sobre sua importância/relevância (em uma escala do tipo “alta”, “média”, “baixa” e “não relevante”) e o valor do dispêndio. Assim, apesar dos méritos destas questões, pois afi estão considerados elementos da difusão e não somente aqueles diretamente responsáveis por inovações, ainda ficam faltando informações sobre a forma como são realizados e conduzidos, a intensidade, os objetivos, os impactos e a percepção da importância relativa entre eles. É claro que algumas questões ou enfoques devem ser priorizados, tendo em vista a limitação de escopo da pesquisa (por mais ampla que possa ser), mas é importante que sejam identificados os pontos que carecem de informações mais completas.

Um dos problemas é a dificuldade em desagregar informações referentes a dispêndios em atividades inovativas. Por exemplo, empresas que inovaram em processo através da aquisição de tecnologia incorporada e receberam treinamento do fornecedor. Mesmo que tal treinamento fosse sem custo para a empresa, esse custo, de alguma forma, vem embutido no total do valor do bem adquirido, mas é impossível para a empresa fazer tal separação (PAVITT, 1976). Portanto, em muitos casos, as despesas com atividades inovativas apresentam caráter aproximado, ou seja, são realizadas estimativas com base na experiência do entrevistado e histórico de tais atividades. No resultado da PINTEC 2003, de acordo com as estimativas dos entrevistados, os gastos com máquinas e equipamentos representam cerca de 50% do total dos gastos com as atividades inovativas. Além de reforçar a importância e o papel central dos processos de difusão no contexto de países em desenvolvimento, dados referentes à aquisição de equipamentos são um dos mais fáceis de se obter, já que é usual (e em alguns casos obrigatória, para fins de declaração e apresentação de balanços) a manutenção de registros sobre as compras realizadas pela empresa. Entretanto, podem acabar englobando custos embutidos relacionados a outras atividades inovadoras, mas que são difíceis de isolar e, portanto, acabam por superestimar os gastos em máquinas e equipamentos; o que não desmerece a questão, pelo contrário,
mas é importante que se reconheça tais considerações para que se possa ter certo nível de criticidade no tratamento e utilização destes tipos de dados.

Com relação às atividades de treinamento, são incluídos apenas os programas de treinamento diretamente relacionados às inovações tecnológicas de produto e de processo como, por exemplo, treinamento para a implantação de novas técnicas ou no uso de novas máquinas. Assim, treinamentos que aumentaram as habilidades, o conhecimento tácito das empresas e seus funcionários, que melhoraram a rotina das empresas e das atividades, mas que não tiveram relação necessária e direta com as inovações tecnológicas (resultados) ou não estão relacionados a nenhum mecanismo novo, não são abordados, mesmo com as mudanças incrementais representando um componente essencial no processo de capacitação e desenvolvimento da empresa.

Fazendo parte não somente do tópico voltado para atividades inovativas, as atividades de P&D têm um bloco específico dentro da PINTEC. Segundo a proposta do Manual de Oslo, as atividades de P&D devem ter um caráter sistemático, o que muitas vezes é interpretado por algumas pesquisas como a obrigatoriedade de existir pelo menos uma pessoa em tempo integral empregada em P&D. Na PINTEC, foram levadas em consideração as condições particulares das empresas brasileiras e as dificuldades existentes para a realização de atividades de P&D de maneira formal e estruturada. Neste sentido, foram consideradas atividades de P&D tanto aquelas realizadas de forma contínua quanto descontínua (ocasional) mas que tivessem sido realizadas sistematicamente. Questões referentes à qualificação, formação básica e tipo de dedicação (exclusiva ou parcial) foram abordadas. Portanto, ainda são utilizados muitos indicadores voltados especificamente para as atividades de P&D tais como o dispêndio total com P&D; o número de pessoas ocupadas nas atividades de P&D de acordo com a posição (pesquisadores, técnicos e pessoal de suporte), dedicação (exclusiva ou parcial) e nível de qualificação (doutores, mestres, graduados, técnicos de nível médio, outros de suporte); a freqüência (contínua ou ocasional) de tais atividades. Porém, os problemas tradicionais à utilização de indicadores de P&D em países em desenvolvimento, tal como apresentados no capítulo 4, não podem ser negligenciados.

O tópico seguinte da pesquisa trata dos impactos da inovação. Apesar de o Manual Oslo recomendar a “identificação dos objetivos econômicos que motivaram as empresas a se engajarem em atividades inovativas” (IBGE, 2003), a PINTEC aborda somente seus
impactos, principalmente pelo fato de que, muitas vezes, os objetivos não são definidos de forma clara anteriormente à realização das atividades, e sim, identificados apenas após a implementação dos projetos, tornando-se difícil a garantia de que “não sejam confundidos com os resultados efetivamente alcançados através dos esforços inovativos dispendidos” (IBGE, 2003). Assim, é como se ficasse implícito na PINTEC que os esforços inovadores das empresas brasileiras não são, em sua maioria, deliberados e com objetivos específicos, ou seja, seriam resultado de estratégias emergentes e ocasionais. Mesmo que a realidade mostre que esta hipótese está coerente, a inclusão de um tópico que contemplasse a identificação de tais objetivos, inclusive os objetivos de atividades futuras, que ainda não estejam em desenvolvimento ou execução (e que poderiam ser confrontadas na pesquisa seguinte) poderia fornecer informações valiosas acerca da seriedade e oficialidade com que são tratados os projetos inovadores, uma vez que, na maioria das vezes, projetos costumam ser documentados e avaliados previamente à sua execução.

Ainda com relação ao tópico sobre impacto das inovações este é medido através da porcentagem das vendas líquidas internas e das exportações (IBGE, 2006c). Assim, não captura os esforços inovadores desenvolvidos pelas empresas que não tenham atingido um resultado efetivo (isto é, que não tenha gerado inovações), já que somente considera inovação aqueles processos e atividades com resultado financeiro, ou seja, deixa escapar as medidas tomadas pelas empresas em seu processo de aprendizagem, de acumulação de capacidades, que é um dos principais determinantes de seu desempenho futuro, para tomar apenas as vendas líquidas como medida de sucesso ou fracasso da inovação.

Constam também na pesquisa questões sobre patentes e outros métodos de proteção, o que, nos contextos de economias emergentes, pode acabar gerando dados pessimistas, já que a maior parte das empresas não é exportadora de tecnologia, os custos e tempo para solicitação de patentes são elevados, nem todos os setores utilizam-se de patentes como forma de proteção de suas inovações, além de acabar por privilegiar as inovações tecnológicas efetivas, em detrimento das incrementais. Através dos dados resultantes da pesquisa, apenas 7,4% das empresas inovadoras utilizam patentes para proteger suas inovações, ou seja, se este indicador fosse utilizado de forma isolada para indicar o grau de inovação das empresas, a resposta seria muito mais pessimista do que a realidade.

Os resultados e a análise da PINTEC sugerem que muitos itens já foram inseridos levando em consideração a peculiaridade de economias emergentes e os aspectos mais amplos da
inovação, mas diversos outros tópicos ainda precisam ser repensados. Esse constante questionamento e a busca por adequações e revisões, como o faz o próprio Manual de Oslo, são necessários e saudáveis, já que a inadequação de abordagens, materializadas em questionários, pode levar a resultados enganosos e até mesmo pessimistas, e, consequentemente, falhar no seu propósito principal, que é traçar o panorama da inovação de um país, setor ou grupo de empresas, a fim de fornecer informações que sirvam de apoio e subsídio à elaboração de estratégias.

Portanto, apesar dos méritos, muitas limitações ainda podem ser reconhecidas na PINTEC. Algumas delas são facilmente percebidas e podem, e devem, ser prontamente adequadas e discutidas. Outras, entretanto, são mais complexas, difíceis de serem superadas em um tipo de pesquisa como a PINTEC, ou seja, pesquisa agregada, de nível nacional, que busca analisar um conjunto numeroso de questões e envolver os mais variados aspectos que fazem parte do fenômeno da inovação, cobrindo os diversos tipos de indústrias e setores. Para este tipo de pesquisa, a captura de especificidades e de um enfoque com maior nível de profundidade pode se tornar problemática. De um lado, poderia se pensar em fazer um questionário mais extenso, com maior número de questões, que abarcasse maior parte das particularidades, por exemplo, setoriais e regionais. De outro, a elaboração de pesquisas específicas, mais focadas e detalhadas, mas poderia levar à perda da comparabilidade mais geral e requerer esforços extremamente complexos se quisesse abranger a quantidade de empresas e setores que um levantamento de nível regional abrange. Como as duas alternativas são problemáticas e mesmo antagônicas, a proposta deste trabalho é a adequação de ditas pesquisas nos pontos que forem possíveis, em adição à sua complementação por meio de pesquisas mais focadas, voltadas para enfocar determinados setores e indústrias, e, portanto, capazes de trazer e contribuir com informações que possam ser difíceis de serem capturadas em levantamentos amplos e abrangentes, tais como estes de nível nacional.

5.3. PAEP – Conceitos e Metodologia

O terceiro dentre os casos selecionados para esta dissertação é a PAEP – Pesquisa da Atividade Econômica Paulista. Apesar de ser uma pesquisa de natureza econômica, consagrou-se como o primeiro levantamento de inovação realizado no Brasil, tendo em
vista a incorporação em seu projeto de questões voltadas para a captura de informações acerca da inovação e novas tecnologias na economia, reflexo da importância crescente conferida aos aspectos tecnológicos como elemento crítico para o desenvolvimento econômico.

Conduzida pela Fundação Seade (Fundação Sistema Estadual de Análise de Dados – vinculada ao Governo do Estado de São Paulo), com apoio da Fapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo), da Finep, do MEC e do governo do Estado de São Paulo, a PAEP tem como universo de investigação as empresas industriais do Estado de São Paulo. A elaboração de sua metodologia foi sendo conduzida desde 1992, tendo como objetivo “captar os novos processos econômicos em curso no Estado de São Paulo”, a ser concretizado através de um conjunto de indicadores de “eficiência produtiva, de inovação e capacitação tecnológicas e de competitividade capazes de capturar as mudanças recentes no Estado, a fim de fornecer um banco de dados tanto para os gestores, tanto do setor público quanto privado, bem como para o meio acadêmico, com informações adequadas e coerentes à realidade do Estado, a serem periodicamente atualizadas” (PAEP, 1999). Portanto, deriva do interesse em capturar informações que auxiliem no mapeamento das principais características da economia do Estado.

Dentre as justificativas que podem ser inferidas como colaboradoras para o pioneirismo do Estado de São Paulo na elaboração de uma ferramenta de auxílio à caracterização de sua atividade econômica, destaca-se a criação da Fapesp em 1962, com dotação orçamentária própria inicial de US$ 2,7 milhões e com direito à destinação de percentuais mínimos da receita do estado, representando a primeira experiência de formulação e implementação de uma política subnacional de CT&I no Brasil (FAGUNDES; CAVALCANTE, 2006). Além disso, o Estado se destaca pela grande intensidade tecnológica de suas indústrias; pelo mais completo sistema de pesquisa do país; pelas instituições e lideranças empresariais e científicas; pela maior comunidade científica e tecnológica do país; pelo sistema produtivo mais avançado do país; grande porte de suas empresas; maior parte dos gastos do país com P&D (PACHECO; CRUZ, 2005).

Sua primeira edição, a PAEP I (PAEP-1996), teve como referência básica o ano de 1996, sendo que os dados foram coletados entre agosto de 1997 e agosto de 1998. Entretanto, dada a complexidade de determinados fenômenos a serem capturados, algumas questões tinham períodos de referência específicos, como por exemplo aquelas voltadas para
inovação tecnológica, para as quais se estabeleceu o período compreendido entre os anos de 1994 e 1996.

A PAEP II (PAEP-2001) captou informações referentes ao ano-base de 2001 (para as informações quantitativas e financeiras) e o período de 1999 a 2001 para as questões voltadas para a inovação tecnológica, com os dados coletados entre julho de 2002 e junho de 2003. Foi essencialmente a mesma pesquisa anterior, com o diferencial do acréscimo de todas as atividades do setor de serviços (em adição aos serviços de informática já contemplados na edição anterior) e ampliação do estrato amostral, mais acurado, sobretudo para as regiões do interior (SEADE, 2007).

Com relação à sua metodologia, a PAEP segue as orientações do Manual de Oslo e se baseia em pesquisas similares de inovação conduzidas em países em desenvolvimento, tal como o CIS. Fizeram parte das discussões o IBGE, com importante participação na preparação e condução da pesquisa, associações empresariais, universidades de centros de pesquisa, auxiliando na elaboração dos questionários e utilizando, posteriormente, seus dados como base de estudos analíticos (PAEP, 1999). Nesse sentido, de acordo com a metodologia utilizada, a PAEP é uma pesquisa baseada no sujeito, ou seja, se preocupa com a coleta de informações referentes às atividades inovativas realizadas pelas empresas.

A preparação do questionário foi conduzida a partir de experiências nacionais e internacionais similares, a fim de garantir a comparabilidade dos resultados. No que diz respeito às questões voltadas para inovação tecnológica, a PAEP-1996 baseou-se, em grande parte, no questionário aplicado no CIS-I, e a PAEP-2001 utilizou como principal
referência o conjunto de questões contidas no CIS-III. De forma geral, os questionários foram organizados em capítulos agrupados em blocos temáticos, cujo conteúdo subdividiu-se em mensuração econômica, reestruturação produtiva – onde se encontravam os itens referentes à inovação tecnológica, e dinâmica territorial. Compõe-se preponderantemente de questões fechadas, ou seja, respostas pré-definidas, para captura de informações qualitativas; possuindo, também, questões quantitativas, para as informações econômico-financeiras, e questões abertas para descrição das atividades realizadas pelas empresas (PAEP, 1999). Os questionários foram elaborados conforme o setor a que seriam aplicados (questionário de indústria, questionário de comércio, questionário construção civil, questionário serviços e questionário segmento bancário). Na PAEP-2001, o bloco referente às questões sobre inovação foi idealizado como resultado de intensa colaboração com especialistas do IBGE, a fim de adaptar a metodologia e favorecer a complementaridade das informações obtidas com aquelas geradas pela PINTEC (BERNARDES, 2003).

Para fins desta dissertação, serão analisadas as questões voltadas para os aspectos da inovação tecnológica inseridas no questionário indústria (capítulo 6) do bloco Técnico-Produtivo da PAEP-2001. Portanto, baseado na perspectiva mais ampla de inovação, nas peculiaridades de tais processos em contextos de industrialização recente, e nas limitações e críticas levantadas nos capítulos anteriores referentes aos indicadores convencionais de inovação tecnológica, buscou-se avaliar a adequação das questões envolvidas, ou seja, os méritos e limitações da pesquisa no tocante à mensuração da inovação.

5.3.1. Méritos e Limitações da PAEP

Assim como a PINTEC, a PAEP tem méritos que não podem deixar de ser destacados, mas também apresenta uma conjunto de limitações, muitas das quais semelhantes às da PINTEC, uma vez que utilizam abordagem semelhante, enquanto outras são mais profundas e difíceis de serem superadas em um tipo de pesquisa como a PAEP.

Neste sentido, dentre os méritos que podem ser expostos, um deles se relaciona ao fato de a PAEP ser a primeira pesquisa no Brasil a englobar o tema da inovação tecnológica em um de seus blocos. Mesmo não sendo voltada especificamente para o tema, ao trazer à tona
a importância da inovação tecnológica nos aspectos econômicos de uma economia, cria e aprofunda a consciência da essencialidade da inovação e abre caminho para novos estudos, servindo como ponto de partida para discussões, aprimoramentos e mesmo críticas, além de exemplo para levantamentos do mesmo tipo em outras regiões e também para os de âmbito nacional. Assim, a partir da avaliação da importância da PAEP, pesquisas semelhantes foram encomendadas à Fundação Seade para aplicação nos outros estados da federação, a PAER – Pesquisa da Atividade Econômica Regional, conduzida nos mesmos moldes e formato da PAEP-1996, com algumas adaptações e baseando-se no CIS-II. Portanto, a PAEP não somente serviu de modelo e estímulo a outros levantamentos, como também teve seus dados e resultados aproveitados como fonte de informação para diversos outros estudos, inclusive de organismos e instituições governamentais, novamente confirmando a carência anterior deste tipo de informação e a crescente demanda por ela.

Como na PINTEC, a utilização de uma metodologia internacionalmente aceita e utilizada como o Manual de Oslo, aplicada em levantamentos ao redor do mundo, capaz de produzir dados comparáveis, representa um avanço com relação a estudos que buscavam “construir” seu próprio método de coleta de dados de inovação ou inferir a partir de estatísticas disponíveis, o que gerava um grande número de relatórios e documentos em diferentes formatos, sem padronização, sem regularidade e/ou compromisso de publicação, sem embasamento teórico sólido, incapazes de gerar dados comparáveis, de longo prazo e, muitas vezes, confiáveis. Entretanto, vale reiterar que a utilização do Manual de Oslo como abordagem metodológica, apesar dos méritos, apresenta problemas, como os mencionados, referentes à sua aplicação no contexto de países em desenvolvimento.

Outros méritos dizem respeito à estruturação da pesquisa. Houve a elaboração de um questionário para cada setor de atividade, o que possibilitou a inclusão de itens específicos ao segmento tratado, que se tivessem sido feitos de forma agregada, em um único questionário, poderia prejudicar a captura das particularidades de cada um. Além disso, a composição em capítulos e subdivisões (blocos) favorece o preenchimento, uma vez que possibilita sua distribuição entre os respondentes mais adequados. Por outro lado, quando comparado com a edição anterior (PAEP-1996), o bloco sobre inovação tecnológica do questionário indústria da edição de 2001 da PAEP apresenta algumas modificações. Consistiu, basicamente, de uma reformulação das questões de inovação, para que
pudessem ficar compatíveis com as da PINTEC, e do aumento do número de questões, que passou de dez (PAEP-1996) para vinte questões voltadas para inovação tecnológica.

Assim, além da questão da comparabilidade, um dos pontos positivos deste aprimoramento está no esforço demonstrado pelas instituições envolvidas em direção à adequação e melhoria da pesquisa, acompanhando as mudanças e dinâmicas de tais atividades. Além disso, o aumento do número de questões ratifica a importância crescente da inovação tecnológica, além de possibilitar a captura de um número maior de informações referentes aos diferentes elementos e aspectos da inovação. Entretanto, a mudança completa e substantiva das questões, ainda mais se de forma habitual, pode significar um prejuízo na construção de uma série temporal de dados, uma vez que estes se tornam incompatíveis ou devam ser tratados para que possam ser utilizados para fins de análise de períodos mais longos de tempo, uma vez que a inovação é um fenômeno dinâmico e complexo, cujas mudanças podem levar mais tempo para acontecer. Assim, existe um compromisso entre a adequação e melhoria das pesquisas e a construção de um conjunto de dados que dê conta do histórico e da trajetória das atividades inovativas das empresas, devendo, por este motivo, ser desenhadas e aplicadas cuidadosamente para que as perdas sejam mínimas e os ajustes posteriores acomodados com o menor impacto possível.

Com relação às principais limitações da pesquisa, mais especificamente do bloco voltado para inovação tecnológica, como a PAEP também se baseia em modelos convencionais de mensuração da inovação (Manual de Oslo e Manual Frascati) e em questionários de pesquisas (CIS) elaborados para aplicação em contextos distintos do qual ela se dirige, o que, conseqüentemente, a faz concentrar em um grupo de empresas que representa minoria no território nacional (empresas com níveis de capacidades tecnológicas avançados e com domínio de capacidades para geração de inovações), as críticas fundamentais são semelhantes àquelas que se referem aos indicadores e abordagens convencionais de mensuração, algumas vezes com dimensões um pouco mais significativas devido à natureza e restrições da pesquisa.

Da mesma forma, uma pesquisa no formato da PAEP, com o objetivo de capturar a realidade da atividade econômica da região como um todo, possuindo diversos blocos, cada um voltado para um tema/aspecto da economia, enfrenta muitas dificuldades em obter resultados que expliquem, de forma detalhada e precisa, os fenômenos observados.
Pesquisas de abrangência muito ampla estão sujeitas, de forma simplificada, a dois tipos de problemas principais. De um lado, para que possa captar dados referentes a fenômenos diversos de forma profunda, minuciosa e realista, é necessário um conjunto extenso de questões, pois não há como abordar todas as informações necessárias, seus fluxos e relacionamentos através de um número restrito de itens. Isto, entretanto, levaria a uma dificuldade maior no preenchimento do questionário e obtenção das respostas, uma vez que um questionário muito extenso pode demandar tempo em excesso das empresas que poderiam ou não proceder ao retorno do questionário preenchido, aumentando a taxa de quebra de cadastro (questionário enviado e não retornado), ou poderiam fazê-lo de forma menos precisa. De outro lado, um questionário menos extenso, mas comprometido na captura de diversas informações distintas, poderia não dar conta de todos os aspectos e suas especificidades, gerando informações gerais e/ou superficiais, que não contribuem para uma compreensão e análise capazes de gerar subsídio para estratégias e decisões eficientes. Assim, diante do dilema apresentado, normalmente é feita uma escolha por parte dos responsáveis pelo levantamento, baseada no que se pretende com os dados e informações a serem coletados. Adicionalmente, uma vez que nem todos os problemas e limitações podem ser sanados, deve-se buscar opções que auxiliem, pelo menos em parte, na complementação de informações que não possam ser capturadas pelo método adotado.

Dessa forma, a PAEP se encaixa na segunda classe de problema: é uma pesquisa com abordagem muito abrangente, fazendo com que cada tópico contenda um mínimo de questões que, no caso do bloco de inovação, não dão conta de capturar os diversos aspectos desse fenômeno dinâmico e complexo. Assim, as questões abordam apenas alguns pontos da inovação tecnológica, não conseguindo adentrar nas especificidades, atividades, relacionamentos, interações e redes que compõem a inovação e que são cruciais para sua compreensão e sua gestão. Apesar de não serem estes os objetivos principais desse levantamento, tais informações poderiam fornecer uma visão mais completa do fenômeno, e, portanto, mais aplicável.

Adentrando as questões do questionário, a pesquisa define inovação tecnológica como “introdução, no mercado, de um produto (bem ou serviço) novo ou significativamente aperfeiçoado para a empresa” ou “implementação de um processo novo ou significativamente aperfeiçoado dentro da empresa”, baseando-se “em resultados do esforço de desenvolvimento de novas tecnologias ou novas combinações de tecnologias já
existentes” (SEADE, 2007). Novamente, o conceito de “novo” e “significativamente aperfeiçoado” pode gerar ambigüidades, já que não há uma definição específica, tornando-se dependente do ponto de vista da empresa, de sua experiência, do nível de complexidade científica e tecnológica do produto/processo e de como esta é visualizada e reconhecida pela empresa. Portanto, fica a cargo da empresa sua identificação, o que é agravado devido à diversidade de empresas (tamanho, setor, tipo e controle diferentes) incluídas como amostra da pesquisa. A mudança de determinada especificação técnica, não necessariamente no componente principal do produto ou no ponto crítico do processo, pode não ser vista como determinante em uma grande empresa ou pode nem mesmo ser registrada, mas pode ser decisiva nas pequenas empresas, onde mesmo as mínimas variações nos resultados podem ser definitivas. Um mérito da pesquisa é a inclusão de uma seção com instruções para o preenchimento do questionário com exemplos de inovação e não-inovação, que podem auxiliar as empresas na identificação das inovações. Entretanto, questões do tipo “sim” e “não”, “existe” e “não existe”, ou seja, que contemplem somente os extremos possíveis, são muito subjetivas e não capturam os estágios intermediários, as etapas ao longo dos níveis de aprofundamento e nem o tempo decorrido em cada uma delas, ocasionando respostas e resultados simplistas e/ou ambíguos. Portanto, o resultado encontrado na PAEP-2001, onde apenas 4,02% das empresas afirmaram ter introduzido um novo produto para o mercado, pode ser reflexo desta ambigüidade e falta de clareza nas definições.

A pesquisa contempla de forma superficial aspectos do processo inovador relacionados à difusão. Apesar de questionar sobre a origem da inovação, ou seja, o responsável por seu desenvolvimento, e questionar o grau de importância das fontes de informação para inovação (internas, ligadas ao mercado, institucionais), estas questões são insuficientes e não fornecem informações acerca de sua importância relativa, da forma como se deram, da intensidade, da periodicidade, das redes e fluxos de conhecimento por detrás de tais interações. Enfim, pouca importância é atribuída à difusão, conferindo ainda mais limitações à pesquisa, uma vez que a difusão representa parte essencial, se não preponderante, no processo inovador de empresas de países em desenvolvimento e, quando não capturada de forma completa ou ampla, ficando com a perspectiva estreita de inovação, gera-se dados e resultados falsamente pessimistas, que podem ser confirmados pela taxa de inovação encontrada nas empresas pesquisadas: de apenas 4,02%. Além disso, o destaque para fornecedores de máquinas e equipamentos como uma das principais fontes
de informação para inovação (de acordo com 61% das empresas inovadoras) confirma a importância da difusão neste cenário.

Um ponto positivo comparado à edição anterior é a inclusão de um item que questiona se houve o recebimento de apoio governamental por parte da empresa. Seu mérito está no fato de que nos países em desenvolvimento o incentivo governamental representa ponto fundamental, uma vez que os recursos privados destinados à inovação são escassos e as incertezas (macroeconômicas, de projeto, de inserção no mercado, financeiras) são grandes, cabendo ao governo subsidiar os pontos mais precários e contribuir para o incremento e melhoria das atividades inovadoras, já que são cada vez mais influenciadores do desempenho de regiões e países nas mais diversas esferas. Entretanto, este tópico é abordado também de forma superficial, através de uma única questão do tipo “Sim” e “Não”, ou seja, se a empresa utilizou ou não alguma forma de apoio governamental. Assim, não especifica o tipo de apoio recebido, sua importância, seu impacto no desempenho da empresa, a intenção de continuidade e busca de mais incentivos, ou seja, não fornece informações se foram realmente úteis para a empresa, se contribuíram de forma decisiva, se foram utilizados mas não trouxeram resultados, se são insuficientes ou não contemplam as necessidades da empresa. Portanto, o que a pesquisa informa não é capaz de auxiliar o governo na avaliação de suas próprias medidas, já que não traz informações qualitativas que embasem os julgamentos necessários a decisões sobre continuidade, adequação, incremento ou mesmo retirada das medidas existentes.

Outra questão da pesquisa que possui suas limitações é a que trata de patentes, que questiona se a empresa solicitou o registro (no Brasil e/ou no exterior) de pelo menos uma patente no período de cobertura da pesquisa. Única sobre o assunto, a questão carrega as limitações tradicionais deste tipo de informação, como a existência de outros mecanismos de proteção que, dependendo do setor ou área de atuação da empresa podem representar estratégias mais eficazes; tempo de processamento do pedido; custo; além de não capturarem as atividades inovativas das empresas, representando uma medida de resultado. Entretanto, além dos problemas convencionais, a questão é apresentada de forma muito simplificada, pois ao questionar a existência de pelo menos um depósito de patente, ao responderem positivamente à pergunta, as empresas não são reclassificadas, ou seja, é indiferente dentre aquelas com um ou aquelas com dezenas de pedidos. Além disso, é o único método de proteção à inovação abordado pela pesquisa, que, no caso de empresas de
países em desenvolvimento, representa a parcela menos significativa dos esforços das empresas para se manterem à frente dos competidores e absorverem o retorno esperado. Ao mesmo tempo, sua utilização como medida de inovação pode ocasionar erros, uma vez que a inovação só ocorre quando há a inserção da invenção no mercado, ou seja, nem todas as invenções transformam-se em inovações.

O tópico seguinte aborda os acordos de cooperação realizados pelas empresas com outras instituições voltados para o desenvolvimento de atividades inovativas. O mérito deste item consiste no reconhecimento de que as empresas cada vez mais se engajam em parcerias para condução de suas atividades, onde as interações, a participação em redes de informação e ligações efetivas são as principais responsáveis pelo aumento de tais atividades, uma vez que os riscos e custos são diluídos, os conhecimentos distribuídos e o acesso a novas tecnologias facilitado. Não obstante o mérito em abordar o assunto, a forma como é elaborada se restringe à identificação da nacionalidade do parceiro (nacional e/ou estrangeira) e do tipo da parceria. Em se tratando de uma pesquisa regional, é de se esperar que os dados obtidos possam capturar pelo menos parte do sistema de inovação local, verificando a força e frequência com que as interações ocorrem dentro da região pesquisada; em quais aspectos a capacidade regional se encontra defasada, necessitando de apoio externo; até que ponto o apoio proveniente de outras regiões é capaz de suprir as carências locais, e quando esta tem que ser obtida ou complementada do exterior. Portanto, são pontos importantes, sobretudo para o desenho de estratégias e políticas locais, que ficam restringidas uma vez que questões mais profundas, e úteis, não estão presentes, deixando de lado informações sobre a importância, o objeto da cooperação, os benefícios resultantes, os obstáculos ou entraves à interação, dentre outros. Além disso, as parcerias mais importantes não são necessariamente aquelas diretamente relacionadas a atividades inovativas (como consta na pesquisa), as comerciais ou as que trazem benefícios financeiros. Grande parte delas é fonte para troca de conhecimento e de experiência, que faz com que as empresas envolvidas ampliem e aprofundem suas capacidades, incrementem suas bases de conhecimento e habilidades, introduzam melhorias e modificações em seus produtos e processos, procedam a mudanças organizacionais que criem condições e ambiente propício ao desenvolvimento e incremento de suas capacidades tecnológicas.
Outro aspecto da pesquisa, como não poderia deixar de constar tendo em vista a metodologia e os modelos de levantamento utilizados como parâmetro, é a grande ênfase conferida à P&D, que aparece em sete dentre as vinte questões do questionário (35%). Itens como o tipo da P&D (sistemática ou ocasional), quantidade de pessoal alocado em P&D (total e por qualificação), existência de laboratórios formais de P&D, sua localização. A novidade inserida nessa versão é o item que questiona a aquisição externa de P&D, ou seja, contratação de atividades de P&D de terceiros (que pode ser considerada uma forma de difusão). Entretanto, empresas de países em desenvolvimento são caracterizadas pela baixa disponibilidade de recursos, por arranjos organizacionais e atividades informais, predominância de mudanças incrementais e contínuas, além da falta de registro sistemático de determinadas atividades, uma vez que muitas são sobrepostas e torna difícil a separação. Um ponto positivo é a ausência de questão sobre os gastos em P&D, que também ficaria prejudicada devido às características expostas, gerando resultados pessimistas, mas falsamente embasados. Os resultados da pesquisa mostram que 75% das empresas inovadoras declararam ter realizado atividades internas sistemáticas de P&D no período analisado. Este número pode parecer elevado, tendo em vista as características restritivas deste tipo de atividade em países de industrialização recente. Entretanto, parece estar condizente com a porcentagem de empresas que se declararam inovadoras (4%), ou seja, a maior parte das empresas que se declararam inovadoras são aquelas que apresentavam aspectos formais e convencionais da definição tradicional de inovação.

Não obstante as críticas quanto às questões existentes e suas abordagens, outras ainda podem ser levantadas com relação à ausência de questões neste tipo de levantamento sobre outros aspectos da inovação. Presentes na edição anterior e excluídos da PAEP-2001, os fatores influenciadores das atividades inovativas não foram contemplados. Também não constaram questões referentes aos obstáculos enfrentados pelas empresas na condução de suas atividades inovativas, mesmo considerando a importância de ambos para a definição e melhorias das estratégias e políticas voltadas para a gestão da inovação, pois à medida que são identificadores os fatores propulsores da inovação e aqueles que a restringem, as medidas de apoio à inovação, tanto pública quanto privadas, podem ser modeladas para atacar os problemas encontrados e estimular ainda mais os fatores influenciadores da inovação.
Portanto, o rol de críticas e limitações da PAEP supera, em grande medida, aquele da PINTEC. Grande parte das limitações decorre por se tratar de uma pesquisa que busca levantar informações acerca de diversas atividades econômicas, que, mesmo sendo de nível regional, apresentam os mesmos elementos encontrados em nível nacional, porém em menor escala. Portanto, quando não tem um foco determinado, as informações obtidas são vagas, desconexas e insuficientes. Ao mesmo tempo, apesar de utilizar o Manual de Oslo como metodologia e, consequentemente, a abordagem do sujeito, a pesquisa não consegue capturar o conjunto de atividades inovativas desempenhadas pelas empresas, extremamente importantes no caso de países em desenvolvimento, onde a difusão, os processos de melhoria e adaptação de equipamentos adquiridos externamente, as habilidades e conhecimentos adquiridos dentro da empresa, através das atividades de rotina, são cruciais e determinantes de seus esforços. Pelo contrário, o foco acaba recaíndo muito mais nos insumos e resultados, fazendo com que os resultados encontrados sejam demasiadamente pessimistas ou incoerentes à realidade do contexto (por exemplo, a taxa de inovação das empresas na PAEP-2001 ficou em torno de 4%, ao passo que na PINTEC, mesmo considerando que é de nível nacional, ficou em 33,3%, o que já pode ser considerado como um valor baixo).

5.4. EAI – Conceitos e Metodologia

A pesquisa de atividades de inovação na indústria uruguaia (Encuesta de Actividades de Innovación en la Industria Uruguaya – EAI) surgiu da necessidade desse país de dispor de informações atuais que servissem de base para o desenho e avaliação das políticas voltadas para o aprimoramento e fortalecimento dos sistemas de inovação, além de apoiar as ações das empresas destinadas ao avanço de seu acervo tecnológico (DINACYT, 2003). A EAI representa o segundo esforço do país dedicado à investigação das atividades tecnológicas da indústria uruguaia, sendo que o primeiro, denominado “Encuesta sobre capacidades científico-tecnológicas en la industria uruguaya”, foi conduzido em 1986 pelo Centro de Informações e Estudos do Uruguai (Centro de Informaciones y Estudios del Uruguay - CIESU) (BAPTISTA, 2004).

A EAI é realizada no âmbito do Programa de Desenvolvimento Tecnológico (PDT), financiado pelo Banco Interamericano de Desenvolvimento, e é conduzida pela Direção de
Inovação, Ciência e Tecnologia para o Desenvolvimento¹³ (Innovación, Ciencia y Tecnología para el Desarrollo – DICyT), órgão do Ministério de Educação e Cultura uruguaio voltado para o desenho e execução de políticas e estratégias nesta área, e conta com a colaboração do Instituto Nacional de Estatística (INE), instituição responsável pelo trabalho de campo e sistematização dos dados obtidos. A pesquisa tem como principal finalidade “obter informações tanto sobre as atividades de inovação realizadas pelas empresas como sobre as outras características e atividades associadas que ajudam a compor o cenário onde a inovação se desenvolve” (DINACYT, 2003).

A primeira realização da EAI referiu-se ao período de 1998-2000 e teve o trabalho de campo realizado durante os anos 2001 e 2002 (EAI-I). A segunda versão, realizada em 2004, abrange o período de 2001-2003 (EAI-II), e foi conduzida nos mesmos moldes da realização anterior, tanto estrutural quanto conceptualmente. Tem como principal objetivo “conhecer melhor os caminhos, as dificuldades e os desafios que as empresas industriais [uruguaianas] têm encontrado em suas estratégias de desenvolvimento tecnológico”, além de investigar as principais diferenças e modificações mais importantes quando comparados os seus resultados àqueles do exercício de mensuração anterior. No caso destas duas versões, foi de particular interesse a realização da segunda edição em formato que permitisse a comparação com os resultados da versão anterior, uma vez que no momento de aplicação da segunda pesquisa a recessão econômica e crise financeira que o país vinha enfrentando ainda não tinham sido superadas, sendo de grande importância o confronto dos resultados com aqueles anteriores (DICYT, 2006).

A fim de assegurar a homogeneidade e comparabilidade com outros levantamentos conduzidos ao redor do mundo (como por exemplo o CIS-III) e capturar especificidades dos processos inovativos uruguaios, a EAI baseia-se nas diretrizes metodológicas presentes no Manual de Bogotá – manual este que propõe uma normalização das diretrizes e indicadores de inovação tecnológica para os países da América Latina e Caribe, buscando um equilíbrio entre o respeito aos conceitos e metodologias dos manuais da OCDE (Manual de Oslo e Manual Frascati) e a incorporação de instrumentos específicos para coleta e alcance de particularidades de tais países (DINACYT, 2003).

¹³ Antiga Direção Nacional de Ciência, Tecnologia e Inovação (Dirección Nacional de Ciencia, Tecnología e Innovación – DINACYT).
O trabalho de campo foi conduzido pelo INE, garantindo o segredo estatístico dos dados e obrigatoriedade de resposta, mediante pesquisas conduzidas presencialmente por estudantes previamente treinados e capacitados para a tarefa, com a empresa informando o respondente com perfil mais adequado de acordo com o tópico tratado. O questionário aplicado dividiu-se em duas partes: uma voltada especificamente para informações sobre atividades de inovação desenvolvidas pelas empresas e outra visando às características gerais das empresas. O questionário das atividades de inovação é composto de vinte e três questões, divididas em onze seções. Assim, contempla tópicos acerca das atividades de inovação desenvolvidas, dos recursos humanos dedicados a elas, financiamentos, resultados, objetivos, fontes de informação e obstáculos das atividades de inovação, além de questões referentes à vinculação com o Sistema Nacional de Inovação, utilização das tecnologias de informação e comunicação entre os empregados e atividades vinculadas à qualidade.

A EAI toma a indústria manufatureira uruguaia como unidade de análise, incluindo empresas com mais de cinco empregados. A EAI-I contou com uma amostra composta por 762 empresas, com taxa de resposta de 92%; ao passo que a EAI-II selecionou 828 empresas, das quais 98% responderam efetivamente à pesquisa; taxas estas consideradas elevadas frente aos parâmetros internacionais.

Assim, tendo em vista que a pesquisa uruguaia mais recente, com material disponível e publicado, diz respeito à segunda realização de seu levantamento nacional, o objeto de análise desta seção é a EAI-II - II Encuesta de Actividades de Innovación en la Industria. Apesar de baseada conceitual e metodologicamente em manuais internacionais, a pesquisa traz um elemento novo, ao utilizar explicitamente o Manual de Bogotá como parâmetro principal para sua elaboração, condução e avaliação. Portanto, para proceder à sua apreciação crítica, utiliza-se os conceitos e teorias de inovação, mais especificamente aqueles relacionados a capacidades e aprendizagem tecnológicas, voltados para países de economias emergentes em sua forma mais ampla.

5.4.1. Méritos e Limitações da EAI

De uma forma geral, pode-se dizer que a EAI se assemelha à PINTEC em diversos aspectos, tais como a preocupação com a questão da comparabilidade com pesquisas
internacionais; adoção do conceito mais amplo de inovação; busca pela consideração de especificidades do país; os assuntos e dimensões abordados; a estruturação e formatação do questionário; condução por órgãos nacionais de estatística; a unidade de análise; a forma de coleta dos dados, sua análise e divulgação dos resultados; dentre outros, o que, consequentemente, atribui a ambas as pesquisas praticamente méritos e limitações similares.

Entretanto, algumas diferenças principais podem ser identificadas, dentre as quais destaca-se o manual escolhido como base metodológica. Enquanto a PINTEC toma o Manual de Oslo como referencial, a EAI adota as diretrizes do Manual de Bogotá. Dentre um dos méritos, pode-se atribuir a esta escolha um ponto positivo para a pesquisa, uma vez que reflete a preocupação com a utilização de uma orientação metodológica voltada para pesquisas de inovação tecnológica conduzidas no âmbito de países em desenvolvimento (América Latina e Caribe). Neste sentido, como busca oferecer instrumentos a tais pesquisas com fins de capturar especificidades próprias destes tipos de economias, representa um esforço no sentido de melhorá-las e adequá-las, além de refletir o reconhecimento de que os manuais da OCDE (Manual de Oslo e Manual Frascati) não fornecem, sozinhos, os meios adequados para adentrar nos tipos de quesções necessárias.

Por outro lado, como o Manual de Bogotá se baseia nas diretrizes conceituais e metodológicas oferecidas pelo Manual de Oslo, mesmo incluindo instrumentos e procedimentos para captura da conduta tecnológica de empresas de países em desenvolvimento, muitas das limitações conferidas a aspectos do Manual de Oslo quando aplicado a contextos de economias emergentes ainda podem ser vistas no Manual de Bogotá. Com relação a tais aspectos, muitos estudos já têm identificado suas limitações e necessidades de adaptação. Assim, há um reconhecimento, até mesmo por parte dos pesquisadores responsáveis pela formulação e integração original do Manual de Bogotá, de que alguns de seus aspectos precisam ser reformulados, re-analisados, com vistas a modificar, complementar ou enriquecer seu conteúdo original, sendo que já existem diversos estudos orientados neste sentido. Dessa forma, passa-se a reconhecer suas limitações e, baseados em experiências concretas realizadas em alguns países da região a que se destina (América Latina e Caribe) e mesmo em revisões de conceitos e definições adotados, têm buscado concentrar esforços visando superar tais problemas através da reprodução e/ou desenvolvimento de sugestões, que impliquem em alguma agregação,
mudança ou adaptação com relação às diretrizes vigentes no Manual e em direção à elaboração de uma segunda versão “adaptada”.

Ainda nesse sentido, uma das principais defesas quando da adoção de manuais internacionais, seja o Manual de Oslo, seja o Manual de Bogotá (que, conforme seus elaboradores, respeita as definições daquele a fim de permitir comparabilidade com pesquisas nele baseadas), é a questão da comparabilidade. Entretanto, na medida em que tais manuais não têm como objetivo definir a forma exata das pesquisas e nem o formato das questões (ou seja, não há uma rigidez com relação aos questionários), quando uma determinada proposta busca enfatizar outros aspectos, ou mesmo alcançar aqueles contidos no Manual de uma forma que os possibilite capturar questões específicas, a comparabilidade pode ficar comprometida. Como o próprio nome já define, as especificidades de cada país normalmente são únicas, fazendo com que cada um busque os meios adequados de capturá-las, sendo que em grande parte das vezes, como não há um correspondente exato para tomar como padrão ou modelo, adotam medidas próprias para coleta das informações vistas como necessárias.

Um exemplo deste problema se relaciona a um ponto principal da pesquisa, que são as definições adotadas na EAI, que é exatamente o que rege a interpretação e, conseqüentemente, as respostas e resultados da pesquisa. A primeira delas se refere à definição de empresa inovativa, considerada como “a unidade econômica que durante o período analisado (2001-2003) realizou alguma atividade de inovação, [...] considerada como as ações e gastos levados a cabo por uma empresa com a finalidade de gerar ou introduzir mudanças ou melhorias que incidam positivamente em seu desempenho” (DICYT, 2006). Da definição pode-se perceber a preocupação em capturar não somente os resultados, mas, principalmente, as atividades inovadoras, englobando os aspectos mais amplos da inovação, mais adequado a países em desenvolvimento e, portanto, representando um mérito para a EAI. Por um lado, da perspectiva de países em desenvolvimento, esta é a forma mais adequada de se tratar o conceito de inovação neste contexto já que seus processos tecnológicos são caracterizados de forma diferente daqueles de países desenvolvidos, em grande parte seguindo trajetórias até mesmo reversas, onde a difusão e as inovações incrementais têm papel primordial. Com isso, pelo formato do

14 Algumas sugestões bem como estudos neste sentido podem ser encontrados em Lugones e Peirano (2004b).
diagnóstico e os tipos de atividades consideradas como inovativas pela pesquisa (P&D interna, P&D externa, aquisição de bens de capital, hardware, software, transferências de tecnologia e consultorias, desenho industrial, gestão e capacitação de pessoal), acaba contabilizando um maior número de empresas inovadoras/inovativas, refletindo nos resultados quantitativos (de acordo com o resultado da EAI-II, 36% das empresas uruguaias realizaram atividades de inovação). Estes, quando comparados com os de pesquisas internacionais de países desenvolvidos (que normalmente não são tão amplos quando da consideração do que é inovação e/ou empresa inovadora), acabam parecendo paradoxais, pois a taxa de empresas inovadoras sobre o total de empresas acaba sendo mais alta nos países da América Latina do que nas economias europeias (LUGONES; PEIRANO, 2004b).

Assim, comparativamente aos resultados de economias desenvolvidas, a primeira impressão é a de que o Uruguai é um país com empresas altamente inovadoras e, portanto, com desempenho tecnológico acima da média até mesmo daqueles países da fronteira. Entretanto, pelo conceito de inovação adotado, ou seja, a consideração dos aspectos mais amplos, da importância das atividades desempenhadas pelas empresas e também da difusão (cuja importância se reflete nos resultados das principais atividades de inovação realizadas, onde predominam a aquisição de bens de capital – realizada por 58% das empresas), os resultados esperados deveriam ser superiores aos encontrados, demonstrando uma dentre duas possibilidades: ou o país encontra-se com problemas para se desenvolver tecnologicamente ou a forma como a mensuração vem sendo feita está inadequada.

Ainda com relação aos conceitos utilizados, apresenta os mesmos problemas da PINTEC na definição do alcance e/ou grau de novidade das inovações: “novo para o mercado local ou nacional” e “novo para o mercado internacional”. Novamente, é ambíguo o estabelecimento exato de qual é o mercado relevante para a empresa, uma vez que ela pode fabricar mais de um produto e destiná-los a mercados distintos (LUGONES; PEIRANO, 2004b). Além disso, as redes e cadeias cada vez mais globais têm feito com que o fator territorial ou geográfico tenha menos capacidade de atuar como parâmetro preciso e inequívoco para auxiliar tais definições. Ao mesmo tempo, nem todos os empresários contam com informação adequada para confirmar se sua inovação é efetivamente uma novidade para o mercado mundial, ficando, em grande parte dos casos, a cargo de uma percepção própria e, portanto, subjetiva.
Um ponto positivo com relação às informações coletadas sobre as atividades de inovação é o questionamento da pesquisa quanto à obtenção de resultados para cada uma das atividades. Ao questionar se já obteve resultados, se ainda não os obteve ou se abandonou a atividade, pode-se inferir sobre a importância de cada uma delas para os resultados globais da empresa, relacioná-los aos obstáculos listados em seção específica, às prioridades estabelecidas (financiamento, alocação de pessoal), aos objetivos da empresa ao desenvolvê-las, possibilitando o confronto com as estratégias previamente estabelecidas no plano da empresa. Entretanto, apesar de avançar neste sentido, sobretudo com relação à PINTEC (que não analisa o alcance de resultados pelas atividades inovativas), muitas vezes é difícil informar se determinado resultado, como originalmente imaginado, foi alcançado, pois pode ser que o resultado esperado não tenha logrado êxito, mas tenha gerado “externalidades” positivas que contribuíram em outros aspectos ou para outros projetos. O mesmo ocorre com atividades abandonadas, que mesmo tendo sido finalizadas antes do previsto, não quer dizer que não geraram algum tipo de benefício, ou seja, podem ter contribuído, mesmo que de forma parcial, para a continuação e avanço em determinado estágio do processo, além do fato de que seu abandono pode ser resultante de outro fator que não seu insucesso (tais como problemas de financiamento, indisponibilidade de insumos externos necessários, dentre outros). Além disso, muitos resultados são provenientes de diversas frentes e atividades, tornando difícil a separação ou mesmo identificação de quais atividades colaboraram efetivamente para seu sucesso, pois há aquelas com participação direta, mas há outras com contribuições mais tênues e, que apesar de não contribuírem diretamente para algum resultado, são importantes para os processos de aprendizagem da empresa, para o incremento e avanço de suas capacidades e habilidades. Ou seja, a própria definição de resultado é ambígua, uma vez que varia conforme a percepção da empresa, além de não ser suficiente para informar a capacitação adquirida, as dificuldades enfrentadas, o tempo dedicado, sua evolução ao longo do tempo, ou seja, os componentes da inovação que realmente importam em contextos de países em desenvolvimento.

Ainda com relação às atividades de inovação consideradas pela pesquisa como definidas no Manual de Bogotá, a detecção de inovação se realiza em um sentido mais amplo do que aquele do Manual de Oslo, incorporando explicitamente a mudança organizacional, que ocupa um papel cada vez mais estratégico nas ações das empresas voltadas para melhorar suas capacidades e competências (DINACYT, 2003). Uma vez que a absorção de novas
tecnologias, muitas das quais incorporadas em máquinas e equipamentos, representa um componente forte nos processos de inovação de países em desenvolvimento15, a mudança organizacional adquire uma relevância substancial, tornando-se elemento chave para explicar as diferenças de desempenho entre as empresas. Como a simples compra de bens de capital está acessível, igualmente, a todas as empresas, restrita apenas a uma questão de verba/orçamento, a aquisição pura não é suficiente para explicar uma melhoria de performance frente às demais empresas. Pelo contrário, o fator determinante está na capacidade das empresas em inserir tais elementos em sua estrutura, rotinas e conhecimentos intrínsecos às pessoas que dela fazem parte, além de proceder a ajustes e melhorias visando sua adequação às particularidades vigentes e às que se fizerem necessárias com o tempo (de acordo com o local onde são inseridos, o tipo de serviço a ser executado e o propósito esperado, por exemplo), que são justamente os pontos onde a mudança organizacional pode (e deve) influenciar.

Portanto, este é um dos destaques da EAI, que aborda não somente as inovações tecnológicas de produtos e processos (chamadas inovações TPP pela pesquisa, para fins de comparação internacional), mas também aborda abertamente as inovações não tecnológicas, introduzidas em 25\% das empresas industriais (contra 31\% das inovações TPP), com destaque nas pequenas empresas. Entretanto, além do mérito de inserir este debate na pesquisa e de sua representatividade frente ao total de inovações16, o enfoque ainda é muito abrangente e distribuído ao longo das questões, muitas vezes confundindo-se com outros itens, o que prejudica sua identificação explícita bem como o aprofundamento adequado e necessário para explorar de forma detalhada seus principais aspectos e nuances.

Outro mérito da EAI relaciona-se à inclusão de item específico para abordagem dos objetivos seguidos pelas empresas no desenvolvimento de suas atividades de inovação. É importante que os levantamentos não só sirvam como fonte de informação para estratégias futuras das empresas e para políticas públicas voltadas para inovação, mas também déem

15 comprovado pelo resultado da EAI-II onde 58\% das atividades inovativas desempenhadas pelas empresas correspondem à aquisição de bens de capital, para as quais foram destinados 70\% dos recursos totais empregados em atividades de inovação.

16 o incremento frente ao triênio anterior, cuja taxa ficou em 19\%, demonstra a importância que as inovações não tecnológicas vêm adquirindo, sobretudo em contextos de crise e queda de investimentos, como foi no caso do Uruguai, através da utilização criativa dos recursos e capacidades existentes.
conta de capturar as estratégias efetivamente praticadas pelas empresas, ou seja, observar se as ações e atividades desenvolvidas estão de acordo e coerentes com os programas estratégicos de inovação definidos pelas empresas. Assim, ao mesmo tempo em que os resultados de pesquisas como a EAI podem servir como fonte de informações para definição de futuras estratégias (tanto públicas quanto privadas), podem ser também fonte para análise das estratégias correntes e sua adequação às ações desempenhadas e os esforços perseguidos. Além disso, a identificação dos objetivos das atividades inovativas serve como indicativo do grau de deliberação e intencionalidade da conduta tecnológica das empresas, uma vez que podem ser contrapostos às atividades realizadas e também servir como indício da eficácia dos planejamentos, visto que os resultados ou projetos em andamento devem refleti-los, ainda que se considerem possíveis adaptações e alterações estratégicas devido a mudanças conjunturais. Na EAI-II os principais objetivos destacados pelas empresas na condução de suas atividades de inovação foram a melhoria da qualidade dos produtos (67%) e ampliação dos mercados (56%). Quando contrapostos aos principais impactos das inovações (manutenção do posicionamento no mercado – 36%, e melhoria na qualidade dos produtos – 34%), os resultados demonstram certa coerência. Um cuidado que se deve tomar neste tipo de questionamento é separar, adequadamente, objetivos de efeitos ou impactos, sem deixar que os últimos influenciem a identificação (a posteriori de sua definição e já com os resultados prontos) dos primeiros, uma vez que tais informações são coletadas em um mesmo momento, e não quando ocorrem.

Outro item da pesquisa se refere à origem do financiamento das atividades de inovação. Um mérito para a EAI-II é que não são questionadas as quantias absolutas provenientes de cada fonte de financiamento, já que é um tipo de informação difícil de ser obtida, pois, muitas vezes, não há registros especificados; uma mesma soma de recursos pode ser proveniente de múltiplas fontes, através de acordos e alianças, tornando difícil a separação e atribuição da parcela do montante a cada uma das fontes participantes; os recursos podem não ser destinados a uma única atividade, e sim compartilhados e distribuídos entre as necessidades da empresa, podendo, inclusive, ter parte reservada a outras atividades que não as de inovação. Pelo contrário, a pesquisa solicita uma distribuição percentual entre as fontes de financiamento destacadas (com espaço para inclusão de fontes não elencadas nas opções). Entretanto, essa forma de abordagem não está livre de limitações, já que muitas vezes a obtenção de dados relativos se baseia na percepção e subjetividade do respondente.
ou procedem a essa relação a partir da estimativa de dados absolutos, podendo gerar os mesmos problemas anteriormente mencionados.

Por outro lado, a análise dos resultados da EAI-II referente à origem do financiamento das atividades de inovação mostra que o reinvestimento dos lucros e o aporte dos sócios são as principais fontes utilizadas pelas empresas, responsáveis por 68% e 19% do total de recursos para este destino, respectivamente. Daí pode-se perceber a ausência da presença governamental nas atividades inovadoras das empresas uruguaias, tanto que este tópico nem é inserido na pesquisa, apesar da importância e essencialidade de programas governamentais voltados para o incentivo à inovação em economias em desenvolvimento, tendo em vista as dificuldades de tais contextos quanto à formalidade deste tipo de atividade; à escassez de recursos, muitas vezes vinculados ao faturamento e, portanto, sem previsão orçamentária própria; e aos riscos e incertezas inerentes a atividades de inovação. Sobretudo na situação delicada enfrentada pelo país no período pesquisado (recessão econômica e crise financeira), o apoio governamental torna-se ferramenta essencial na superação dos problemas e fornecimento de diretrizes e apoios concretos às empresas para condução e desenvolvimento de suas atividades, incluídas as de inovação. Portanto, este é um dos pontos falhos da pesquisa, que não atribui a devida importância ao papel do governo nesse processo, nem procura avaliar a forma com que as empresas utilizam e aplicam os programas governamentais em suas atividades.

Outro aspecto abordado pela EAI e que não poderia deixar de constar na pesquisa, tendo em vista a importância cada vez maior das interações para o desenvolvimento de atividades inovativas, se refere à inclusão de item sobre os vínculos estabelecidos pelas empresas industriais uruguaias como o Sistema Nacional de Inovação. Além de questionar para cada agente listado a existência de vínculo, para os casos positivos, pede-se o objeto do vínculo, (dentre as possibilidades: solicitação de financiamento, solicitação de informação, capacitação, assessoria em mudança organizacional, assistência técnica, desenho e P&D). Entretanto, apesar do mérito da inclusão do objeto do vínculo, fatores como o tipo do vínculo, a forma com que é estabelecido, sua relevância e grau de importância para as atividades da empresa não são alcançados. De acordo com os

17 Tais dificuldades podem ser confirmadas frente aos principais obstáculos à inovação identificados pelas empresas na EAI-II: incerteza da economia – 65%, reduzido tamanho do mercado – 56% e dificuldades de acesso a financiamento – 43%.
resultados, 63% das empresas manifestaram ter se relacionado com algum agente do SNI como parte de suas atividades de inovação. Apesar de a taxa se mostrar 30% superior à da pesquisa anterior (que registrou 48%), de acordo com a EAI esta porcentagem ainda pode ser considerada baixa, ainda mais considerando o fato de a pesquisa não ter restringido a vinculações de caráter formal, o que pode ser reflexo de uma falta de definição explícita na pesquisa sobre o que procurava capturar e considerar, deixando a cargo da empresa a interpretação e julgamento de o que considera como vínculo (podendo ficar sujeita a critério tais como formalidade, periodicidade, importância, obtenção de benefícios, dentre outros). A preferência a relacionar-se com agentes com os quais se sustentam vínculos comerciais, que, apesar de não serem obrigatoriamente formais, são mais fáceis de identificar e registrar, tais como fornecedores (39%) e clientes (33%), pode indicar parte desta falta de clareza sobre quais são os vínculos a considerar, uma vez que aqueles mais óbvios e visíveis acabaram sendo os mais indicados.

Um das principais críticas às pesquisas de inovação em países em desenvolvimento diz respeito à ênfase que costuma ser dada a P&D, presente em muitas questões e, muitas vezes, com tópico exclusivo e extenso sobre o tema, não considerando as particularidades desse tipo de atividade em países em desenvolvimento: informalidade, escassez de recursos próprios e fixos, escassez de pessoal com dedicação exclusiva. Pelo contrário, um mérito da EAI-II é não tratar a P&D de forma específica ou privilegiada, mas sim, de forma similar como o faz com as outras atividades de inovação, com a exceção do tópico voltado para os recursos humanos dedicados a atividades de inovação, onde o detalhamento do número de pessoas ocupadas em P&D fica destacado das demais atividades.

Por outro lado, ainda confere importância substancial às patentes como método de proteção das inovações, uma vez que é o único método considerado na pesquisa. Portanto, apesar de destacar as patentes solicitadas das patentes obtidas, bem como solicitar o quantitativo em cada caso (diferente do que costuma ocorrer nas pesquisas, onde normalmente se questiona a solicitação de pelo menos um pedido de patente, não diferenciando aquelas com um único pedido daquelas com centenas de solicitações), o fato de não considerar outros métodos de proteção (registro de desenho industrial, marcas, complexidade no desenho, segredo industrial, dentre outros), muitas vezes mais
importantes e presentes em contextos de países em desenvolvimento, acrescenta uma limitação adicional à pesquisa.

Portanto, a partir da análise realizada neste capítulo, pode-se perceber que existem diversos aspectos que merecem destaque nos surveys de inovação conduzidos em países em desenvolvimento. Em primeiro lugar, representam experiências meritórias, altamente importantes e significativas, que vêm se consolidando ao longo do tempo e servindo como fonte e insumo para importantes decisões – empresariais e governamentais. Voltam-se, principalmente, para captura de aspectos e elementos mais amplos e gerais da inovação, a partir de uma perspectiva de níveis meso e macro, de uma lente exterior, de uma grande amostra de empresas (aproximadamente, 1500 – ECIB; 11.000 - PINTEC (amostra efetiva), 43.013 - PAEP (amostra ampliada), 828 - EAI), buscando agregar empresas com características semelhantes, avaliar os sistemas nacionais de inovação, as cadeias e fluxos de ligação, os fatores mais influentes da inovação, as características gerais das empresas, sem, contudo, adentrar em suas especificidades, nos aspectos e nunces de sua trajetória ao longo do tempo. Apesar de muitos dos surveys virem sendo conduzidos de forma sistemática, permitindo a construção de séries de dados temporais, ainda são raros aqueles que resgatam dados passados a fim de comporem com os atuais para analisar a evolução das trajetórias ao longo do tempo. Normalmente o que é feito nesse sentido é a exposição de diferença entre aspectos quantitativos gerados, o percentual de modificação/alteração de dados obtidos a partir de um mesmo indicador, sem adentrar e aprofundar nos aspectos qualitativos que este tipo de base de dados é capaz de oferecer. Assim, pode-se dizer que este tipo de estratégia permite comparações internacionais, à medida que se baseia em indicadores padronizados; identificação instantânea de resultados inovadores (produtos e processos inovadores, patentes, publicações), úteis e relevantes do ponto de vista da globalização (onde, muitas vezes, o que realmente importa são os resultados propriamente ditos); uma visão mais completa e abrangente do desenvolvimento tecnológico nacional, à medida que analisa uma amostra significativa de empresas. Entretanto, por carecer de informações mais detalhadas e refinadas, é essencial seu complemento por estratégias que fornecem esta visão mais focada, de longo prazo, detectando nuances e especificidades intra-organizacionais a partir de uma perspectiva dinâmica que aborde o processo de desenvolvimento e acumulação de capacidades tecnológicas e como fatores internos e externos influenciam na direção e taxa desta trajetória.
Este capítulo tem como objetivo apresentar e examinar estudos empíricos realizados à base de uma métrica de mensuração de capacidades tecnológicas, de forma a observar diferentes aplicações do modelo, seu emprego em distintos tipos de empresas e indústrias, a forma como a métrica é adaptada para cada uma das situações, as possibilidades de utilização, bem como os tipos de informações e conclusões que o modelo é capaz de proporcionar. O exame dos estudos apresenta-se sob três perspectivas principais: abordagem de tipos e níveis de capacidades tecnológicas identificados nas indústrias/empresas selecionadas; análise da direção das trajetórias de acumulação de capacidades tecnológicas das empresas; e exame da dinâmica do processo de acumulação de capacidades, caracterizada pela identificação da taxa de acumulação entre os diferentes níveis e funções tecnológicas.

Portanto, são extraídas generalizações que se referem às potencialidades deste tipo de abordagem no que se refere ao fornecimento de informações mais detalhadas e focadas para a compreensão do processo inovador em contexto de industrialização tardia, levando em consideração as características peculiares e distintivas de tais empresas. Por outro lado, também são expostas as principais limitações que este tipo de abordagem carrega no que se refere ao tratamento de informações cuja comparabilidade e representatividade são essenciais.

As aplicações empíricas apresentadas nesta seção podem ser organizadas em dois grupos, baseado na forma e desenho das pesquisas. O primeiro se relaciona a estudos de profundidade no nível de empresas (estudos de caso simples ou comparativos) e o segundo é baseado em estudos realizados em uma amostra de empresas. Cada um dos estudos foca em empresas de diferentes setores.
6.1. Modelo de mensuração de capacidades tecnológicas no contexto de industrialização tardia

A fim de identificar e medir capacidades tecnológicas, Dahlman et al. (1987) e Lall (1987; 1992; 1994), baseados nos estudos de Katz (1987), desenvolveram uma métrica alternativa daquelas tradicionalmente utilizadas, na qual as competências tecnológicas das empresas analisadas eram categorizadas por funções e sua acumulação processada a partir das categorias mais simples, em direção às mais complexas. Ou seja, a partir da incorporação de um conjunto básico de funções, a empresa os amplia à medida que assume tarefas mais complexas, a fim de atingir os estágios mais avançados (FIGUEIREDO, 2004a).

A abordagem do modelo utiliza a definição ampla de competência tecnológica, cujo sentido representa os recursos – aptidões, conhecimentos e experiência, sistemas organizacionais – necessários para gerar e gerir mudanças tecnológicas, ou seja, são as habilidades das empresas para realização de aperfeiçoamentos nas diferentes funções tecnológicas (FIGUEIREDO, 2001a, 2003). Através do modelo, é possível distinguir entre “competências de rotina”, definidas como a capacidade para produzir bens a um determinado nível de eficiência e determinados requisitos de insumo; podendo ser descrita como habilidades, conhecimentos e arranjos organizacionais para usar ou operar certa tecnologia; e “competências inovadoras”, que dizem respeito à capacidade para criar, modificar ou melhorar produtos, processos ou equipamentos, podendo ser descrita como a capacidade para mudança ou geração, consistindo nas habilidades, conhecimentos, experiências e arranjos organizacionais para adaptar e/ou desenvolver novos processos de
Tabela 6.1 – Capacidades tecnológicas em empresas de economias emergentes: um modelo descritivo

<table>
<thead>
<tr>
<th>Níveis de Competência Tecnológica</th>
<th>Funções Tecnológicas e Atividades Relacionadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Investimentos</td>
</tr>
<tr>
<td></td>
<td>Decisão e Controle sobre a Planta</td>
</tr>
</tbody>
</table>
(5) Intermediário

(6) Intermediário Superior

(7) Avançado

Chaves:

- E = Engenharia
- PCP = Planejamento e controle da produção
- CQ = controle de qualidade
- AF = Alto forno
produção, produtos e sistemas organizacionais, ou seja, são aptidões para modificar tecnologias, conhecimentos e mecanismos organizacionais (FIGUEIREDO, 2005a, 2007b).

A Tabela 6.1 apresenta um exemplo do modelo, onde as colunas mostram as capacidades tecnológicas por função, e as linhas por nível de dificuldade, que é medida pelo “tipo de atividade que a empresa é capaz de realizar por si mesma em diferentes intervalos de tempo” (FIGUEIREDO, 2002), possibilitando, assim, a identificação das competências tecnológicas desde um nível mais básico, onde estão presentes as competências de rotina, até níveis de competências mais avançados, caracterizados pelas competências para inovar.

Apesar de apresentar a capacidade tecnológica em níveis ou “estágios”, não pressupõe que todas as empresas de um setor, ou mesmo unidades de uma mesma empresa, necessariamente se capacitem na sequência linear apresentada, ou seja, permite a identificação de acumulação de capacidades rotineiras e inovadoras de forma paralela, o que é bastante observado em empresas de economias emergentes (FIGUEIREDO, 2005a). Portanto, permite a identificação de situações onde a empresa acumula partes de determinadas capacidades inovadoras sem que a acumulação das rotineiras para a mesma função esteja consolidada (acumulação truncada ou incompleta). Além disso, também não pressupõe que as capacidades sejam construídas, acumuladas, sustentadas (ou debilitadas) ao mesmo tempo e à mesma velocidade para cada uma das funções, ou seja, cada função tecnológica pode apresentar trajetória e ritmo particulares (FIGUEIREDO, 2004a).

Portanto, além da identificação dos níveis de capacidades atingidos pelas empresas, a aplicação empírica mais sofisticada do modelo permite examinar a velocidade (taxa) de acumulação – medida pelo número de anos que uma empresa ou setor industrial leva para alcançar determinado nível de uma função tecnológica específica –, sendo também possível a identificação do tempo em que permaneceu estacionada em determinado nível (FIGUEIREDO, 2005a). Assim, o exame da dinâmica industrial por meio da identificação dos níveis de acumulação, a preocupação na medição do tempo de acumulação tecnológica (questão ainda bastante negligenciada em estudos empíricos), a captura da construção e acumulação de capacidades também em níveis intermediários (tidos como pré-condição ao alcance de níveis mais elevados) e não somente das atividades mais avançadas, e a classificação e abordagem de funções tecnológicas específicas ao invés da empresa ou
setor como um todo (já que a maneira, direção, velocidade e profundidade de acumulação de competências pode ser distinta para cada função), são algumas das principais características desta métrica, que pode conduzir a estratégias de inovação mais focadas e mais coerentes (FIGUEIREDO, 2004a, 2005a).

6.2. Estudos em profundidade no nível de empresas

6.2.1. Evidências acerca das capacidades tecnológicas de empresas de aço no Brasil

Com a finalidade de tornar mais significativas as comparações, o autor examinou as fases comuns às duas companhias: a fase de implantação e de absorção inicial, que vai desde a definição do projeto e início das operações até um ano antes da instalação de novos serviços; a fase da expansão convencional, que se refere às principais expansões da capacidade da planta e vai desde a instalação de novos serviços até o final da década de 1980, quando se criaram novas condições econômicas no país e na sua indústria siderúrgica; a fase da liberalização e privatização, que corresponde às novas condições econômicas surgidas no Brasil, indo desde o início da década de 1990 até 1997, ano em que foi finalizada a etapa principal do trabalho de campo para esta pesquisa (FIGUEIREDO, 2001a, 2002, 2003).

planta’ e ‘engenharia de projetos’ –, processos e organização da produção, produtos, equipamentos). As capacidades de *rotina* foram desagregadas nos níveis 1 e 2 para as funções de Processos e organização da produção, Produtos e Equipamentos, e nos níveis de 1 a 4 para a função de Investimentos, enquanto os demais níveis foram associados às capacidades *inovadoras*. Assim, a partir do trabalho de campo, foram geradas informações quantitativas e qualitativas, dentre as quais parte delas encontra-se resumida na Tabela 6.2\(^{18}\) (FIGUEIREDO, 2001a, 2002, 2003).

Tabela 6.2 – Taxa de acumulação de capacidades tecnológicas na CSN e USIMINAS

<table>
<thead>
<tr>
<th>Níveis de Competência Tecnológica</th>
<th>Investimentos</th>
<th>Funções Tecnológicas</th>
<th>Produtos</th>
<th>Equipamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>USIMINAS</td>
<td>CSN</td>
<td>USIMINAS</td>
<td>CSN</td>
</tr>
<tr>
<td>Rotina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Básico</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>(2) Renovado</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>(3) Extra Básico</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Pré-Intermediário</td>
<td>25</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inovadoras</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Extra Básico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Pré-Intermediário</td>
<td>25</td>
<td>50</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>(5) Intermediário</td>
<td>30</td>
<td>0</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>(6) Intermediário-superior</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Durante a fase de implantação e de absorção inicial da Usinagas, que vai de 1956-72, a empresa conseguiu acumular competências de rotina nos níveis 1 e 2 para todas as funções tecnológicas e no nível 3 para a função de Investimentos, além de acumular, paralelamente, competências inovadoras nos níveis 3 (para as funções Processos e organização da produção e Equipamentos) e 4 (para a função Produtos). Ou seja, ainda durante sua fase inicial, já foi capaz de atingir níveis de competências inovadoras em três funções tecnológicas. Por outro lado, durante a mesma fase da CSN, que abrange o período de 1939-53, a empresa não conseguiu acumular adequadamente nem mesmo as competências mais básicas nos níveis 1 a 3, se restringindo à acumulação, incompleta, das

\(^{18}\) os números da tabela indicam aproximadamente o número de anos necessários para alcançar cada nível e tipo de capacidade.
competências rotineiras de níveis 1 e 2 para Investimentos e de nível 1 para a função Equipamentos (FIGUEIREDO, 2001a, 2002, 2003).

Na fase seguinte (expansão convencional), referente ao período de 1973-89 para a Usiminas e de 1954-89 para a CSN, observou-se que a Usiminas passou a acumular competências acima do nível 4 para todas as funções tecnológicas, de forma consistente e contínua, completando a acumulação de competências rotineiras para a função Investimento e seguindo na acumulação de competências inovadoras para todas as funções, conseguindo atingir o nível 6 nas funções Investimentos, Produtos e Equipamentos. Em contrapartida, a CSN não conseguiu avançar na acumulação de competências rotineiras mais básicas nas funções Processos e organização da produção e Produtos, mantendo-se nos níveis 1 e 2 (este não acumulado completamente), paralelamente à acumulação de competências inovadoras nos níveis 3 e 4, 3, 4 e 5, respectivamente. Além disso, permaneceu nas competências de rotina para a função Investimentos, não conseguindo seguir em direção às competências inovadoras; acumulou de forma incompleta e paralela os níveis 2 e 4 para a função Processos e organização da produção e 2 e 5 para a função Produtos; não ultrapassou a competência inovadora de nível 4 para a função Equipamentos.

A fase de liberalização e privatização da Usiminas, não representou nenhum avanço nos níveis de competências acumulados nas fases anteriores, mas sim sua manutenção, aprofundamento e rotinização. Já para a CSN, compreendeu a finalização da acumulação de capacidades ainda inconclusas nas fases anteriores, representando uma transição do nível 3 para o nível 4 de competência inovadora em Processos e organização da produção e do nível 4 para o nível 5 de competência em Produtos. Paralelamente, completou a acumulação dos níveis 1 e 2 de competências rotineiras para estas mesmas funções (FIGUEIREDO, 2001a, 2002, 2003).

Assim, à luz dos resultados apresentados na Tabela 6.2 para Usiminas e CSN, também podem ser notadas diferenças entre as empresas na taxa de acumulação tecnológica. A Usiminas levou 10 anos para acumular os níveis 1 e 2 para todas as funções tecnológicas, ou seja, precisou de 10 anos para completar a acumulação de capacidades de rotina (menos para a função investimentos, na qual demorou 25 anos, já que esta função tem 4 níveis de capacidades de rotina). Além disso, dentro desses 10 anos também acumulou o nível 3 de
competência para todas as funções, o que significa ter se engajado em atividades inovadoras na primeira década de operação em três funções tecnológicas. Na sequência, continuou a acumular, de forma contínua e consistente, capacidades além do nível 4, atingindo o nível 6 em todas as funções, exceto para a função de Processos e organização da produção. Portanto, a Usiminas levou 35 anos para acumular e manter capacidades inovativas aos níveis 5 e 6, e continuou por aprofundá-las após esse período.

Por outro lado, a CSN levou de 40 a 50 anos (dependendo da função tecnológica) para completar a acumulação de capacidades de rotina, ao passo que o nível máximo de capacidade inovadora atingida foi o nível 5, e somente para a função Produtos, permanecendo no nível 4 para as funções Processos e organização da produção e Equipamentos, e nem sequer atingindo as capacidades inovadoras para a função Investimentos. Ou seja, durante mais de 40 anos, exceto para a atividade centrada em Produto, a CSN não se moveu além da acumulação de capacidades de nível 4.

Análises e generalizações

Diante dos dados extraídos de Figueiredo (2001a, 2002, 2003), algumas generalizações extraídas do estudo podem ser destacadas bem como inferidas pela análise dos dados recém expostos. Primeiramente, a análise comparativa dos tipos e níveis de competências tecnológicas da Usiminas e da CSN indicou que, embora as empresas operem em um mesmo setor, sob condições ambientais semelhantes, tenham passado por fases semelhantes e produzam o mesmo tipo de produto, os níveis de capacidades tecnológicas atingidos variaram substancialmente entre as funções tecnológicas de cada uma das
empresas (FIGUEIREDO, 2001a, 2002, 2003), demonstrando diferenças substanciais nos padrões de acumulação de competências entre as empresas.

Ao tratar a empresa de forma desagregada, considerando suas funções tecnológicas e não a empresa como um todo, o estudo foi capaz de identificar diferenças intra-empresariais nos padrões de acumulação de capacidades, como ocorreu, por exemplo, na acumulação de competências da Usiminas na fase inicial, que acumulou, paralelamente, competências de rotina e competências inovadoras, demonstrando que mesmo internamente a empresa pode diferir no tipo, direção e aplicação dos esforços para construção de capacidades, evidenciando a necessidade de tratamento distinto uma vez que os esforços também são distintos. Ao mesmo tempo, permitiu perceber que nenhuma das duas empresas “pulou” qualquer dos níveis, ou seja, a acumulação se deu em todos os níveis (até o máximo atingido por cada uma das empresas), muito embora em alguns casos competências rotineiras e inovadoras tenham sido acumuladas de forma paralela.

Além disso, esta aplicação empírica da métrica permitiu abordar, simultaneamente, empresas que iniciaram suas operações em períodos distintos. Ao separar a análise em fases, onde procurou especificar cada uma delas de acordo com marcos e características aproximadas, o autor possibilitou a comparação e tratamento paralelos mesmo em se tratando de empresas que se encontravam, ao longo do tempo, em estágios distintos de desenvolvimento. Assim, ao não fixar períodos, a métrica pode ser aplicada em diferentes momentos e, principalmente, abordar longos períodos de tempo, através de uma perspectiva dinâmica, capaz de fornecer informações acerca da trajetória e histórico das empresas, e não somente do estágio em que se encontram no momento de aplicação da pesquisa, o que negligenciaria atividades e esforços passados, que são determinantes e indicativos dos desempenhos atuais e futuros.

A análise das trajetórias das duas empresas mostrou, sobretudo a fase de expansão convencional, que tanto a CSN quanto a Usiminas se empenharam em desenvolver competências tecnológicas inovadoras, apesar de as trajetórias de ambas terem se mostrado substancialmente diferentes. No final da segunda fase, a Usiminas acumulou as competências nos níveis 5 a 6 em todas as funções tecnológicas, ao passo que a CSN acumulou competências no nível 5 em apenas uma função tecnológica e nos níveis 3 e 4, de forma intermitente, nas demais, seguindo uma trajetória lenta e inconsistente quando
comparada à da Usiminas (FIGUEIREDO, 2001a, 2002, 2003). Assim, pode-se notar que esta fase foi reflexo das ações desempenhadas na fase anterior, demonstrando dois pontos principais: (i) o acúmulo de competências de rotina é essencial e determinante no acúmulo de competências inovadoras; não que seja pré-requisito, mas seu acúmulo estruturado e sólido fornece as bases adequadas para a promoção do acúmulo das competências inovadoras, de forma mais natural e continuada; e (ii) à medida que as empresas seguem em direção a níveis de competências mais complexas, as funções tecnológicas tornam-se mais relacionadas, onde o desempenho de uma influencia substancialmente no das demais, tornando importante que as diversas frentes da empresa evoluam conjuntamente, sem pontos de gargalo ou grandes deficiências capazes de acarretar consequências no desempenho global da empresa e, portanto, nas demais funções tecnológicas.

Adicionalmente, pode-se verificar que as trajetórias traçadas não representaram, como tradicionalmente se costuma considerar, uma sequência linear no acúmulo e encadeamento dos níveis, indo dos mais básicos aos mais avançados, onde a “abertura” do nível seguinte depende, necessariamente, do acúmulo completo no nível anterior. Pelo contrário, o exame das trajetórias mostrou, em algumas das funções, estagnações e até mesmo reversões dos níveis atingidos, além da presença de acumulação paralela entre os níveis de atividades rotineiras e inovadoras. Assim, a trajetória da Usiminas na última fase, diferentemente das anteriores, foi marcada pela manutenção, intensificação, expansão e rotinização dos níveis de competência inovadores em todas as funções tecnológicas, sem a acumulação de nenhum nível de competência novo. Por outro lado, a CSN teve trajetórias distintas em cada uma das funções, em diferentes sentidos e direções, abrangendo: (i) o enfraquecimento de duas funções tecnológicas, demonstrando que simplesmente atingir e completar o acúmulo de competências de um determinado nível não significa seu acúmulo permanente, principalmente se não forem tomadas medidas deliberadas no sentido de mantê-lo e fortalecê-lo; (ii) a conclusão da acumulação nos níveis 1 e 2 de atividades rotineiras em outras duas funções, mesmo já tendo sido acumulados níveis superiores de capacidades, o que comprova a possibilidade de acúmulo em paralelo; e (iii) a transição para um nível inovador superior em outras duas funções, ou seja, a continuação em direção a níveis mais avançados de capacidades, demonstrando, pois, uma trajetória menos contínua e consistente em direção ao incremento e fortalecimento de capacidades.
6.2.2. Evidências acerca das capacidades tecnológicas de uma subsidiária da indústria de bens de capital no Brasil

O segundo exemplo de aplicação do modelo de mensuração de capacidades tecnológicas, extraído a partir do trabalho desenvolvido em Tacla e Figueiredo (2006), busca analisar as implicações práticas dos processos de aprendizagem para a acumulação de competências tecnológicas. Tal análise foi realizada através de um estudo de caso único representado pela Kvaerner Pulping do Brasil, empresa localizada em Curitiba, voltada para a produção de bens de capital sob encomenda para a indústria de celulose e papel. O exame foi feito procurando abordar o período de 1980 a 2000.

A seleção da empresa e setor foi motivada devido à importância e relevância das capacidades inovadoras para este tipo de indústria, uma vez que neste setor de atividade são demandados investimentos intensivos; as habilidades e atividades necessárias para atuação e competitividade no mercado internacional bem como os requisitos de boa operação são altamente exigentes; a adequação, adaptação e customização específicas por tipo de aplicação são constantemente necessárias; sendo, portanto, de importância fundamental mapear as atividades que as empresas são capazes de desempenhar, as competências e habilidades existentes, bem como o modo e dinâmica da evolução ao longo do tempo, à medida que a empresa começou a dominar capacidades de rotina e a seguir em direção ao acúmulo de competências mais complexas (TACLA; FIGUEIREDO, 2006).

Neste sentido, a trajetória de acumulação de competências da empresa é examinada por meio do modelo desenvolvido em Figueiredo (2001a), adaptado e validado (através de interações intensivas com especialistas do setor) para a indústria em questão. O modelo identifica três funções tecnológicas: atividades de engenharia e gestão de projetos, decomposta em engenharia de sistemas e gestão de projetos; processos e sistemas operacionais; e equipamentos de processo.

Os resultados da aplicação do modelo na Kvaerner Pulping do Brasil estão resumidos na Tabela 6.3, que mostra, por função tecnológica, o número aproximado de anos que a empresa levou para alcançar cada um dos níveis de competência. Os dados em parênteses representam o número de anos que a empresa levou para passar do nível imediatamente anterior até o nível em questão, ou seja, representa a taxa de deslocamento entre os níveis.
De acordo com os dados da Tabela 6.3, os anos iniciais, aproximadamente os dez primeiros anos (variando conforme a função tecnológica), representaram esforços da empresa para acumulação de competências de rotina. Apenas na função Equipamentos de processo a empresa iniciou o acúmulo de competências inovadoras no nível Pré-intermediário. Assim, na fase inicial do período de análise, os níveis acumulados pela empresa variaram desde o nível 2 até o nível 4 (TACLA; FIGUEIREDO, 2006).

A partir da década de 1990, a empresa começou a se mover em direção aos níveis de capacidades inovadoras nas outras três funções tecnológicas, atingindo níveis superiores destas capacidades, exceto para a função de Equipamentos e processos, onde se manteve no nível intermediário. Um ponto a ser destacado nesta segunda fase de análise, se refere à função Engenharia de sistemas, onde a empresa dispensou esforços para, paralelamente, completar o acúmulo de competências de rotina no nível 4 ao mesmo tempo em que se dirigia a níveis de capacidades inovadoras (nível 5).

Tabela 6.3 – Taxa de acumulação de capacidades tecnológicas na Kvaerner Pulping

<table>
<thead>
<tr>
<th>Níveis de Competência Tecnológica</th>
<th>Funções Tecnológicas</th>
<th>Gestão de Projetos</th>
<th>Processos e práticas operacionais</th>
<th>Equipamentos de processo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engenharia de Sistemas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Básico</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>(2) Renovado</td>
<td>5 (2)</td>
<td>3 (2)</td>
<td>10 (3)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>(3) Extra Básico</td>
<td>9 (4)</td>
<td>7 (4)</td>
<td>12 (2)</td>
<td>7 (4)</td>
</tr>
<tr>
<td>(4) Pré-Intermediário</td>
<td>15 (6)</td>
<td></td>
<td>10 (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Pré-Intermediário</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Intermediário</td>
<td>15 (0)</td>
<td>12 (2)</td>
<td>17 (1)</td>
<td>16 (6)</td>
</tr>
<tr>
<td>(6) Intermediário-superior</td>
<td>17 (2)</td>
<td>17 (5)</td>
<td>21 (4)</td>
<td>nível não atingido</td>
</tr>
<tr>
<td>(7) Avançado</td>
<td>nível não atingido</td>
<td>nível não atingido</td>
<td>nível não atingido</td>
<td>nível não atingido</td>
</tr>
</tbody>
</table>

Fonte: Tacla; Figueiredo (2006), adaptada.

Já a partir de 1996, para todas as funções tecnológicas, a empresa havia atingido ou mesmo ultrapassado os níveis iniciais de competências inovadoras. Assim, para as funções Engenharia de sistemas, Gestão de projetos e Processos e práticas operacionais, a empresa conseguiu acumular competências inovadoras de nível 6, ao passo que para a função Equipamentos de processo não seguiu além do nível 5, mantendo-se no mesmo nível já alcançado na etapa anteriormente analisada. Por outro lado, em nenhuma das funções
tecnológicas a empresa conseguiu atingir o nível 7 de competência inovadora avançada até o final do ano 2000 (TACLA; FIGUEIREDO, 2006).

Para auxiliar a compreensão da trajetória, e mesmo traçar um paralelo com outra variável interna da empresa e sua influência no comportamento de desenvolvimento de capacidades, Tacla e Figueiredo (2006) analisaram o papel dos processos de aprendizagem no modo e na velocidade de acumulação de competências na empresa.

Assim, inicialmente, a empresa não possuía nem mesmo as competências básicas para operações de rotina, dependendo, basicamente, da importação de conhecimentos da matriz e da aprendizagem do tipo *aprender-fazendo*. Portanto, não conseguiu acumular níveis de competência além do nível 2, sendo que na função Processos e práticas operacionais não acumulou nem mesmo as capacidades de nível de 1, relacionadas à competências de rotina básicas. A partir da segunda metade deste período, começaram a surgir processos e mecanismos de produção interna de conhecimento, capacitando-a ao desenvolvimento de atividades progressivamente mais complexas, ainda que relacionadas a operações de rotina, o que levou a empresa a aprimorar suas competências de rotina e completar seu acúmulo em praticamente todas as funções, entretanto, de forma diversa. A partir da década de 1990, a empresa passou a se preocupar com os mecanismos de conversão de conhecimento, ou seja, inserir na estrutura organizacional os conhecimentos individuais, fazendo com que os processos de aprendizagem que contribuíam para o acúmulo de competências passassem a ser vistos e coordenados de forma estratégica, não aleatória (TACLA; FIGUEIREDO, 2006).

Portanto, verificou-se que a variedade dos processos e mecanismos de aprendizagem utilizados pela empresa foi aumentando sua diversificação, atingindo acima de 10 mecanismos em todas as funções a partir de 1996, período no qual a quantidade total de processos praticamente dobrou em relação ao período inicial de análise. Assim, pode-se encontrar uma relação positiva dos processos de aprendizagem frente ao desempenho no acúmulo de capacidades tecnológicas, uma vez que uma maior diversidade destes mecanismos acabou gerando maior fluxo de conhecimento e, consequentemente, contribuiu para acelerar a acumulação de competências tecnológicas na empresa. Além disso, também foi neste período que a intensidade dos mecanismos de aprendizagem passou a se dar de forma contínua, período coincidente com aquele onde a empresa
atingiu, para todas as funções tecnológicas, níveis inovadores de capacidades. Também foi nesta etapa que a empresa passou a criar vários padrões para codificação de conhecimento, consolidação e compartilhamento de dados e informações, facilitando a conversão de conhecimento tácito individual em competências da empresa e, portanto, contribuindo para o processo de acumulação de competências (TACLA; FIGUEIREDO, 2006).

Quando se trata de analisar a dinâmica do processo de acumulação de competências tecnológicas, Tacla e Figueiredo (2006) demonstram que houve diversidade na velocidade de acumulação tecnológica para cada uma das funções consideradas para a Kvaerner Pulping do Brasil, o que mostra que, mesmo dentro de uma mesma empresa, funções distintas podem mostrar desempenhos diferentes.

Nos anos iniciais a empresa acumulou competências de rotina para operar sistemas de produção, levando cerca de dez anos para seu acúmulo completo. Neste período, pode-se notar pelos dados da Tabela 6.3, sobretudo quanto aos números entre parênteses, que a velocidade média de transição entre os níveis não variou consideravelmente, ou seja, a empresa demorou entre dois e quatro anos para se mover de um nível para o imediatamente seguinte. Por outro lado, o tempo para completar a acumulação de competências de nível 1 foi diferente entre as funções, sendo que na relacionada a Processos e práticas operacionais a empresa levou um período de tempo maior do que para as outras, diversidade esta que explica a variação das taxas de finalização do acúmulo de competências rotineiras, uma vez que as taxas entre os níveis posteriores foi semelhante.

Quanto aos períodos seguintes, a taxa de acúmulo de competências mostrou-se mais diversificada. Na função Engenharia de sistemas a passagem do nível 3 em direção aos seguintes foi a que demandou mais tempo, possivelmente devido ao acúmulo, em paralelo, dos níveis 4 e 5, o que, por sua vez, construiu bases para a rápida transição em direção ao nível 6, que levou apenas 2 anos. Esta análise também pode ser feita para as demais funções, cujos resultados demonstram que, na maioria das vezes, o acúmulo mais sustentado de competências em um determinado nível serviu para acelerar o acúmulo no nível imediatamente superior, mostrando que há uma relação positiva entre acúmulo sustentado e consistente e velocidade de acumulação, tanto dos níveis seguintes quanto do desempenho de longo prazo da empresa como um todo.
Um outro ponto que merece ser mencionado se refere à velocidade de acumulação de capacidades na função Equipamentos de processo, onde a empresa, já no período inicial de análise, conseguiu completar o primeiro de nível de competência inovadora, enquanto as outras permaneciam nas competências de rotina, ou seja, foi nesta função que a empresa conseguiu acumular de forma mais rápida as competências de rotina e seguir em direção à competências mais inovadoras. Entretanto, foi exatamente nesta função tecnológica que a empresa permaneceu por mais tempo estagnada em um determinado nível, qual seja, o nível 4, levando cerca de 6 anos para se mover e completar o nível de competência acima, nível 5, último nível atingido pela empresa, mesmo considerando as fases de análise subseqüentes.

Análises e generalizações

Diante dos dados e resultados do estudo desenvolvido por Tacla e Figueiredo (2006), alguns pontos principais podem ser destacados pelo que pode ser observado a partir desta aplicação empírica. De forma geral, as empresas iniciam através do acúmulo de capacidades de rotina e, à medida que vão dominando tais competências voltadas para operações mais simples (porém não menos importantes), vão criando as bases para a construção de competências inovadoras. O que não quer dizer que a acumulação se dá exclusivamente através dessa sequência linear, como demonstrado pelo desempenho da Kvaerner Pulping do Brasil, onde o acúmulo em paralelo também pode se dar dentro de uma mesma função, ou seja, a empresa pode desenvolver, simultaneamente, tanto esforços quanto atividades visando à completar o acúmulo de competências de rotina em paralelo aos passos iniciais ou mesmo aprofundamento das capacidades voltadas para atividades inovadoras.

Pôde-se verificar, ainda, a importância dos processos de aprendizagem para a trajetória de acumulação de competências, buscando-se analisar como outra variável interna à empresa é capaz de influenciar suas habilidades e competências para inovar. Além disso, pôde-se concluir que o acúmulo mais rápido em uma determinada função tecnológica em níveis específicos, sobretudo os iniciais, não significa que o desempenho desta mesma função tecnológica terá uma dinâmica mais acelerada que as outras desenvolvidas pela empresa. Isso reflete uma série de considerações, tais como (i) a importância do acúmulo consistente e estruturado de competências de rotina, que servem de base e sustento para o acúmulo de
competências inovadoras, que são as que, no longo prazo, podem levar à empresa a posições tecnológicas mais vantajosas e competitivas; (ii) a interdependência entre a acumulação de competências nas funções tecnológicas, quanto à forma e velocidade, ainda mais quando se fala de níveis superiores de capacidades, voltados para atividades e habilidades mais complexas, onde o desempenho de uma depende cada vez mais da performance nas outras funções, fazendo com que sejam adequadas, de uma forma geral, estratégias que visem a um acúmulo contínuo e consistente em todas as funções, com exceção dos casos onde determinada função esteja mais defasada ou apresente ênfases que mereçam ser priorizadas; (iii) a importância de políticas e estratégias deliberadas e constantes, uma vez que um desempenho inicial superior não garante nem determina desempenhos futuros semelhantes, necessitando, portanto, de planejamento, revisão e avaliação periódicos.

6.2.3. Evidências acerca das capacidades tecnológicas de uma subsidiária da indústria de refrigeradores no Brasil

No mesmo sentido, Ferigotti e Figueiredo (2005a) procuraram descrever a trajetória de acumulação de capacidades tecnológicas de uma empresa fabricante de refrigeradores, no caso, uma subsidiária da Electrolux em Curitiba, além de analisar as implicações dos processos de aprendizagem nesta trajetória de acumulação de capacidades. O exame empírico foi feito relativamente ao período de 1980-2003.

Buscou-se analisar a construção de capacidades em uma empresa de uma indústria que vem operando em bases globais, como é a indústria de aparelhos eletrodomésticos. Esta indústria passou por uma série de mudanças durante a década de 1990 no Brasil, cujo desenvolvimento tecnológico passou a ser condicionado por uma série de fatores, tais como demandas por aparelhos com maior preocupação ambiental e menor consumo de energia, além de ter sido marcada pelo surgimento de uma nova geração de produtos baseados em tecnologia digital. Além disso, a partir do final da década de 1980 começou a passar por um intenso processo de internacionalização. Atualmente, esta indústria no Brasil pertence totalmente a corporações transnacionais.
Novamente, aplicou-se o modelo desenvolvido por Figueiredo (2001a, 2003), adaptado e validado para a indústria de aparelhos eletrônicos. Neste caso, o modelo consistiu de seis níveis de capacidades, onde as capacidades de rotina foram desagregadas em dois níveis (básico e renovado), enquanto as capacidades tecnológicas inovadoras foram desagregadas nos níveis 3 a 6 (indo de extra-básico, intermediário, intermediário superior até o avançado). Além disso, os níveis foram analisados para duas funções tecnológicas: “processos e organização da produção” e “atividades centradas no produto”.

A Figura 6.1 ilustra a trajetória de acumulação de capacidades da empresa em questão. A linha contínua representa a trajetória para a função Atividades centradas no produto, enquanto a linha pontilhada representa a trajetória para a função Processos e organização da produção.

Figura 6.1 – Trajetória de acumulação de capacidades tecnológicas da subsidiária da Electrolux

A partir do gráfico e dos dados apresentados pelos autores, pode-se perceber que para a função Processos e organização da produção, durante o período de 1980-1988 a empresa limitou-se a acumular capacidades de rotina de níveis 1 e 2, ou seja, levou cerca de 8 anos para o completo acúmulo de competências técnicas de rotina. O início da construção de competências inovadoras começou a se dar pelo final da década de 1980, impulsionada por
um processo de reestruturação baseado na construção de uma nova planta e de novos esforços, que culminou com o acúmulo de competências de nível 3 por volta de 1992. A partir de então, a empresa iniciou o acúmulo de competências inovadoras de nível 4, o que levou aproximadamente 3 anos, finalizando em 1995. À medida que passou a desempenhar atividades mais complexas, a partir de 1996, a empresa passou a ser capaz de desempenhar atividades relacionadas ao nível 5 de capacidades, onde permaneceu até o final do período de análise (de 1996 a 2003).

Por outro lado, no que se refere às Atividades centradas no produto, para o primeiro período destacado no gráfico (1980-1988) a empresa já iniciou o acúmulo de competências inovadoras, estimulada pela criação de um departamento de projeto industrial voltado, inclusive, para o desenho e desenvolvimento de novos produtos. Assim, passou a exercer atividades de adaptação de produtos existentes, levando à acumulação de competências de nível 3. Portanto, neste primeiro período, conseguiu acumular, paralelamente, competências de rotina e o primeiro nível de capacidades inovadoras. De 1988 a 1995, a subsidiária da Electrolux estabeleceu parceria com a Sanyo, o que permitiu o início de um processo de benchmark com outros centros de projeto, intensificação do desenvolvimento de novos produtos, certificação ISO 9001, levando-a a completar o acúmulo de competências de nível 4 neste período. A partir de 1996, a empresa procurou intensificar a integração das atividades de ambas funções, ou seja, integrar projeto e desenvolvimento de produtos com as atividades de produção (demonstrado no gráfico através da sigla IPDP – integrated product development process), a fim de acelerar o desenvolvimento de produtos inovadores, passando a dominar atividades de nível 5.

A Tabela 6.4 resume o tempo que a empresa levou para acumular cada um dos níveis de competência ao longo de sua trajetória. Os números da Tabela 6.4 indicam o tempo total para atingir e completar o acúmulo de cada um dos níveis, enquanto que os representados em parênteses indicam apenas o tempo que levou para acumular o nível em questão.

Assim, pode-se perceber que, para a função Processos e organização da produção, a empresa levou cerca de 8 anos para o completo acúmulo de capacidades de rotina, enquanto levou cerca de 16 anos (1988-2003) para conquistar o nível intermediário superior de capacidades, não chegando, portanto, a atingir o nível avançado (nível 6) em nenhuma das funções tecnológicas examinadas. Por outro lado, para as atividades
centradas no produto, levou menos de 8 anos para completar o acúmulo de competências de rotina, e mais de 15 anos para se mover desde o nível 2 (capacidades de rotina) até o último nível de capacidades inovadoras atingido (nível 5).

Tabela 6.4 – Taxa de acumulação de capacidades tecnológicas na subsidiária da Electrolux

<table>
<thead>
<tr>
<th>Níveis de Competência Tecnológica</th>
<th>Funções Tecnológicas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Processos e Organização da Produção</td>
<td>Atividades Centradas no Produto</td>
</tr>
<tr>
<td>(1) Básico</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(2) Renovado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Extra Básico</td>
<td>12 (4)</td>
<td></td>
</tr>
<tr>
<td>(4) Intermediário</td>
<td>15 (3)</td>
<td>15 (7)</td>
</tr>
<tr>
<td>(5) Intermediário-superior</td>
<td>23 (8)</td>
<td>23 (8)</td>
</tr>
<tr>
<td>(6) Avançado</td>
<td>nível não atingido</td>
<td>nível não atingido</td>
</tr>
</tbody>
</table>

Fonte: desenvolvida a partir dos dados de Ferigotti e Figueiredo (2005).

Além disso, os autores analisam a influência dos processos de aprendizagem na acumulação de capacidades tecnológicas. Para tanto, quatro processos de aprendizagem são considerados: aquisição interna e externa de conhecimento, compartilhamento de conhecimento e codificação de conhecimento. As características de tais processos analisadas são: variedade, intensidade e funcionamento. A Tabela 6.5 mostra um resumo dos mecanismos de aprendizagem no que se refere à variedade, ou seja, quantidade de mecanismos de aprendizagem utilizados pela empresa em cada um dos períodos.

Tabela 6.5 – Variedade dos mecanismos de aprendizagem da subsidiária da Electrolux

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquisição externa de conhecimento</td>
<td>Limitado</td>
<td>Moderado</td>
<td>Moderado</td>
</tr>
<tr>
<td>n=2</td>
<td>n=2</td>
<td>n=8</td>
<td>n=7</td>
</tr>
<tr>
<td>Aquisição interna de conhecimento</td>
<td>Limitado</td>
<td>Moderado</td>
<td>Moderado</td>
</tr>
<tr>
<td>n=2</td>
<td>n=2</td>
<td>n=6</td>
<td>n=7</td>
</tr>
<tr>
<td>Compartilhamento de conhecimento</td>
<td>Limitado</td>
<td>Moderado</td>
<td>Moderado</td>
</tr>
<tr>
<td>n=4</td>
<td>n=4</td>
<td>n=7</td>
<td>n=10</td>
</tr>
<tr>
<td>Codificação de conhecimento</td>
<td>Limitado</td>
<td>Limitado</td>
<td>Moderado</td>
</tr>
<tr>
<td>n=0</td>
<td>n=0</td>
<td>n=4</td>
<td>n=6</td>
</tr>
<tr>
<td>Total</td>
<td>n=8</td>
<td>n=25</td>
<td>n=30</td>
</tr>
</tbody>
</table>

Fonte: Ferigotti e Figueiredo (2005).

Pode-se notar que no período 1980-1989 apenas 8 mecanismos de aprendizagem estavam sendo utilizados pela empresa, o que pode explicar, pelo menos em parte, porque a empresa não acumulou além das capacidades de rotina até o final deste período. A partir
de 1990, o número de mecanismos aumentou significativamente com relação ao período anterior, motivado pela parceria com a Sanyo e o início da nova planta, permitindo à empresa acumulação de competências de rotina até as de nível 4. No período seguinte a empresa ainda aumentou em 5 a quantidade de mecanismos utilizados, o que foi relacionado com a implantação de um importante projeto, que também foi responsável por acelerar o acúmulo de competências de nível 5.

Análises e generalizações

Diante dos dados encontrados pelos autores, algumas generalizações e conclusões podem ser inferidas. A primeira delas se refere ao fato de que a empresa seguiu trajetórias diferentes para as duas funções examinadas, demonstrando a importância de uma análise ao longo de um período de tempo e possibilitando a verificação de nuances da trajetória que uma visão estática, de um ponto no tempo, não seria capaz de fornecer. Além disso, a empresa acumulou, em paralelo, competências de rotina e competência inovadora de nível 3, ratificando a ideia de que a acumulação não se dá, necessariamente, de uma forma seqüencial e linear, o que, portanto, requer estudos aprofundados no nível de empresas para análise dessa trajetória, dificultando ou mesmo impedindo generalizações ou extrapolações acerca do desenvolvimento tecnológico das empresas.

Adicionalmente, esta aplicação empírica mostra como determinados fatores podem influenciar a trajetória de acumulação de capacidades desempenhada pela empresa, por exemplo, no caso da parceria com a Sanyo e da instalação de uma nova planta, que contribuíram para o acúmulo de competências mais avançadas. Além disso, analisaram a relação entre os processos de aprendizagem e o acúmulo de capacidades tecnológicas, demonstrando ser esta uma relação positiva, onde esforços de aprendizagem deliberados e propositais podem gerar implicações positivas para as empresas.

Além de diferenças na trajetória, também houve diferença na taxa (velocidade) com que a empresa seguiu em direção a níveis mais avançados de capacidades nas duas funções tecnológicas. Por outro lado, os dados da Tabela 6.4 mostram que nem sempre o acúmulo mais rápido de capacidades de rotina leva a uma maior velocidade no acúmulo de competências inovadoras, contrariando a tendência esperada, o que demonstra, mais uma
vez, a necessidade de se proceder a uma análise profunda de tais questões no nível de empresa para obtenção de dados realistas, concretos e fiéis.

A análise da trajetória da empresa no período de 1995-2003 mostra que a integração das atividades de ambas funções favoreceu o acúmulo de competências de nível 5, demonstrando que, à medida que a empresa segue em direção a níveis mais avançados de capacidades, as funções passam a ser fortemente correlacionadas e interdependentes, pois, para se gerar conhecimento novo e atingir o nível avançado de geração de tecnologia, todas as funções tornam-se relevantes e essenciais, onde o desempenho de uma influencia ou mesmo define o desempenho das demais.

De forma geral, os resultados encontrados pelos autores contradizem algumas generalizações tipicamente aplicadas a países em desenvolvimento, tais como (i) a que argumenta que a globalização levou a um padrão de organização da produção onde os esforços de P&D e de engenharia são conduzidos, em sua maioria, por países industrializados, enquanto países da América Latina tendem a se especializar na produção de “commodities” industriais e indústrias para simples montagem de peças, componentes e tecnologias desenvolvidos nos países desenvolvidos; (ii) as que sugerem que subsidiárias de corporações transnacionais não acumulam capacidades além daquelas de níveis básicos de produção (FERIGOTTI; FIGUEIREDO, 2005). Pelos resultados pode-se perceber que a empresa acumulou capacidades inovadoras de níveis 4 e 5, portanto, não se limitando às operações e atividades tipicamente de rotina.

6.3. Estudos baseados em uma amostra de empresas

6.3.1. Evidências acerca das capacidades tecnológicas da indústria de eletrônicos na Malásia

O estudo de Ariffin (2000), um dos mais detalhados e sistemáticos no tratamento das trajetórias e taxas de construção de capacidades tecnológicas, busca examinar a internacionalização de capacidades inovativas na indústria de eletrônicos da Malásia, mensurada por meio de níveis de capacidades tecnológicas e pela velocidade com a qual
têm sido construídas pelas empresas ao longo do tempo. Também examina processos de aprendizagem das empresas e fatores, tais como fluxos de conhecimento através das ligações inter-organizacionais, que podem ter afetado os níveis e taxas de construção de tais capacidades.

Para tanto, analisa 53 empresas (26 subsidiárias de corporações transnacionais – TNC e 27 empresas locais), selecionadas a partir do principal cluster industrial eletrônico da Malásia. A amostra foi classificada em três grupos de empresas: (i) subsidiárias de TNCs dos EUA, Japão, Europa e Taiwan; (i) empresas locais cujas principais atividades referem-se ao fornecimento para suporte do setor de eletrônicos e são principalmente dependentes das vendas para as subsidiárias; e (iii) empresas locais independentes, representadas por aquelas que vendem seus produtos para um mercado mais geral, tanto doméstico ou para o mercado de exportação, sendo independentes das subsidiárias no que se refere a vendas (ARIFFIN, 2000).

O exame em questão busca abordar o maior período de tempo possível, normalmente ao longo de todo o período desde o estabelecimento da empresa. Assim, também utiliza o modelo de tipos e níveis de capacidades tecnológicas, que, no estudo em questão, são desagregadas em diferentes níveis – desde os níveis básicos (para adaptações menores e aprimoramentos incrementais de qualidade), através dos níveis intermediários (para vários tipos de projeto de produtos e processos e engenharia) até os níveis avançados e baseados em pesquisa (para o desenvolvimento de uma base de conhecimento para o desenho de novos produtos e processos). O modelo distingue entre quatro tipos diferentes de capacidades tecnológicas: Gestão de projetos; Atividades relacionadas a equipamentos para produção, tais como ferramentaria, pintura, estampagem e moldagem em plástico; Processos e organização da produção; e Atividades centradas em produto (que se refere às atividades de desenho, desenvolvimento e pesquisa sobre produtos e componentes) (ARIFFIN, 2000). A Tabela 6.6 resume os resultados encontrados, onde os números representam a quantidade de empresas que completou o acúmulo de competências em dado nível para cada uma das funções tecnológicas.
Tabela 6.6 – Tipos e níveis de capacidades tecnológicas de empresas da indústria de eletrônicos da Malásia

<table>
<thead>
<tr>
<th>Níveis de Capacidades</th>
<th>Tipos de Capacidades</th>
<th>Operações básicas</th>
<th>Atividades Centradas em Produto</th>
<th>Equipamentos, Ferramentas, Modelagem</th>
<th>Gestão de Projetos</th>
<th>Sem distinção do tipo de atividade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nível 1</td>
<td>Nível 2</td>
<td>Nível 3</td>
<td>Nível 4</td>
<td>Nível 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53 (100%)</td>
<td>53 (100%)</td>
<td>53 (100%)</td>
<td>53 (100%)</td>
<td>53 (100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53 (100%)</td>
<td>53 (100%)</td>
<td>53 (100%)</td>
<td>36 (68%)</td>
<td>53 (100%)</td>
</tr>
<tr>
<td>Capacidades rotineiras de produção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47 (88%)</td>
<td>40 (75%)</td>
<td>34 (64%)</td>
<td>30 (57%)</td>
<td>53 (100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 (57%)</td>
<td>27 (51%)</td>
<td>20 (38%)</td>
<td>13 (24%)</td>
<td>45 (85%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (19%)</td>
<td>10 (19%)</td>
<td>6 (11%)</td>
<td>2 (4%)</td>
<td>18 (34%)</td>
</tr>
<tr>
<td>Capacidades tecnológicas inovadoras</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 (2%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>2 (4%)</td>
</tr>
</tbody>
</table>

Fonte: Ariffin (2000).

De acordo com os dados, todas as empresas dominaram as operações básicas de nível 1 e nível 2; este último com exceção para a função Gestão de projetos, onde o acúmulo de competências de nível 2 não foi completado por todas as empresas, ou seja, 17 empresas se mantiveram no nível de operações rotineiras básicas até o término da pesquisa, não conseguindo atingir nem mesmo os níveis menos sofisticados de capacidades inovadoras. Além disso, pode-se dizer a partir dos dados da última coluna da Tabela 6.6, que não separa por função específica, que 45 empresas começaram a construir capacidades de nível 4 em pelo menos uma das funções, mas apenas 27 ficaram confinadas neste nível intermediário e não procederam em direção a níveis mais avançados, ao passo que 18 seguiram adiante, duas das quais alcançaram o nível máximo considerado na métrica de Ariffin (2000).

Uma vez que trata da questão do acúmulo de competências ao longo do tempo, Ariffin (2000) pôde verificar a velocidade com que as empresas se moviam através dos níveis de capacidades tecnológicas para cada uma das funções, cujo resultado encontra-se sintetizado na Figura 6.2, onde os números representam a velocidade média em anos.
Um dos pontos a serem destacados no que se refere à velocidade é que, nos níveis iniciais, a velocidade não se alterou significativa em três das quatro funções, exceto na de Gestão de projetos onde o domínio da inovação básica levou cerca de 11 anos. Além disso, em média, a velocidade de progressão entre os níveis aumentou à medida que as empresas seguiam em direção a níveis mais avançados. Por outro lado, pelos dados da Figura 6.2 pode-se perceber que, em geral, as empresas da amostra levaram um tempo maior para aprender e se mover dos níveis de capacidades inovadoras avançadas para o baseadas em pesquisa. Assim, as empresas levaram cerca de 15 anos depois de entrarem na indústria para alcançar capacidades inovativas avançadas (ou seja, 15 anos para se deslocar através dos 5 primeiros níveis de capacidades) e mais 9 anos para alcançar capacidades baseadas em pesquisa (ou seja, para se deslocar entre os dois últimos níveis). Isso mostra que mesmo depois de alcançar níveis avançados, as empresas levaram mais tempo para iniciar atividades baseadas em pesquisa.
Ao mesmo tempo, uma série de outras análises é conduzida pela autora. Ariffin (2000) examina a forma como indicadores de performance (controle e tomada de decisão local, nível de automação e performance exportadora) e o grupo onde a empresa se insere (I, II ou III) se associam aos níveis de capacidades analisados. Segundo a autora, controle e tomada de decisão local e nível de automação estão significativamente associados aos níveis de capacidades das empresas, ao passo que performance exportadora não está associada de forma significativa ao desempenho tecnológico. Além disso, verificou se os níveis e taxas de acúmulo de capacidades variou entre os grupos de empresas considerados. Os resultados de uma análise estatística dessa relação mostraram que não houve diferença significativa.

Análises e generalizações

Assim como nas evidências empíricas anteriormente apresentadas, algumas generalizações desta aplicação podem ser exploradas, ao passo que neste estudo também se aplicam a maioria das generalizações extraídas dos estudos das seções anteriores. Os resultados encontrados por Ariffin (2000) sugerem aspectos diferentes daqueles apontados pela literatura convencional, que tende à visão estreita de que países como a Malásia não são tecnologicamente avançados e, portanto, não têm condições em termos de habilidades e capacidades internas para que ocorra a internacionalização de capacidades inovativas. Os resultados mostraram que a internacionalização de capacidades inovativas vem ocorrendo: 85% das empresas conduziram pelo menos atividades inovativas intermediárias, levando uma média de 11 anos para acumular tais capacidades. Apenas duas empresas conduziram inovações baseadas em pesquisa e levaram mais de 20 anos para atingir esse patamar. Assim, contrariamente às generalizações comumente aplicadas a países em desenvolvimento, que se referem à ausência de capacidades inovativas significantes, o estudo encontrou que as capacidades da maioria das empresas da amostra tinham sido melhoradas capacitando-as à realização de atividades tecnológicas inovadoras: cerca de 43 (81%) empresas se mantiveram entre os níveis 4 e 5 de capacidades inovativas.

Uma das principais generalizações sobre a Malásia é que a matriz de uma TNC controla tecnologias centrais e estágios de produção de maior valor agregado, enquanto as subsidiárias (sobretudo aquelas afiliadas de TNCs estrangeiras) estão envolvidas em montagem final intensiva em mão-de-obra, com pouca ou nenhuma capacidade inovadora.
Portanto, os resultados também contradizem tal generalização, uma vez que se verificou que atividades inovativas têm sido desempenhadas, independentemente do grupo onde se inserem as empresas. Além disso, a análise do fluxo de conhecimento via TNC conduzida pela autora demonstrou que a relação entre subsidiárias e matrizes não ficou meramente centrada na transferência de tecnologia desenvolvida pela matriz, pelo contrário, também atuou como um significativo canal para aumentar e elevar os níveis de capacidades.

A importância da análise intra-organizacional, através do desmembramento das atividades desempenhadas pelas empresas por tipos de capacidades tecnológicas requeridas (funções tecnológicas), fica bastante clara a partir das evidências aqui expostas. Isto pode ser percebido de forma clara e prática através do exame da última coluna da Tabela 6.6 que trata dos níveis de competência atingidos pelas empresas. Sem a distinção segundo funções, os dados demonstrariam que todas as empresas teriam acumulado ao menos o primeiro nível de competências inovadoras, o que não é real pelo menos para função Gestão de projetos. Assim, os dados poderiam estar superestimados (como no caso em questão) ou mesmo subestimados, uma vez que apenas a visão do todo não condiz à realidade da empresa, já que as diferentes vertentes de atividades desempenhadas não apresentam, necessariamente, o mesmo comportamento ao longo do tempo.

Além disso, segundo a autora, as empresas tendem a focar na construção de nichos de capacidades diferentes. Algumas focam em alguns tipos de capacidades voltadas para determinado tipo de função, enquanto outras procuram se aperfeiçoar em capacidades diferentes. Ou seja, não necessariamente buscaram dominar todas as funções de maneira completa. Além disso, não necessariamente seguirão mais forte nas capacidades inovadoras de funções onde as capacidades básicas foram mais desenvolvidas e/ou de forma mais rápida. Ou seja, não há linearidade, por isso a importância de se analisar de forma específica por um longo período de tempo, além da necessidade de constante rastreamento.

Como um dos estudos utilizando a abordagem de tipos e níveis mais completos, este buscou verificar uma série de fatores no que se refere à influência nos níveis de taxas de acumulação de capacidades. Assim, analisou como tais indicadores ou fatores se correlacionavam às capacidades tecnológicas ao longo do tempo, demonstrando, mais uma vez, que, apesar de a métrica tratar, primeiramente, das capacidades construídas pelas
empresas sob enfoque intra-organizacional, têm consciência que uma série de fatores influencia neste comportamento, abrindo oportunidade para uma análise não só baseada na descrição da trajetória, mas também de como fatores selecionados podem influenciá-la.

6.3.2. Evidências acerca das capacidades tecnológicas de empresas de software no Brasil

Miranda (2006) procura examinar o processo de acumulação de capacidades tecnológicas em uma pequena amostra de oito empresas de software localizadas no Rio de Janeiro e São Paulo, mais especificamente, a direção e a taxa (velocidade) de tal acumulação. Paralelamente, examina a contribuição de duas fontes de capacidades tecnológicas para a manutenção dos tipos e níveis de capacidades correntes: as estratégias intra-organizacionais de aprendizagem e as ligações das empresas com componentes da infra-estrutura tecnológica.

A escolha da amostra foi propostal, onde o autor procurou cobrir certa variedade no que se refere ao tamanho da empresa, origem e modelos de negócio. A escolha da região também foi justificada pelo fato de que 65,8% das empresas de software encontram-se no Sudeste do Brasil.

De acordo com Miranda (2006), no setor de tecnologia da informação, a certificação CMM – Capability Maturity Model é muitas vezes utilizada na avaliação do nível de acumulação de capacidades tecnológicas. O modelo CMM avalia a maturidade do processo de engenharia de software em uma empresa através de uma escala de 5 níveis, onde, para cada nível de maturidade, o modelo estabelece áreas-chaves nas quais a empresa deve evoluir para atingir o próximo nível. Entretanto, no âmbito do trabalho do autor, a métrica utilizada é a baseada em tipos e níveis, proposta em Figueiredo (2001a, 2003), adaptada para a realidade da indústria de software. O modelo para examinar a acumulação de capacidades trata de quatro funções tecnológicas: engenharia de software, gestão de projetos, produtos e serviços e processos, ao longo de seis níveis de complexidade. Assim, utiliza o modelo CMM de forma complementar, traçando uma relação entre os níveis do CMM e os níveis de capacidades para cada função tecnológica. Entretanto, não contabiliza
a certificação em si, pois esta é opcional, mas sim a conformidade dos processos utilizados nas empresas com a CMM.

A Tabela 6.7 mostra os resultados encontrados pelo autor no que se refere aos tipos e níveis de capacidades tecnológicas das empresas examinadas. Os números da Tabela 6.7 representam a quantidade de empresas que conseguiu completar o acúmulo do nível em questão, enquanto os números em parênteses representam o percentual destas empresas frente ao total da amostra.

Tabela 6.7 – Tipos e níveis de capacidades tecnológicas das empresas de software

<table>
<thead>
<tr>
<th>Níveis de Competência Tecnológica</th>
<th>Engenharia de Software</th>
<th>Gestão de Projetos</th>
<th>Produtos e Serviços</th>
<th>Processos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotineiras</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- Básico</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
</tr>
<tr>
<td>2- Extra-básico</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
</tr>
<tr>
<td>3- Pré-intermediário</td>
<td>8 (100%)</td>
<td>7 (87,5%)</td>
<td>8 (100%)</td>
<td>7 (87,5%)</td>
</tr>
<tr>
<td>Inovadoras</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4- Intermediário</td>
<td>8 (100%)</td>
<td>4 (50%)</td>
<td>7 (87,5%)</td>
<td>4 (50%)</td>
</tr>
<tr>
<td>5- Intermediário superior</td>
<td>4 (50%)</td>
<td>3 (37,5%)</td>
<td>4 (50%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>6- Avançado</td>
<td>1 (12,5%) Theta</td>
<td>1 (12,5%) Delta</td>
<td>não alcançado</td>
<td>2 (25%) Omega Delta e Theta</td>
</tr>
</tbody>
</table>

Fonte: Miranda (2006).

Pelos dados da Tabela 6.7, pode-se observar que todas as empresas conseguiram acumular competências de rotina para as funções Engenharia de software e Produtos e serviços. Para estas mesmas funções, 50% das empresas conseguiu acumular competências de nível 5, ou seja, metade é capaz de realizar atividades no nível de competências inovadoras intermediário superior, ou seja, estas foram as funções com o maior número de empresas em níveis mais avançados. Entretanto, na função Produtos e serviços, nenhuma empresa conseguiu acumular o nível 6.

Nas funções Gestão de projetos e Processos uma empresa ainda se encontra no nível extra-básico e 3 no nível pré-intermediário, ou seja, metade das empresas não conseguiu acumular competências de rotina de forma completa. Por outro lado, em tais funções, 1 e 2 empresas, respectivamente, atingiram o nível máximo considerado no modelo.
No que se refere aos níveis de capacidades em que as empresas se encontram, é importante destacar que: (i) para a função Engenharia de Software somente duas empresas iniciaram a trajetória de acumulação no nível básico (nível 1), seis iniciaram a partir do nível 2 e uma empresa (chamada pelo autor de Theta) iniciou o partir do nível 3; (ii) na função Gestão de projetos, quatro empresas iniciaram suas operações no nível 1 e as outras quatro, como já detinham as competências básicas, iniciaram no nível 2; (iii) na função Produtos e serviços, somente duas empresas iniciaram a partir do nível básico, enquanto as demais iniciaram no nível 2, com exceção de uma, que iniciou no nível 3; (iv) na função Processos, cinco empresas iniciaram suas operações no nível básico, duas no nível 2 e uma no nível pré-intermediário. As competências já presentes foram herdadas da empresa mãe, adquiridas de experiência prévia dos fundadores ou pela contratação de recursos com domínio de tais capacidades (MIRANDA, 2006).

Neste sentido, é importante analisar também a velocidade com que as empresas se deslocaram em direção ao acúmulo de níveis de capacidades mais avançados, o que está representado na Figura 6.3.

Figura 6.3 – Velocidade média de movimento das empresas de software através dos níveis de capacidades tecnológicas

![Velocidade média de movimento das empresas de software através dos níveis de capacidades tecnológicas](image)

Fonte: Miranda (2006).
No que se refere à velocidade de acúmulo de competências, da interpretação da Figura 6.3 relativamente à função Engenharia de software pode-se concluir que (i) as duas empresas que iniciaram no nível básico se mantiveram neste nível por 2,5 anos, (ii) a permanência média no nível 2 foi de 3,4 anos, no nível pré-intermediário foi de 2,6 anos e no nível 5 foi de 2,8 anos, (iii) a única empresa que atingiu o nível 6, encontra-se neste nível por 2 anos. A mesma interpretação pode ser conduzida para as demais funções, onde se pode notar que as velocidades médias de cada uma das funções é compatível com a desempenhada pelas demais. Além disso, pode-se perceber que a trajetória de acumulação de capacidades na função Produtos e serviços é mais concentrada entre os níveis 2 e 5, pois somente 2 empresas iniciaram no nível 1 e nenhuma alcançou o nível 6.

Uma análise do autor sobre o tempo em que cada empresa permaneceu em cada nível pode ser visualizado através da Tabela 6.8, que representa a trajetória de acumulação de capacidades para a função Projetos.

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Da criação até 2005 (anos)</th>
<th>Anos em cada nível</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nível 1</td>
</tr>
<tr>
<td>Alfa</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Beta</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Delta</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Epsilon</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Eta</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Gama</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Theta</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Zeta</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Média</td>
<td>---</td>
<td>2,8</td>
</tr>
</tbody>
</table>

O autor também analisa as fontes de capacidades tecnológicas para a manutenção dos tipos e níveis de capacidades correntes, concluindo (i) que tanto as estratégias intra-organizacionais de aprendizagem quanto as ligações com a infra-estrutura contribuíram para a manutenção dos atuais níveis de capacidades; (ii) que a variedade, a intensidade e o funcionamento destas estratégias mostraram-se fatores preponderantes nesta contribuição;
(iii) que as empresas da amostra com maiores níveis de capacidade utilizam mecanismos de aprendizagem de forma mais intensa e com melhor funcionamento que as outras empresas da amostra (MIRANDA, 2006).

Análises e generalizações

Diante dos dados apresentados pelo estudo de Miranda (2006), generalizações podem ser extraídas deste estudo. Uma vez que o autor analisa uma amostra de empresas, foi possível proceder a comparações entre empresas de um mesmo setor (diferentemente do caso único), sem prescindir de uma análise profunda para cada uma delas, o que levou a resultados que demonstram que as empresas diferiram na trajetória e na velocidade de acumulação de capacidades tanto quando se leva em consideração a análise intra-organizacional, ou seja, comparando-se as diversas funções de uma mesma empresa, quanto quando é feita comparação entre as empresas, possibilitando assim, comparações intra e inter-empresariais.

Os resultados desta aplicação empírica reiteram a premissa do modelo de que nem sempre as empresas seguem uma seqüência linear, mais que isso, não necessariamente têm que passar por todos os níveis desde os mais básicos, como demonstrado neste estudo, uma vez que para todas as funções tecnológicas examinadas nem sempre as empresas iniciaram as operações a partir do nível básico, sendo que em alguns casos iniciaram a partir do nível 3, como pode ser visualizado pela Tabela 6.8.

No que se refere à dinâmica do processo de acumulação de capacidades, a taxa de acumulação tendeu a aumentar à medida que as empresas atingiam níveis mais avançados de capacidades, ou seja, o tempo médio de permanência foi decrescendo conforme se deslocavam através dos níveis, como pode ser observado pela Figura 6.3. Além disso, pode-se notar pela Tabela 6.8 que, se por um lado as empresas mais velhas atingiram níveis mais altos de capacidades, pelo outro, as mais novas foram mais rápidas na progressão em direção aos níveis mais avançados. Ademais, pode-se notar pela Tabela 6.8 que as duas empresas que atingiram o nível avançado iniciaram suas operações já com o domínio de capacidades básicas de nível 1. Entretanto, a empresa Theta, que iniciou suas operações já posicionada no nível 3, foi a que levou mais tempo para completar o acúmulo de competências deste nível e do seguinte, demonstrando a importância de se acumular, de
forma contínua e consistente, capacidades rotineiras, que servem de suporte ao acúmulo de capacidades inovadoras bem como podem ser importantes determinantes na velocidade de acumulação de níveis com atividades e capacidades mais complexas.

O autor também analisou como outros fatores e indicadores influenciam ou se associam aos tipos e níveis de capacidades tecnológicas apresentados pelas empresas ao longo do tempo, tais como as estratégias de aprendizagem e o indicador CMM, utilizado de forma complementar ao modelo e ajustado e adaptado aos modelos teóricos e empíricos adotados.

6.3.3. Evidências acerca das capacidades tecnológicas da indústria de bens de consumo duráveis no Brasil

A última aplicação empírica a ser apresentada tem como enfoque o exame dos padrões de desenvolvimento de capacidades tecnológicas no nível de empresa frente às mudanças de regimes de políticas industriais e reformas estruturais – desde o protecionismo até a liberalização e abertura comercial – ocorridas no Brasil durante o período de 1970-2005, com foco naquelas do início da década de 1990. A fim de cumprir com este objetivo, Figueiredo (2007b) realizou a análise em 46 empresas locais e estrangeiras de três setores (eletro-eletrônico, motocicletas e bicicletas, e fornecedores), localizadas na região norte do Brasil, no Pólo Industrial de Manaus.

Novamente, o modelo descritivo utilizado é aquele da métrica apresentada na Tabela 6.1 deste capítulo, porém, sua taxonomia foi adaptada de forma a se ajustar às peculiaridades de cada um dos setores. Para tanto, em cada um dos setores foram consideradas três funções tecnológicas (Processos e organização da produção, Produtos e Equipamentos) e seis níveis de capacidades tecnológicas (Domínio de operações básicas de nível 1, Domínio de operações básicas de nível 2, Inovação básica, Inovação intermediária, Inovação intermediária superior e Inovação avançada). As evidências encontradas à luz da métrica estão explicitadas na Tabela 6.9, que resume a quantidade de empresas da amostra que atingiu tipos e níveis específicos de capacidades tecnológicas durante o período investigado.
Tabela 6.9 – Quantidade de empresas da amostra que atingiu tipos e níveis específicos de capacidades tecnológicas

<table>
<thead>
<tr>
<th>Tipos e níveis de capacidades tecnológicas por setor</th>
<th>Eletro-Eletrônico</th>
<th>Motocicletas e Bicicletas</th>
<th>Fornecedores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Processos e Organização da Produção</td>
<td>Produtos</td>
<td>Equipamentos</td>
</tr>
<tr>
<td>Domínio de operações básicas</td>
<td>18 (100%)</td>
<td>18 (100%)</td>
<td>18 (100%)</td>
</tr>
<tr>
<td>Nível 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domínio de operações básicas</td>
<td>18 (100%)</td>
<td>18 (100%)</td>
<td>18 (100%)</td>
</tr>
<tr>
<td>Nível 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inovação Básica</td>
<td>18 (100%)</td>
<td>13 (72%)</td>
<td>9 (50%)</td>
</tr>
<tr>
<td>Nível 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inovação Intermediária</td>
<td>14 (78%)</td>
<td>3 (17%)</td>
<td>2 (11%)</td>
</tr>
<tr>
<td>Nível 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inovação Intermediária Superior</td>
<td>11 (61%)</td>
<td>0 (não atingido)</td>
<td>0 (não atingido)</td>
</tr>
<tr>
<td>Nível 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inovação Avançada</td>
<td>0 (não atingido)</td>
<td>0 (não atingido)</td>
<td>0 (não atingido)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Como constatou Figueiredo (2007b), todas as empresas dos setores considerados atingiram o nível 1 de competências tecnológicas rotineiras, conseguindo, portanto, o domínio de operações básicas para as três funções tecnológicas. No setor de eletro-eletrônico, todas as empresas também conseguiram acumular competências de nível 2 em todas as funções, ao passo que nos demais setores o número de empresas que conseguiu seguir além do nível 1 de capacidades começou a reduzir, mantendo percentual mais elevado para a função de Processos e organização da Produção. Diante do exposto, pode-se notar que nem todas as empresas conseguiram completar o acúmulo de competências de rotina, sendo que as taxas mais baixas se referem à função Equipamentos.

Seguindo para o exame das competências inovadoras, os dados demonstram que o percentual de empresas foi decrescendo conforme os níveis de capacidade tornavam-se mais elevados. No setor eletro-eletrônico, o nível 6 não foi atingido em nenhuma das funções tecnológicas, ao mesmo tempo que o nível 5 só foi atingido na função Processos e organização da Produção, tendo as empresas permanecido no nível de acúmulo de competências inovadoras intermediárias nas demais funções. Quanto ao setor de motocicletas e bicicletas, mais de 50% das empresas ficou estagnada na acumulação de competências de nível 2, ou seja, voltaram-se para as competências de rotina, exceto na função Processos e organização da produção, onde 89% das empresas conseguiu atingir o nível 3 de inovação básica. Além disso, apenas uma empresa conseguiu seguir em sua trajetória de acumulação de competências mais sofisticadas, completando a acumulação do nível 6 de capacidade de inovação avançada. No setor de fornecedores, os resultados mostraram-se similares ao de motocicletas e bicicletas, onde grande parte das empresas permaneceu nos níveis de competências de rotina, e não conseguiram atingir os níveis 5 e 6, exceto na função Processos e organização da produção, no qual apenas uma empresa conseguiu acumular capacidades de inovação intermediária superior.

À medida que dados e informações sobre a quantidade de empresas capazes de realizar atividades específicas de cada um dos níveis e funções não são suficientes para explicar, sozinhos, a dinâmica do processo de acumulação de capacidades nem compreender a forma como a evolução das capacidades se dá ao longo do tempo, a Tabela 6.10 apresenta referência ao tempo (taxa) que as empresas levaram para atingir cada um dos níveis, no que diz respeito à velocidade na trajetória de acumulação de competências desenvolvida no trabalho de Figueiredo (2007b).
Conforme o exposto na Tabela 6.10, as empresas demandaram um período de tempo mais longo para saírem do nível inicial – nível de operações rotineiras básicas, em direção ao nível básico renovado (nível 2), em todas as três funções tecnológicas, do que para se moverem entre os demais níveis. Diante disso, pode ser destacado que: (i) nos níveis de capacidade mais baixos, as taxas têm variação pouco significativa quando se compararam funções tecnológicas de um mesmo setor ou mesmo entre setores diferentes, e (ii) na média, as taxas de desenvolvimento de capacidades tecnológicas sofreram decréscimo conforme as empresas se moviam em direção à acumulação de capacidades inovativas, coincidindo com o período de mudanças nas políticas industriais, relacionadas à liberalização (FIGUEIREDO, 2007b).

Assim, as evidências sugerem mudanças positivas no padrão de desenvolvimento de capacidades por parte das empresas durante o regime de abertura e liberalização quando comparado ao sistema anterior, onde, apesar de algumas empresas ainda se encontrarem estagnadas no nível inicial, grande parte conseguiu aprimorar suas capacidades visando o desenvolvimento de atividades inovadoras mais avançadas, marcadas por significativa aceleração no acúmulo de competências.

A fim de verificar demais fatores que possam ter contribuído para a performance das atividades tecnológicas inovadoras nas empresas, auxiliar na explicação de seus comportamentos e da natureza e direção de relacionamentos, Figueiredo (2007b) buscou, ainda, explorar a relação entre o desempenho tecnológico das empresas, mais especificamente, a taxa de desenvolvimento de capacidades, frente a quatro variáveis: orientação de mercado, momento de entrada da empresa no mercado, propriedade e setor industrial a que pertence. Os resultados indicaram que: (i) há diferenças intra e inter-

Tabela 6.10 – Número de anos que as empresas levaram para se mover através dos diferentes níveis de capacidades tecnológicas

<table>
<thead>
<tr>
<th>Taxa/Velocidade de Desenvolvimento de Competências</th>
<th>Eletro-Eletrônico</th>
<th>Motocicletas e Bicicletas</th>
<th>Fornecedores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proc</td>
<td>Prod</td>
<td>Equip</td>
</tr>
<tr>
<td>Nível 1 a Nível 2</td>
<td>10,3</td>
<td>10,9</td>
<td>14,8</td>
</tr>
<tr>
<td>Nível 2 a Nível 3</td>
<td>3,8</td>
<td>5,8</td>
<td>2,8</td>
</tr>
<tr>
<td>Nível 3 a Nível 4</td>
<td>2,1</td>
<td>2,7</td>
<td>2,5</td>
</tr>
<tr>
<td>Nível 4 a Nível 5</td>
<td>1,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nível 5 a Nível 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fonte: Figueiredo (2007b).
setoriais em termos de capacidades inovativas, sobretudo para atividades centradas em produto; (ii) há forte influência do momento de início da empresa, onde aquelas que iniciaram suas atividades anteriormente à década de 1990 (liberalização) demoraram alguns anos a mais para desenvolver suas capacidades do que aquelas que entraram depois; (iii) a propriedade da empresa não tem efeito significativo sobre a taxa com que se moviam através dos níveis de capacidades; (iv) a orientação de mercado só teve influência expressiva na taxa de acumulação de competências tecnológicas para uma função específica, a de organização de processos e da produção (FIGUEIREDO, 2007b).

Análises e generalizações

Diante dos dados e informações expostos, os resultados puderam demonstrar que a acumulação de capacidades se deu de forma cumulativa e contínua entre as empresas, onde, aos poucos e através dos esforços ao longo do tempo, as empresas seguiram em direção a competências mais complexas, sendo que nem todas as empresas, em todas as suas funções tecnológicas, conseguiram atingir os níveis de capacidade mais inovadores, demonstrando que resultados e competências diferentes relacionam-se diretamente a esforços e estratégias também diferentes.

Esta aplicação empírica do modelo se difere das demais por se tratar de uma amostra de empresas pertencentes a três setores distintos, permitindo, portanto, a ampliação da aplicação do modelo e demonstração de que além de diferenças entre empresas de um mesmo setor, há a possibilidade de se avaliar diferenças entre o desempenho de empresas de setores distintos, abordagem normalmente escassa na literatura, mas cujos resultados podem ser extremamente esclarecedores, uma vez que se pode avaliar um mesmo fenômeno em diversos contextos, já que o comportamento das empresas depende não somente de seus esforços internos, mas também são reflexos das condições do ambiente em que atua.

Os resultados comprovam que nem sempre um ritmo de acumulação de capacidades mais acelerado, sobretudo nos níveis iniciais, significa uma trajetória mais consistente ou determina, necessariamente, o alcance de níveis de competência mais avançados de forma sólida, como pôde ser observado pelos dados do setor de fornecedores. Neste setor, as taxas para acúmulo de competências nos três primeiros níveis, incluindo, portanto, as
competências de rotina e o nível de inovação básica, mostraram-se mais aceleradas, demandando uma menor quantidade de anos para a empresa completar o domínio de tais competências, o que, por outro lado, não significou o desenvolvimento contínuo da trajetória das empresas em direção a níveis mais avançados de capacidade, encerrando o acúmulo completo apenas de competências de nível 3. Assim, este aspecto da análise demonstra a importância de se considerar o conjunto de fatores, elementos e determinantes do desempenho das empresas, além de confirmar a importância do acúmulo consistente das competências de rotina como base para o desenvolvimento de capacidades inovadoras superiores.

Como em algumas das outras aplicações empíricas apresentadas, esta permitiu identificar a forma e modo como fatores externos às empresas podem influenciar seus comportamentos, neste caso, como as políticas industriais instituídas na década de 1990 influenciaram a trajetória das empresas. Enquanto algumas se favoreceram das medidas governamentais, tomendo-as como estímulo ao desenvolvimento de capacidades, outras não conseguiram, por exemplo, superar a competição advinda da liberalização e foram extintas. Assim, tais informações podem ser úteis na formulação de políticas (buscando priorizar determinados pontos e corrigir possíveis falhas) e elaboração de estratégias empresariais, tendo como parâmetro comportamentos anteriores frente a fatores externos semelhantes, procurando evitar estratégias falhas e reforçar, com as devidas adequações, aquelas que se mostraram positivas e bem recebidas.

6.4. Limitações da métrica

Entretanto, diante das possibilidades que a aplicação da métrica baseada em tipos e níveis de capacidades tecnológicas é capaz de proporcionar, algumas limitações também podem ser constatadas. Como costuma partir de pesquisas de menor porte do que aquelas conduzidas em âmbito nacional ou regional, normalmente tratam de uma amostra relativamente pequena (FIGUEIREDO, 2007b), em algumas aplicações até mesmo casos únicos, normalmente de empresas pertencentes a um mesmo setor industrial e/ou localizadas em uma região específica do país. Isso dificulta comparações inter-setoriais, inter-regionais e até entre países, que, como visto (inclusive pelo grande enfoque das abordagens internacionais neste quesito), é tarefa essencial para posicionamento, pois
somente através de um parâmetro de comparação pode-se avaliar o desempenho e qualificação de qualquer fenômeno, situação ou informação.

No mesmo sentido, relativamente às limitações do escopo das pesquisas existentes, muitas vezes com restrições de tempo, custo, acesso às empresas ou demais fatores relevantes, a maior parte das aplicações empíricas trata de poucos (ou nenhum) dos aspectos que influenciam a acumulação e o desenvolvimento de capacidades, que podem ser representados tanto por fatores internos (p.ex. liderança, valores, crenças organizacionais) quanto por fatores externos (p.ex. políticas governamentais, interação com a infra-estrutura tecnológica, condições de mercado) às empresas.

Ainda com relação às restrições das pesquisas existentes que utilizam a métrica em questão, grande parte se concentra na acumulação gradual de capacidades tecnológicas, sobretudo nos níveis básicos e intermediários, no que se refere à construção de uma base mínima de conhecimento tecnológico que possibilite à empresa conduzir atividades inovativas. Entretanto, pouca atenção tem sido dada aos estágios finais de acumulação e ao processo de transição desde este estágio até a construção de capacidades estratégicas capazes de aproximar ou mesmo localizar as empresas na fronteira tecnológica (DUTRÉNIT, 2007).

Por outro lado, ao mesmo tempo em que a adoção de uma abordagem no nível intra-organizacional fornece informações mais detalhadas e é capaz de capturar nuances mais sutis, não fornece uma perspectiva mais macro, muitas vezes necessárias à elaboração e rastreamento de políticas e estratégias mais globais. Além disso, ao se concentrar nos aspectos intra-empresariais, a métrica baseada em tipos e níveis procura identificar e traçar a trajetória de desenvolvimento de capacidades ao longo do tempo. Assim, para analisar demais fatores influenciadores dessa trajetória, necessita de outros modelos que o complementem, tais como o de Figueiredo (2003), que trata da aprendizagem tecnológica, e o de Ariffin (2000), para análise das ligações entre empresas e a forma como contribuem para o acúmulo de capacidades.

Um outro problema se relaciona à construção do modelo propriamente dito. Apesar de a análise por tipos de capacidades fornecer uma visão mais precisa das trajetórias não só da
empresas como um todo, mas também das atividades ou funções tecnológicas que desempenham, dependendo das funções selecionadas para composição do modelo, muitas vezes fica difícil destacar umas das outras, já que algumas atividades pertencem a mais de uma função tecnológica. Por exemplo, é complexa a separação entre as atividades relacionadas a produtos e aquelas relacionadas aos processos para a produção de tais produtos, incluindo as ferramentas e equipamentos usados para produzi-los (ARIFFIN; FIGUEIREDO, 2004c). Assim, muitas vezes é complicado estabelecer os limites entre as funções e atividades, e muitas vezes eles não existem mesmo, ficando a cargo do executor da pesquisa e do responsável pela elaboração da matriz essa análise e decisão.

Além disso, como acontece nos levantamentos de inovação, problemas relacionados à subjetividade dos respondentes não deixam de estar presentes, apesar de esta não ser a única fonte de informação utilizada para captura dos dados. Como ilustrado na apresentação do modelo, o acúmulo de um determinado nível de capacidade indica que a empresa é capaz de realizar, por si mesma, o conjunto de atividades abarcadas por aquele nível para funções tecnológicas específicas. Entretanto, a capacidade de realizar determinado grupo de atividades não determina a qualidade de sua prática, portanto, pode ser que determinada empresa considere que completou o acúmulo de determinado nível se atingiu os requisitos mínimos ou pelo menos a maioria das atividades indicadas; por outro lado, outras empresas mais exigentes podem tender a admitir o acúmulo completo somente quando o fizer com um nível de qualidade superior e em todas as atividades.

Assim, novamente, a identificação de limitações não desmerece a grande quantidade de contribuições que o modelo pode oferecer, mas a consciência sobre elas é um passo adiante na busca pelo constante aprimoramento e por meios que, se não eliminem, minorem tais limitações.
CAPÍTULO 7

ANÁLISES E DISCUSSÕES

Diante das generalizações a partir do exame de aplicações empíricas das duas abordagens tratadas nesta dissertação – levantamentos (*surveys*) de inovação e abordagem à base de tipos e níveis de capacidades, este capítulo busca sintetizar os méritos e limitações de cada uma delas, resgatando os pontos principais levantados nos capítulos 5 e 6. Portanto, busca tratar de análises e discussões de forma a comparar e avaliar as possibilidades oferecidas por cada um dos modelos/abordagens, fornecendo informações sobre até onde cada uma das métricas consegue contribuir e de que forma a segunda pode ser utilizada como complemento à primeira a fim de que possam ser obtidas informações mais fiéis sobre a realidade tecnológica de empresas de países em desenvolvimento. Assim, apresenta argumentos que sustentam porque é necessária a adoção de uma abordagem “casada” para melhor compreensão dos processos inovadores e do desenvolvimento tecnológico de empresas no referido contexto.

De forma geral, pode-se dizer que a estratégia de mensuração dos *surveys* de inovação tem como uma de suas principais características a preocupação com questões mais amplas dos aspectos tecnológicos. Neste sentido, a questão da comparabilidade internacional é um dos motes centrais, pautando-se, para esta finalidade, em indicadores de C&T internacionalmente reconhecidos e utilizados, que possibilitem a geração de informações tanto relativas às empresas em si quanto de seu entorno e do sistema de inovação onde se encontram inseridas. Assim, no âmbito da empresa, a metodologia baseada em indicadores busca capturar dados sobre os insumos, atividades e resultados inovadores das empresas, observando, sobretudo, a presença/ausência de fatores e elementos selecionados, a intensidade (normalmente mensurada através de indicadores de dispêndio – brutos ou relativos) e/ou frequência com que ocorrem, de forma geral relacionados a aspectos quantitativos destas dimensões. Tendo em vista que a preocupação maior recai na captura de informações que indicam resultados efetivamente inovadores, tais estratégias tendem a se concentrar em atividades, práticas e características típicas de empresas tecnologicamente mais avançadas. Paralelamente, mas não menos importante, as estratégias dos *surveys* de inovação também capturam informações sobre o entorno das
empresas e dos sistemas de inovação onde atuam. Assim, os relacionamentos, interações e parcerias com outras empresas e instituições são pontos de destaque, bem como a participação, importância e utilização deste entorno por parte da empresa para o aproveitamento de oportunidades e superação de obstáculos. Portanto, este tipo de estratégia é capaz de fornecer uma perspectiva mais panorâmica de como se encontra o desenvolvimento tecnológico nacioanal/regional/setorial, procurando reunir e agregar em blocos de análise empresas com perfil, características e desempenho gerais semelhantes, a fim de que possam ser geradas políticas e estratégias direcionadas a um conjunto maior de empresas. Portanto, os surveys de inovação dão conta de fornecer subsídios a decisões de caráter mais amplo e abrangente com a preocupação central de influenciar e acelerar o desenvolvimento tecnológico nacional e/ou regional/setorial, permitindo a elaboração de políticas meso e macroeconômicas de fomento à inovação; políticas cambiais e externas que, por exemplo, possam favorecer a aquisição de tecnologia externa, a entrada de conhecimento e recursos humanos externos, a exportação de tecnologias desenvolvidas internamente; políticas e incentivos fiscais e tributários e adaptação e criação de legislações de apoio, regulação e fomento às empresas, aspectos favorecidos a partir da identificação de gargalos, obstáculos ou mesmo potencialidades; identificação e melhoria das infra-estruturas e sistemas de apoio; políticas de crédito e investimento, uma vez que são importantes componentes de toda atividade empresarial, sobretudo do ponto de vista das restrições financeiras enfrentadas por grande parte das empresas brasileiras.

Por outro lado, a estratégia de mensuração baseada em tipos e níveis de capacidades tecnológicas utiliza uma abordagem distinta, tendo como objetivo uma análise mais focada, através de uma perspectiva intra-organizacional, procurando analisar não o desempenho global (ou mediano) da empresa, mas cada uma das funções tecnológicas que desempenha. Portanto, procede a um exame desagregado do desempenho tecnológico das empresas, a partir da noção de capacidades tecnológicas, onde são identificados os tipos e níveis de capacidades que as empresas acumulam ao longo do tempo, segregados em capacidades de rotina e capacidades inovativas avançadas. Além disso, ao adotar uma perspectiva de longo prazo, analisa a trajetória tecnológica das empresas por um longo período de tempo, o que possibilita, inclusive, a identificação e análise da velocidade (dinâmica) do processo de acumulação. A abordagem, por outro lado, também permite examinar a influência de fatores tanto internos quanto externos à empresa no desenvolvimento de capacidades (tanto no que se refere ao nível máximo atingido, ao
tempo de permanência em cada nível, e à velocidade). Assim, normalmente têm aplicação direta para estratégias e políticas no nível de empresas, ou seja, ações mais focadas e direcionadas, uma vez que, a partir do detalhamento e aprofundamento da análise da evolução e trajetória tecnológica das empresas, é capaz de identificar as principais deficiências, as necessidades de melhorias mais simples ou mais profundas, os aspectos de destaque e atuação a serem realçados, enfim, consegue-se fazer um mapeamento do comportamento das empresas e de suas diversas funções, não só referente a sua situação atual, mas também como vêm se desenvolvendo ao longo do tempo, o que pode fornecer indícios e gerar subsídios para a inferência de tendências e comportamentos futuros. Além disso, é possível proceder a uma análise comparativa, buscando avaliar o impacto de diferentes estratégias em um mesmo contexto (país/setor/região), ou mesmo de estratégias semelhantes em contextos distintos, permitindo identificar o que é importante priorizar ou evitar em cada caso quando da elaboração ou desenvolvimento de novas estratégias. De outra forma, uma possibilidade mais ambiciosa seria, através de um conjunto amplo de estudos que analisem em profundidade uma quantidade considerável de empresas, empresas de um mesmo setor ou mesmo empresas de setores distintos, proceder a considerações acerca do comportamento típico, tentar estabelecer alguma espécie de padrão por determinado tipo de característica (fatores internos, externos, setor ou região a que pertence, tamanho da empresa, dentre outros), ou mesmo buscar antecipar como responderão a determinadas situações, ou seja, tentar caracterizar conseqüências e comportamentos, uma vez que as capacidades acumuladas podem influenciar ou mesmo determinar a postura e ação das empresas perante as situações que surjam ao longo de sua existência.

Diante das análises e generalizações apresentadas nos capítulos anteriores e aqui resgatadas, puderam ser extraídos méritos e limitações das duas abordagens de mensuração de capacidades tecnológicas e inovação tratadas nesta dissertação, cuja síntese encontra-se exposta por meio das Tabelas 7.1 e Tabelas 7.2. Pode-se notar pelas tabelas e pelas argumentações apresentadas a seguir que, em sua maioria, os méritos de uma abordagem estão relacionados de perto a pelo menos uma das limitações da outra, e vice-versa.

De forma simplificada, a comparabilidade e a captura de dados agregados são centrais nos levantamentos de inovação à base de indicadores de C&T. Neste sentido, por se apoiarem
Tabela 7.1 – Síntese dos méritos e limitações de abordagens à base de indicadores de C&T *(surveys de inovação)*

<table>
<thead>
<tr>
<th>ABORDAGENS À BASE DE INDICADORES DE C&T (SURVEYS DE INOVAÇÃO)</th>
<th>Méritos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modelo global e genérico, passível de ser aplicado e replicado em diversos tipos de empresas/setores/países.</td>
<td></td>
</tr>
<tr>
<td>• Têm sua aplicação disseminada e replicada, à medida que é cada vez maior sua adoção para elaboração de pesquisas e levantamentos de inovação, sobretudo no nível de países (tais como EUA, Canadá, países membros da OCDE, a maioria dos países da América Latina e Caribe, dentre outros), além de fornecer dados e informações a outros estudos que utilizam seus resultados como dados secundários para exames e avaliações diversos. Atualmente, são dez os países da América Latina que utilizem este tipo de abordagem em levantamentos nacionais de inovação.</td>
<td></td>
</tr>
<tr>
<td>• Permitem a comparabilidade internacional, favorecida pela utilização de metodologia padronizada, internacionalmente aplicada e reconhecida, à base de indicadores de C&T especificados e recomendados em manuais, desenhados para facilitar a captura dos dados, tanto por parte da pesquisa/pesquisador, quanto do respondente, por privilegiar, em grande parte das vezes, dados disponíveis em bases/repositórios já existentes nas empresas, tais como arquivos, relatórios contábeis, estoque, fornecedores, descrição de contratos, demonstrações financeiras.</td>
<td></td>
</tr>
<tr>
<td>• Normalmente de aplicação periódica e contínua, possibilitam e facilitam a construção de longas séries temporais e a construção de uma base de dados histórica.</td>
<td></td>
</tr>
<tr>
<td>• Dados capturados a um baixo custo (normalmente pelo envio de questionário ou entrevista estruturada), em grandes quantidades (normalmente abrangem um conjunto significativo de empresas registradas em algum tipo de cadastro nacional oficial, filtradas segundo critérios adequados), em um período de tempo relativamente curto (o tempo de captura dos dados normalmente se refere ao intervalo de tempo entre o envio do questionário e retorno das respostas pelas empresas), e baixa taxa de quebra de cadastro (percentual de empresas não respondentes). Com relação ao tamanho da amostra, os surveys examinados - ECIB, PINTEC, PAEP e EAI – compreenderam cerca de 1.500, 11.000, 43.000 e 828 empresas, respectivamente.</td>
<td></td>
</tr>
<tr>
<td>• Fornecem informações de caráter mais geral relativamente ao desenvolvimento tecnológico nacional, auxiliando a elaboração de políticas principalmente no nível de países e indústrias, tais como aquelas voltadas para políticas macroeconômicas, setoriais, cambiais, fiscais, desenvolvimento e fortalecimento do sistema nacional de inovação.</td>
<td></td>
</tr>
<tr>
<td>• Procuram fornecer um panorama geral do entorno da empresa e como esta se insere e interage neste contexto, oferecendo informações acerca do Sistema Nacional/Regional de Inovação, tais como as redes de cooperação e os agentes existentes, a utilização de políticas públicas, fatores externos que influenciam e/ou afetam o desempenho das empresas, nível e abrangência da interação com outras empresas, fontes de tecnologia e de informação utilizadas.</td>
<td></td>
</tr>
<tr>
<td>• Algumas versões mais atuais adotam um conceito mais amplo de inovação, tal como a 3ª versão do Manual de Oslo e o Manual de Bogotá, incluindo elementos tais como as inovações organizacionais, a difusão e aquisição externa de tecnologia como importante componente do processo inovador, melhorias incrementais em produtos ou processos já existentes, inovação em serviços. O ECIB, adicionalmente, adota o conceito de capacitação para inovação, definido naquela pesquisa como a capacidade de “desenvolver, adquirir, absorver e difundir tecnologias de produtos e processos pertinentes à sua atividade econômica”.</td>
<td></td>
</tr>
<tr>
<td>• Algumas versões atuais sofreram modificações ou foram criadas para incluir elementos que permitem capturar especificidades de países em desenvolvimento (anexo A da 3ª versão do Manual de Oslo e Manual de Bogotá), considerando aspectos tais como importância e relevância das inovações incrementais; informalidade de atividades de C,T&I e P&D; importância e relevância da difusão e da aquisição externa de tecnologia.</td>
<td></td>
</tr>
<tr>
<td>• Atualmente, preocupam-se em mensurar o processo e as atividades relacionados à inovação, e não somente os insumos e resultados efetivamente inovadores (no sentido estrito), adotando a abordagem do sujeito, a fim de capturar as atividades inovativas realizadas pelas empresas, incluindo esforços ainda inacabados, não materializados ou mesmo abandonados.</td>
<td></td>
</tr>
</tbody>
</table>
Tabela 7.1 – Síntese dos méritos e limitações de abordagens à base de indicadores de C&T (surveys de inovação) (cont.)

<table>
<thead>
<tr>
<th>ABORDAGENS À BASE DE INDICADORES DE C&T (SURVEYS DE INOVAÇÃO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitações</td>
</tr>
<tr>
<td>• Tendem a se voltar mais para a captura de dados e informações mais típicos de empresas da fronteira tecnológica, pois dão grande enfoque às atividades e esforços relacionados a empresas com níveis mais elevados de desenvolvimento tecnológico (produção de patentes, P&D formal, exportação, inovações radicais, publicação científica).</td>
</tr>
<tr>
<td>• Tendem a tratar e capturar os extremos de elementos e aspectos que apresentam estágios intermediários, devido ao grande número de questões do tipo sim/não, existe/não existe, utiliza/não utiliza, que acabam por dar como opção uma entre duas alternativas: empresa inovadora/empresa não inovadora, dificultando a possibilidade de identificar aquelas com potencial e capacidade inovativa, mesmo que no futuro ou por meio de inovações menos originais, negligenciando a realidade da maioria das empresas. Isso pode explicar os resultados pessimistas da PINTEC, EAI e PAEP onde apenas 33%, 36% e 4% das empresas, respectivamente, foram consideradas inovadoras, contrariamente ao resultado de estudos que capturam as capacidades tecnológicas, tal como o de Ariffin (2000), que identificou que 85% das empresas conduziram, pelo menos, atividades inovativas intermediárias.</td>
</tr>
<tr>
<td>• Geram generalizações e informações de forma agregadas, tratando o conjunto de empresas e a empresa como um todo, a partir de seu resultado e desempenho global e mediano, sem adentrar nas especificidades e na captura de nuances intra-organizacionais, das diferentes funções tecnológicas, negligenciando a existência de comportamentos e performances distintos nas diferentes atividades praticadas (buscam tratar a amostra setorialmente, agrupando-as conforme similaridades mais genéricas).</td>
</tr>
<tr>
<td>• Grande utilização de indicadores de resultado e insumos, tais como a produção de patentes, geração de inovações radicais, publicação, gastos com P&D, contratação de especialistas, que, de forma isolada, tendem a negligenciar (i) o fato de que entradas e saídas são heterogêneas (por exemplo, a qualidade da P&D pode variar substancialmente), ou seja, não basta que estejam presentes, mas igualmente importante é a qualidade, e (ii) as atividades e esforços desenvolvidos pelas empresas, incluindo aqueles da rotina organizacional, o aprender fazendo e usando, melhorias incrementais em tecnologias já existentes na empresa. Demonstrando a fragilidade destes tipos de indicadores, segundo a Pintec, apenas 7,4% das empresas inovadoras utilizam patentes como método de proteção.</td>
</tr>
<tr>
<td>• Grande enfoque nas estatísticas de P&D, tais como gastos, pessoal alocado, formalidade, conferindo pouca ou inadequada atenção no D (desenvolvimento) e nas atividades inovativas que não P&D, tais como todas as vertentes de atividades de engenharia, desenho, ferramentaria.</td>
</tr>
<tr>
<td>• A maioria não captura evidências acerca das capacidades tecnológicas, sobretudo as de nível mais básico ou intermediário, tendendo a se concentrar naquelas mais avançadas. O ECIB, apesar de utilizar esta abordagem, ao menos do ponto de vista teórico, na prática adota indicadores de capacitação baseados em gastos públicos e privados em P&D; gastos em educação; gastos com compra ou licenciamento de tecnologia estrangeira; gastos em treinamento de recursos humanos; número de patentes solicitadas e concedidas; idade tecnológica dos equipamentos; taxa de escolaridade; pessoal ocupado em atividades de P&D.</td>
</tr>
<tr>
<td>• Apesar da possibilidade de construção de longas séries temporais, não utilizam apropriadamente este recurso, tendendo a uma abordagem estática e a focar em curtos períodos de tempo (normalmente 2 ou 3 anos), sem procurar obter informações acerca da dinâmica do processo e histórico de desenvolvimento tecnológico, ou seja, não fornecem evidências se, como e a que velocidade as empresas evoluem ao longo do tempo.</td>
</tr>
<tr>
<td>• Compromisso (trade off) entre comparabilidade internacional e captura de especificidades. Quando considera somente atividades inovativas típicas, em seu sentido estreito, favorece comparação internacional (pois é a abordagem da maioria dos países desenvolvidos), mas gera resultados pessimistas, negligenciando a maior parte das atividades típicas de empresas de países em desenvolvimento. De outro lado, se considera inovação em seu sentido amplo, coerente ao contexto, inclui uma gama de atividades que não são consideradas nos surveys de países desenvolvidos, gerando resultados incoerentes e contraditórios de que as empresas de países em desenvolvimento são mais inovadoras que aquelas de países desenvolvidos.</td>
</tr>
<tr>
<td>• Ao mesmo tempo em que há facilidade de aplicação da pesquisa, muitas vezes através de questionários, é difícil contornar o problema da subjetividade das respostas, uma vez que não são confrontadas/corroboraadas com outras fontes de dados, tais como documentação ou arquivos das empresas, uma vez que, sobretudo pelo tamanho da amostra, demandaria tempo e custos impraticáveis.</td>
</tr>
</tbody>
</table>
Tabela 7.2 – Síntese dos méritos e limitações da abordagem à base de tipos e níveis de capacidades tecnológicas

<table>
<thead>
<tr>
<th>ABORDAGEM À BASE DE TIPOS E NÍVEIS DE CAPACIDADES TECNOLÓGICAS</th>
<th>Méritos</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Permite a identificação de tipos e níveis de capacidades tecnológicas, o que se adequa melhor ao contexto da maioria das empresas dos países em desenvolvimento, já que, por normalmente se caracterizarem pela escassez ou insuficiência de recursos, sobretudo nas etapas iniciais, precisam ser abordadas a partir de uma perspectiva ampla que não se limite a capturar apenas os extremos, ou seja, se a empresa é inovadora ou não é inovadora, mas sim o grau e nível de seu estágio.</td>
<td></td>
</tr>
<tr>
<td>• Permite capturar informações tanto de capacidades mais básicas (rotineiras) quanto das intermediárias e inovadoras, não se fixando apenas naquelas capacidades típicas de empresas na frente tecnológica, permitindo capturar e mapear os diversos estágios, cuja acumulação não se dá por meio de saltos ou descontinuidades, mas sim, como resultado de esforços que vieram sendo progressivamente implementados e aprofundados até chegarem à condição de geração. O que não quer dizer que a acumulação se dá exclusivamente através dessa sequência linear, como demonstrado pelo desempenho da Kvaerner Pulping do Brasil, que desenvolveu, simultaneamente, tanto esforços quanto atividades visando complementar o acúmulo de competências de rotina em paralelo ao desenvolvimento de capacidades voltadas para atividades inovadoras.</td>
<td></td>
</tr>
<tr>
<td>• Exame da dinâmica (velocidade) de evolução das trajetórias de acumulação de capacidades à medida que captura informações relativas a longos períodos de tempo, diferentemente de avaliações baseadas em uma radiografia da empresa em um ponto no tempo, o que tende a ignorar esforços ainda em processo de desenvolvimento e aprofundamento que, mesmo sem produzir efeitos ou resultados concretos, capacitam e progressivamente a empresa. Ao capturar a velocidade de acumulação, permite explorar e contribuir para a dimensão econômica do processo inovativo, por exemplo, fornecendo uma noção mais concreta do tempo para retorno dos investimentos.</td>
<td></td>
</tr>
<tr>
<td>• Mais detalhista e aprofundado, uma vez que permite a desagregação em funções tecnológicas e análise intra-organizacional, permitindo adentrar nas especificidades das empresas e em nuances da trajetória - estagnações, reversões, aumento/redução da taxa de acumulação. Por exemplo, na fase inicial da acumulação de competências da Usiminas (o primeiro dos estudos examinados), a empresa acumulou, paralelamente, competências de rotina e competências inovadoras, demonstrando que mesmo internamente a empresa pode diferir no tipo, direção e aplicação dos esforços para construção de capacidades. Esta desagregação também permite verificar a eficiência da empresa, se os esforços estão sendo replicados em mais de uma área ou função tecnológica.</td>
<td></td>
</tr>
<tr>
<td>• Possibilidade de avaliar a influência de fatores internos e externos nos tipos e níveis de capacidades tecnológicas acumuladas bem como na velocidade de acumulação, como verificado, por exemplo, (i) em Ferigotti e Figueiredo (2005), que mostraram que a gestão da cúpula e o comportamento da liderança tiveram papel central em influenciar positivamente o processo de construção de capacidades pela empresa; e em (ii) Figueiredo (2007b), que verificou que mudanças de regime de política industrial no Brasil serviram como fator positivo para o desenvolvimento de capacidades tecnológicas, demonstrando que medidas compulsórias, tais como a que forçou a obtenção da certificação ISO 9002 a todas as empresas do Pólo de Manaus, forçou às empresas a revisão de suas capacidades, contribuindo para empurrar diversas empresas na construção de capacidades um pouco mais avançadas do que as que possuíram.</td>
<td></td>
</tr>
<tr>
<td>• Dados confiáveis e robustos, uma vez que a captura se dá, paralelamente, pela observação direta na empresa e pela aplicação de entrevistas, sendo, ainda, complementados com informações obtidas a partir de manuais, documentos e relatórios das empresas e do mercado, restringindo as margens para respostas subjetivas e baseadas em opinião e percepção pessoal dos respondentes.</td>
<td></td>
</tr>
<tr>
<td>• Possibilidade de avaliar e comparar empresas mesmo que estejam, no momento da pesquisa e ao longo do tempo, em estágios distintos de desenvolvimento, como ocorreu no estudo que analisou CSN e Usiminas, pela separação da análise em fases, procurando especificar cada uma delas de acordo com marcos e características aproximadas, possibilitando comparação e análises paralelas.</td>
<td></td>
</tr>
<tr>
<td>• Permite validar/confrontar generalizações tradicionais quanto à inovação em países em desenvolvimento. Os resultados encontrados por Ariffin (2000) contrariam perspectiva convencional, de que países como a Malásia não são tecnologicamente avançados e, portanto, não têm condições em termos de habilidades e capacidades internas...</td>
<td></td>
</tr>
</tbody>
</table>
ABORDAGEM À BASE DE TIPOS E NÍVEIS DE CAPACIDADES TECNOLOGICAS

<table>
<thead>
<tr>
<th>Méritos</th>
<th>Limitações</th>
</tr>
</thead>
<tbody>
<tr>
<td>para que ocorra a internacionalização de capacidades inovativas. Os resultados mostraram que a internacionalização de capacidades inovativas vem ocorrendo: 85% das empresas conduziram pelo menos atividades inovativas intermediárias, levando uma média de 11 anos para acumular tais capacidades.</td>
<td></td>
</tr>
<tr>
<td>• Possibilita a aplicação tanto de análises qualitativas quanto quantitativas, por exemplo, através de testes estatísticos, verificar a existência e o grau de relação e influência de variáveis na trajetória e velocidade de acúmulo de competências tecnológicas.</td>
<td></td>
</tr>
<tr>
<td>• Captura outros tipos de atividades que não somente as de P&D e patents, tais como atividades baseadas em engenharia (processo, mecânica, eletrônica, elétrica, e engenharia industrial), baseadas em desenho e desenvolvimento, ferramentaria, automação.</td>
<td></td>
</tr>
<tr>
<td>• A maioria dos estudos atualmente existentes trata de uma pequena amostra de empresas, normalmente pertencentes a um mesmo setor industrial, dificultando ou mesmo impedindo generalizações ou extrapolações para aplicações de caráter mais global e abrangente, fazendo com que a aplicação principal dos resultados existentes seja no nível de empresas ou setores – estratégias corporativas, com limitações para a concretização de elaborações de nível macro, que requer um escopo maior para serem justificadas.</td>
<td></td>
</tr>
<tr>
<td>• Por não estar baseada em nenhum manual ou padrão internacionalmente difundido e aplicado, os dados gerados, em sua forma pura, apresenta dificuldades para comparações de nível internacional de forma direta ou tabulada, sem gerar uma base de dados em formato comum àquelas geradas por estratégias padronizadas.</td>
<td></td>
</tr>
<tr>
<td>• Requer tempo e custos elevados de aplicação, uma vez que a coleta de dados envolve diversas etapas, normalmente com o pesquisador em campo (diferente do envio de questionários), tais como estudo da indústria objeto do estudo para avaliação das funções tecnológicas no âmbito do setor, seleção das funções a serem tratadas, definição das capacidades tecnológicas envolvidas, associação das capacidades a funções tecnológicas específicas, distribuição das capacidades em níveis conforme a complexidade, especificação e detalhamento das atividades incluídas em cada um dos níveis e tipos de capacidades, etc, o que faz com que a aplicação deste tipo de estratégia não seja imediata, global ou genérica, diferentemente de se aplicar um conjunto de indicadores pré-definidos em manuais previamente estudados e modelados.</td>
<td></td>
</tr>
<tr>
<td>• Dificuldade em examinar em um único estudo os diversos fatores – internos e externos – que podem influenciam a acumulação de capacidades tecnológicas, fazendo com que normalmente apenas um conjunto deles seja selecionado.</td>
<td></td>
</tr>
<tr>
<td>• Estudos existentes não costumam abordar de forma detalhada de que forma ocorre o processo de transição das empresas desde os estágios onde dominam as competências intermediárias e inovativas para o posicionamento na fronteira tecnológica, já que o domínio de competência inovativas avançadas não implica necessariamente em um posicionamento na fronteira, além da dificuldade em se estabelecer quais as competências tecnológicas a empresa deve possuir para ser posicionada como tal, pois como a fronteira é móvel e está em constante movimento, tais capacidades estão constantemente sendo alteradas.</td>
<td></td>
</tr>
<tr>
<td>• Pode haver dificuldade de isolar/separar completamente as funções tecnológicas, gerando sobreposição das mesmas, já que certas atividades podem estar relacionadas a mais de uma função tecnológica, necessitando do pesquisador esforços adicionais ou mesmo uma decisão baseada em algum parâmetro a ser escolhido.</td>
<td></td>
</tr>
<tr>
<td>• Pode necessitar de outros modelos que a complementem para analisar demais fatores influenciadores da trajetória de acumulação de capacidades tecnológicas, tais como o de Figueiredo (2003), que trata da aprendizagem tecnológica, e o de Ariffin (2000), para análise das ligações entre empresas e a forma como contribuem para o acúmulo de capacidades.</td>
<td></td>
</tr>
</tbody>
</table>
em metodologias internacionalmente reconhecidas e aplicadas, tais como o Manual de Oslo, acabam por facilitar a importante tarefa de posicionamento relativo do desempenho inovador de setores e países frente aos demais. Assim, o desenho de tais levantamentos e a seleção da abordagem metodológica, um processo consciente e deliberado, preconizou a obtenção de um conjunto de dados e informações voltados a objetivos específicos e determinados. Visando como pontos principais o estabelecimento de políticas públicas, alocação de recursos, subsídios, incentivos, e estruturação das ações para o sistema nacional de inovação, abordagens agregadas podem ser úteis, pois dão conta de um conjunto mais amplo e significativo de empresas (grandes agregados industriais), onde os indicadores de resultado, de eficiência e competitividade ajustam-se aos propósitos pretendidos. Assim, pesquisas como ECIB, PINTEC, PAEP e EAI visam identificar, de forma geral, o grau de competitividade industrial inovadora, a fim de que possam embasar ações macroeconômicas e políticas mais gerais de fomento à inovação.

A questão da comparabilidade torna-se cada vez mais importante à medida que a globalização aproxima e modifica as relações entre os países, suas economias, indústrias. Por um lado, como em um mundo globalizado o enfoque tende a recair nos resultados, os levantamentos acabam seguindo a tendência de se concentrarem neste aspecto da inovação, que são os resultados e as inovações efetivas alcançados pelas empresas, preocupação essa refletida na grande utilização de indicadores com a finalidade de capturar tanto as entradas (consideradas como determinantes dos resultados) quanto as saídas do processo inovador. Dessa forma, como extensamente explorado nos capítulos 2 e 4, indicadores de resultado ajustam-se melhor às características de empresas inseridas ou próximas à fronteira tecnológica, que, ao se posicionarem no “topo da pirâmide”, dominam as capacidades tecnológicas mais avançadas, ou seja, aquelas voltadas para geração de conhecimentos e inovações.

Entretanto, como em países em desenvolvimento a grande maioria das empresas (apesar de exceções reconhecidas) ainda não atingiu este patamar, estas se concentram nos estágios intermediários de desenvolvimento tecnológico, ainda em processo de desenvolvimento e construção de habilidades e capacidades de menor complexidade. Assim, indicadores fortemente baseados em estatísticas de P&D, patentes, publicações, balança comercial etc, acabam negligenciando o principal de suas atividades, falhando em capturar evidências sobre capacidades básicas e intermediárias, que são as prevalentes em tais empresas e, por
outro lado, tendem a ser pré-condição para o atingimento de capacidades de pesquisa básica e de geração de inovações (BELL; PAVITT, 1993; ARIFFIN, 2000; FIGUEIREDO, 2007a). Como demonstraram as aplicações do modelo à base de tipos e níveis de capacidades, a construção e o acúmulo de competências de rotina nas empresas pesquisadas foram fundamentais para uma acumulação sólida de competências inovadoras, muito embora não se configurem como pré-requisito para se atingir níveis superiores, mas auxilia a fazê-lo de forma mais rápida e sustentada. Assim, pode-se notar que tão importante quanto o tratamento das competências inovadoras é a capacidade de se capturar o acúmulo de competências de rotina, que, se de forma eficiente, auxilia tanto na velocidade de acumulação de níveis mais avançados quanto na consistência da trajetória e sustentação dos níveis atingidos.

Neste sentido, das análises de aplicações empíricas das abordagens, alguns exemplos indicam a fragilidade da utilização exclusiva de indicadores “convencionais” e agregados em capturar este conjunto prevalente de empresas no contexto de países em desenvolvimento. Os resultados da PINTEC mostraram que 33,3% das empresas implementaram inovações; ao passo que Ariffin (2000), por exemplo, observou que 85% das empresas da amostra que pesquisou atingiram competências tecnológicas inovadoras de nível intermediário e 34% conseguiram acumular competências inovadoras avançadas. Essa discrepância de resultados demonstra que, ao concentrar nas atividades e capacidades inovadoras relacionadas diretamente à geração de inovações, o resultado da PINTEC mostra-se pessimista e nem sempre condizente à realidade, pois acabam por negligenciar grande parte do que efetivamente se encontra no interior da maioria das empresas de países em desenvolvimento.

Outro exemplo demonstra a limitação da utilização, isolada e exclusiva, de indicadores de resultado, no caso, as patentes, para definição de características inovadoras de empresas em países em desenvolvimento. Pelos resultados de uma análise aprofundada dos tipos e níveis de capacidades acumuladas pela Usiminas e pela CSN ao longo do tempo, Figueiredo (2002) chegou ao resultado de que a trajetória da Usiminas seguiu, desde os primeiros períodos de operação, de forma mais consistente do que a da CSN, levando àquela empresa a atingir níveis mais avançados de capacidade e de forma mais acelerada que a CSN. Por este resultado, pode-se dizer de forma simplificada que a Usiminas é mais inovadora que a CSN. Entretanto, ao fazer esta mesma análise através de um indicador
convencional, no caso, o número de patentes depositadas no INPI, os resultados demonstram, por esta perspectiva, o contrário: que a CSN é mais inovadora que a Usiminas, com 119 e 101 patentes depositadas19, respectivamente.

Um terceiro exemplo se refere à utilização da certificação CMM (\textit{Capability Maturity Model}) como indicador de inovação e capacidade tecnológica voltado para empresas de software. Segundo os dados encontrados por Miranda (2000), a utilização desse indicador de forma isolada pode levar a informações enganosas. Primeiro, como foi criado para certificar grandes empresas, com foco na capacidade em cumprir prazos e garantir qualidade final do produto gerado, acaba por sub-avaliar outras importantes capacidades tecnológicas. Além disso, como o custo de sua aplicação em pequenas empresas tende a ser proibitivo, não é adotado por uma parcela significativa de empresas, o que não impediu que empresas conseguissem alcançar níveis de maturidade em processo e qualidade utilizando caminhos alternativos ao CMM. Assim, duas situações podem ser observadas: (i) a indústria de software que ostenta atualmente o maior número de empresas com CMM nível 5 no mundo (indiana) ainda não atingiu níveis de capacidades inovadoras que a levasse à fronteira tecnológica do mercado; por outro lado, (ii) boa parte das grandes empresas de software do mundo, que acumularam capacidades necessárias para disputar a fronteira tecnológica, não têm certificação CMM (MIRANDA, 2000).

Relacionado ao argumento anterior referente à utilização da certificação CMM como indicador da maturidade das capacidades, está o trabalho desenvolvido por Figueiredo e Marins (2005b), também baseado na abordagem que analisa tipos e níveis de capacidades, onde os autores descrevem e examinam as capacidades tecnológicas de 18 dos principais institutos de pesquisa e desenvolvimento brasileiros, públicos e privados, orientados para o setor de tecnologia de informação e comunicação (TIC). Os resultados deste estudo mostraram que a elaboração de normas e regulamentos internos é o mecanismo de codificação de conhecimento mais incidente nos institutos examinados em todas as fases; e que as certificações ISO e CMM, normalmente tidos como os indicadores principais neste setor, são os mecanismos de menor incidência, evidência que confirma a limitação deste tipo de métrica isolada de mensuração de capacidade tecnológica e ratifica a necessidade

19 Estes dados podem ser encontrados em: http://www.fapesp.br/english/indicators/detailed_tables_6.pdf.
de utilização de métricas adicionais/complementares para obtenção de dados relevantes e coerentes.

Diante do exposto, o que se pode perceber é que, apesar de os indicadores utilizados nos surveys e a forma de análise agregada fornecerem um conjunto de informações gerais necessárias ao desenvolvimento de políticas e estratégias mais amplas, não capturam algumas nuances, que são cruciais para o entendimento da trajetória e da taxa (velocidade/dinâmica) do desenvolvimento de capacidades no nível de empresas em contexto de industrialização tardia, conceitos estes que se mostram fundamentais tendo em vista as características de suas empresas e de seus processos inovadores (KATZ, 1987; BELL; PAVITT, 1993, 1995; ARIFFIN, 2000; FIGUEIREDO, 2001a; BELL, 2006).

Assim, a métrica baseada em tipos e níveis de capacidades pode ser utilizada a fim de complementar as informações geradas pelos levantamentos de inovação de nível nacional. Se de um lado, a captura de informações acerca das capacidades tecnológicas é fundamental no contexto empresas de países em desenvolvimento, não basta que se observe e capture a aquisição dos elementos que compõem as capacidades, tais como investimentos, contratação, treinamento, transferência de conhecimento, P&D (como é feito nos surveys); há a necessidade de se verificar como esses elementos tornaram-se parte da organização ao longo do tempo, através do desenvolvimento de rotinas que os integrem de forma eficiente e dinâmica. Ou seja, não basta capturar apenas a existência ou ausência de tais elementos, mas a forma como interagem, como se desenvolveram e se tornaram inseridas nas rotinas organizacionais, bem como a forma como são geridos e planejados.

Assim, ao focar no nível intra-organizacional, a abordagem baseada em tipos e níveis de capacidades identifica nuances e especificidades internas da empresa que uma análise mais agregada, através de uma visão exterior voltada para um conjunto mais amplo de empresas, não teria condições de capturar. Uma vez que as empresas não são uma caixa-preta, ou seja, inserido nelas estão um conjunto distinguível de capacidades, habilidades, atividades e funções voltadas para ramos, etapas e situações específicas de atuação, tais elementos devem receber tratamentos direcionados de acordo com suas características próprias para que possam ser elaboradas estratégias mais específicas, focadas e direcionadas, sobretudo no que se refere às estratégias corporativas. Uma vez que a maioria das empresas oferece um portfolio de produtos, alguns dos quais tecnologicamente
mais avançados e outros menos, tais estratégias tendem a ser executadas em relação a necessidades de produtos específicos, e não da empresa como um todo (HOBDAY; RUSH; BESSANT, 2004). Portanto, nestes casos, a análise da empresa como um bloco único, uniforme e monolítico pode encobrir e esconder informações dos aspectos críticos do comportamento da empresa, levando à idéia de que o desempenho global, mediano, representa o reflexo do que é encontrado em cada uma das funções tecnológicas desempenhadas pela empresa.

Além disso, para empresas que ainda se encontram em processo de desenvolvimento de capacidades, tão importante quanto analisar a trajetória de acúmulo de tais capacidades, através dos diferentes tipos e níveis, é o exame da dinâmica deste processo, favorecida e possibilitada quando se abrange um *longo período de tempo*. Uma vez que a inovação é um processo dinâmico, não pode ser tratada ou medida exclusivamente por meio de indicadores estáticos. Assim, evidências sobre taxas de acumulação de capacidades em países em desenvolvimento é crucial para ampliar o entendimento sobre questões relacionadas ao tempo do processo pelo qual empresas e indústrias se movem desde os estágios de produção até os de inovação em seu progresso tecnológico. Diante disso, a importância da análise da dinâmica em contextos de industrialização tardia é essencial em diversos aspectos: (i) permite verificar a taxa de desenvolvimento atual e de que forma pode ser acelerada se esforços deliberados e efetivos para acumular e sustentar capacidades para as diferentes funções tecnológicas forem conduzidos dentro da empresa, (ii) permite verificar os efeitos de determinados fatores na taxa de desenvolvimento de capacidades, (iii) fornece uma noção mais clara e concreta do espaço de tempo necessário para materialização de investimentos e verificação da aderência e aplicabilidade de estratégias de incentivo e aceleração do desenvolvimento.

Por outro lado, a análise por longos períodos de tempo faz-se necessária uma vez que grande parte dos mecanismos – tais como interações, colaborações com outras empresas, investimentos em determinada atividade, aquisição de tecnologia, pesquisas, contratação de pessoal, melhorias incrementais – somente consegue ter seus efeitos visíveis e claros no longo prazo, pois requerem tempo para se adaptarem à estrutura vigente, se inserirem nas rotinas e no tecido organizacional, se consolidarem, e, consequentemente, ter resultados e implicações passíveis de exame, através de uma visão completa, e não apesar de uma parte do processo. Além disso, este monitoramento e rastreamento do comportamento
tecnológico das empresas, mais especificamente, de suas capacidades tecnológicas, deve ser algo contínuo e constante, uma vez que as capacidades em questão não são recursos estáticos, pelo contrário, variam com o tempo; se de um lado alguns depreciam por si só, necessitando de constante renovação, outros são melhorados ou aprofundados pela sua simples utilização eficiente, e outros ainda são incorporados conforme as necessidades.

Portanto, diante das possibilidades, e das restrições, de cada uma das métricas aqui apresentadas, pode-se notar que são propostas diferentes, com abordagem e enfoque distintos. Uma fornece uma visão mais geral, acessando dados de uma extensa amostra de empresas, de diferentes regiões do país, de distintos setores industriais, procurando abordar diferentes aspectos da inovação e dos sistemas nacionais de inovação através da utilização de indicadores internacionalmente utilizados e reconhecidos, possibilitando comparações internacionais e servindo de insumo à estratégias e decisões mais amplas. A outra métrica busca tratar as empresas de forma mais focada, adentrando em suas especificidades e considerando que, mesmo internamente, as empresas diferem quanto às capacidades que apresentam em diferentes frentes ou funções tecnológicas que desempenham.

Assim, para uma visão mais completa do processo inovador em países em desenvolvimento, uma combinação de análises agregadas no nível de países ou setores industriais com aquelas representadas por estudos intra-organizacionais a partir de uma perspectiva dinâmica seria válida para clarificação do entendimento de como as empresas e indústrias de países em desenvolvimento desenvolvem esforços (ou deixam de desenvolvê-los) para avançar em seus níveis de capacidades. Portanto, apesar de fornecerem dados e informações capturados para finalidades distintas e sob lentes próprias, mas igualmente importantes, tais informações não se excluem, pelo contrário, somadas contribuem, de forma mais significativa e realista, para a compreensão do complexo fenômeno da inovação e suas nuances em um contexto que, por si só, também é complexo e cheio de variedades, que é o de países em desenvolvimento. Daí decorre a importância em se utilizar uma abordagem “casada”, contemplando tanto aquela representada pelos levantamentos de inovação quanto aquelas mais focadas, de nível intra-organizacional, extrayndo-se dessa combinação o que se ajustar melhor aos propósitos pretendidos, e buscando anular ou compensar possíveis limitações uma da outra.
CAPÍTULO 8

CONCLUSÕES E RECOMENDAÇÕES

O presente trabalho procurou contribuir para aspectos teóricos e práticos relacionados à mensuração das capacidades tecnológicas e inovação, sobretudo quando tratados em contextos de países que se industrializaram tardiamente, e que, por isso, desenvolveram características próprias e distintivas, merecendo um enfoque e tratamento específicos, já que apresentam diferenças sensíveis daquelas economias e empresas posicionadas na fronteira tecnológica. Especificidades estas que também geram impacto na natureza das pesquisas e na forma como são organizadas e conduzidas em tal contexto. De um lado, a partir da apresentação de uma série de conceitos e de abordagens que buscam tratar o fenômeno da inovação, este trabalho procurou clarificar e reafirmar teorias e definições acerca do referido tema, demonstrando e justificando porque aquelas adotadas no âmbito desta dissertação se aplicam e se ajustam mais às características tecnológicas da maioria das empresas de países em desenvolvimento, em contraposição àsquelas teorias e definições que tratam o processo inovador e suas características nos moldes de países desenvolvidos. De outro lado, por meio da apresentação e exame de aplicações empíricas de duas abordagens de mensuração da inovação com enfoque, perspectiva, abrangência, escopo e objetivo distintos, procurou demonstrar a relevância de cada uma das estratégias e, conseqüentemente, de que forma cada uma pode contribuir para a prática de exercícios futuros de tratamento e mensuração da inovação a fim de que os resultados gerados sejam mais completos, coerentes e realistas.

Assim, em um primeiro momento, visando responder à primeira das questões da dissertação – quais os méritos e limitações das metodologias baseadas em indicadores de inovação convencionalmente utilizados no exame de atividades tecnológicas de empresas no contexto de países em desenvolvimento? – e baseando-se no arcabouço conceitual apresentado, sobretudo na observação das características distintivas do processo inovador de empresas localizadas em países em desenvolvimento, esta dissertação apresentou os méritos e limitações de grupos de indicadores convencionalmente utilizados em levantamentos e estudos voltados para o diagnóstico e interpretação das atividades e capacidades tecnológicas inovadoras neste contexto. De posse dos principais pontos (positivos e negativos) referentes aos indicadores de inovação tradicionais e do referencial
teórico e analítico utilizado como fundamentação conceitual para a condução desta dissertação, procurou-se avaliar a contribuição dos levantamentos de inovação que vêm sendo realizados nos países em desenvolvimento, baseados em metodologias internacionais e, conseqüentemente, em grande parte dos indicadores de C&T analisados.

Essa questão foi examinada tomando como base exemplos de aplicação de quatro surveys de inovação conduzidos em países em desenvolvimento (Brasil e Uruguai), cada um com foco, abordagem e objetivo distintos (uma pesquisa de nível regional – PAEP e três pesquisas nacionais – PINTEC, ECIB e EAI). Através de uma análise minuciosa da abordagem, do enfoque, dos tópicos, questões e indicadores utilizados e dos resultados de tais levantamentos, chegou-se à conclusão de que a abrangência (representada por uma amostra significativa de empresas), preocupação com a comparabilidade internacional, captura de dados agregados, consideração de uma série de aspectos da inovação (difusão, redes de ligação, infra-estrutura tecnológica, apoio governamental, dentre outros), preocupação na geração de dados que possibilitem o desenho de instrumentos (estratégias e políticas) de nível macro, são os fatores principais de tais pesquisas, com vistas a uma perspectiva direcionada, de forma geral, para ações macroeconômicas e políticas mais amplas e gerais de fomento à inovação. Adicionalmente, verificou-se que as principais limitações se referem à natureza agregada das informações geradas, que não fornecem detalhes acerca das nuances e especificidades da trajetória de desenvolvimento tecnológico das empresas; falta de evidências que capturem o desenvolvimento das empresas ao longo do tempo (perspetiva estática); tendência em utilizar indicadores de C&T mais aplicáveis à lógica de empresas da fronteira tecnológica; grande enfoque nas estatísticas de P&D.

Diante do quadro analisado, ou seja, das contribuições, méritos e limitações das abordagens à base de indicadores de C&T (também chamadas de abordagens tradicionais por serem baseadas em manuais internacionalmente utilizados, aqui representadas pelos surveys de inovação), seguiu-se a etapa seguinte da dissertação, direcionada para a verificação de como métricas de mensuração à base de tipos e níveis de capacidades tecnológicas podem oferecer uma complementação às abordagens tradicionais para uma melhor compreensão do processo inovador em países em desenvolvimento. Levando-se em conta que países em desenvolvimento apresentam características próprias e desenvolvimento tecnológico particular, dificultando que abordagens agregadas, indicadores de resultado e foco em empresas da fronteira tecnológica sejam capazes de
capturar, sozinhos, de forma realista e detalhada, foi apresentada uma métrica de mensuração à base de tipos e níveis de capacidades, baseada em análise desagregada, voltada para os aspectos intra-organizacionais, que busca detectar e traçar a trajetória de acumulação de competências das empresas, inclusive para diferentes funções tecnológicas. Assim, ao reconhecer que há diversos graus de inovação – desde as mais básicas às mais complexas, além de proceder a uma análise ao longo do tempo, permite (i) o tratamento de áreas funcionais e não somente a empresa como um todo; (ii) que seja verificado o desempenho de indicadores apropriados ao setor/tipos de atividades com relação à trajetória de acumulação de competências; (iii) identificar e comparar diferenças nas escalas de tempo das empresas/unidades de análise ao longo das trajetórias de desenvolvimento de funções tecnológicas específicas (velocidade); (iv) avaliar a influência de fatores externos no desenvolvimento de capacidades (direção e taxa); além de (v) proceder à análise sob uma gama mais ampla de capacidades inovativas (incluindo as capacidades intermediárias, que são as prevalentes em tais contextos) e não somente aquelas tradicionalmente utilizadas tais como P&D, patentes, produtividade.

Portanto, verificou-se que pesquisas focadas, voltadas para os aspectos intra-organizacionais, a partir de uma perspectiva dinâmica, tendem a fornecer informações mais detalhadas e sofisticadas, já que têm a oportunidade de adentrar nas especificidades das empresas e de suas diferentes funções tecnológicas. Entretanto, costumam tratar de um subconjunto mais delimitado da realidade, sofrem contingências de custo e tempo, os dados gerados, em geral, não são diretamente comparáveis internacionalmente, dentre outros aspectos, o que faz com que os resultados sejam menos generalizáveis, uma vez que não é possível a replicação dos dados e das conclusões ao universo completo de empresas e setores, sendo mais aplicável para análises no nível de empresas/empreendimentos.

Dessa forma, uma vez que cada um dos tipos de pesquisa contribui de forma característica e única para a compreensão do processo inovador de empresas e países, uma abordagem não deve ser desprezada em detrimento do outra, já que o tipo, forma e tratamento das informações fornecem perspectivas substancialmente diferentes. O ideal é que uma sirva de complemento à outra, já que a realização de pesquisas agregadas baseadas em manuais do tipo Manual de Oslo não implica prescindir de pesquisas mais focadas, que utilizem abordagens mais direcionadas e coerentes ao contexto tratado. Assim, esta dissertação procurou demonstrar a importância em se utilizar uma abordagem “casada”, de forma que
as duas perspectivas, que geram contribuições distintas, mas igualmente importantes e úteis, possam ser mutuamente complementares, e sejam utilizadas de acordo com os propósitos pretendidos e as conciliações necessárias.

Diante dos resultados e conclusões a que chegou esta dissertação, algumas recomendações podem ser feitas a fim de contribuir para os processos de desenho e implementação de estratégias tecnológicas – governamentais e empresariais – e para estudos futuros voltados para a mensuração e análise dos aspectos da inovação e das capacidades tecnológicas quando realizados em contextos de economias emergentes.

8.1. Implicações e recomendações para políticas governamentais e estratégias corporativas

A partir das aplicações empíricas apresentadas, sobretudo a que verifica e confirma a influência de políticas e regimes governamentais na construção e acúmulo de capacidades tecnológicas (representada pelo trabalho de Figueiredo (2007b)), pode-se perceber a importância de políticas e estratégias para o desenvolvimento de capacidades em empresas em processo de construção de competências, e que sejam não somente voltadas para aspectos e incentivos de nível macro, mas, sobretudo, que também incentivem e facilitem os esforços de construção de capacidades dentro das empresas, em todas as funções tecnológicas. Apesar de verificado que a estratégia de “aprender fazendo” é um importante componente do processo inovador de empresas de países em desenvolvimento, por si só este tipo de estratégia não é suficiente ou capaz de fazer com que a mudança tecnológica seja bem sucedida, já que este não é um processo sem custo e nem automático, pelo contrário, requer estratégias e investimentos definidos e deliberados. Assim, há a necessidade de políticas e gerenciamento propósitos, que visem à construção de capacidades pelas empresas, sua integração e alinhamento com os demais componentes organizacionais, que promovam e possibilitem as empresas a construïrem seus próprios sistemas de inovação e aprendizagem, já que sozinhas, sem apoio, incentivo ou suporte, esta se torna uma tarefa difícil e extremamente arriscada e custosa.

Adicionalmente, além da estratégia de “aprender fazendo”, foi verificado que a aquisição externa de tecnologia configura-se como um componente presente e essencial do processo
de desenvolvimento tecnológico de empresas *latecomer*. Entretanto, formuladores de políticas e estratégias corporativas não devem cair no engano de considerar que este processo é automático e/ou auto-suficiente. Como destacado por Martins Filho (2003), essa transferência de tecnologia envolve duas etapas: de um lado, a gestão da aquisição, instalação e operação da tecnologia importada; e de outro, a necessidade de a empresa se engajar em um processo de aprendizagem para que os esforços para operar a tecnologia adquirida consigam ser internalizado na organização e sirvam como base para a construção e o aprofundamento de capacidades relacionadas. Assim, os formuladores de políticas e estratégias públicas e privadas devem ter esta visão de buscar promover ferramentas e incentivos que assegurem o contínuo e sistemático engajamento da organização neste processo de aprendizagem, mesmo nas tarefas ou atividades consideradas “simples” ou automáticas pelo pensamento comum, ou seja, fazer com que essa segunda etapa não seja negligenciada no processo de gestão.

Outro ponto que merece destaque no que se refere às estratégias e políticas voltadas para gestão da inovação está relacionado à dados sobre P&D. Muitas políticas e estratégias tomam como base e exemplo o que é normalmente praticado em empresas altamente inovadoras ou em informações divulgadas relativas a comparações entre os dispêndios em P&D de países desenvolvidos e de países em desenvolvimento: de que o grau de desenvolvimento tecnológico e inovador de empresas está diretamente associado (ou mesmo definido) pelos gastos em P&D. Esta perspectiva pode levar à aplicação de estratégias que visem, pura e simplesmente, o incremento dos investimentos em P&D, sem as contrapartidas necessárias e determinantes. Nada impede que faça parte da estratégia da empresa, já em seu início, o estabelecimento e desenvolvimento de atividades de P&D, já que estas também podem ser classificadas em vários tipos/níveis. Portanto, o que tais estratégias devem levar em consideração é que a qualidade de referidas atividades, os resultados, o nível de profundamento e aplicabilidade tendem a depender substancialmente do estoque de conhecimento da empresa e de seu conjunto e nível de capacidades. Não basta a disponibilidade de recursos para implantação de P&D, mas capacidade técnica, tecnológica, de recursos humanos, físicos e organizacionais para desenvolvê-las e aplicá-las, além de requerer um período de tempo para estabelecimento e difusão satisfatórios. Assim, é necessário promover ações que possibilitem e estimulem as empresas no empreendimento de esforços internos deliberados no sentido de incrementar e aprofundar
As capacidades existentes bem como fornecer subsídios para a busca e aquisição daquelas que ainda não existem ou são deficientes.

A partir das aplicações empíricas, pôde-se distinguir, de forma simplificada, três “fases” fundamentalmente diferentes do desenvolvimento tecnológico: (i) acúmulo de capacidades rotineiras mais básicas, normalmente associadas a atividades e operações com menor complexidade; (ii) acúmulo de capacidades intermediárias, refletindo o movimento em direção a competências inovadoras mais avançadas; e (iii) sustentação e aprofundamento de capacidades inovadoras avançadas, caracterizadas pelas empresas localizadas próximas ou inseridas na fronteira tecnológica. Como o progresso ao longo de cada uma dessas trajetórias envolve diferentes tipos de recursos, esforços e mecanismos de aprendizagem, medidas diferentes serão necessárias em cada um dos casos. Assim, há que se adotar a perspectiva abrangente de capacidade tecnológica por parte dos gestores, o que implica gerenciar bases diversas de conhecimento e capacidades, para que as empresas sejam capazes de realizar atividades ou funções tecnológicas variadas bem como aprofundar e renovar as capacidades tecnológicas existentes, uma vez que o movimento de empresas em direção à acumulação de níveis mais avançados de capacidades inovativas envolverá diferentes tipos e esforços intra-organizacionais e diferentes medidas e políticas empresariais e governamentais.

Deste modo, análise e acompanhamento contínuos e de longo prazo da trajetória da empresa em seu processo de acumulação de capacidades são essenciais, visto que, com o tempo, as empresas tendem a modificá-las, necessitando que as estratégias empresariais sigam esse movimento, adaptando, também, a forma, direção e intensidade das ações à medida que a empresa se desloca em direção a níveis de competência mais complexos e avançados. Assim, as estratégias têm fundamental importância, sobretudo, em direcionar as diversas atividades desempenhadas pelas empresas ao longo do tempo, para que não sejam aleatórias, difusas, mas sim, contínuas, consistentes, integradas, promovendo, de forma geral, uma convergência dinâmica entre (i) estratégias competitivas gerais desenvolvidas pelas empresas, (ii) estratégias específicas voltadas para aprendizagem e inovação, e (iii) atividades e mecanismos efetivamente desempenhados e utilizados.

Além disso, há a necessidade de avaliar o posicionamento de forma qualitativa, o que só uma análise ao longo do tempo é capaz de proporcionar. As evidências apresentadas não
implicam que as empresas inovativas irão continuar através das fases subsequentes de desenvolvimento de capacidades e também não sugere que outras empresas irão se mover para tipos e níveis mais avançados de capacidades inovativas. Além disso, nem sempre a permanência (ou estagnação) em determinado nível capacidade ou desenvolvimento tecnológico reflete uma ausência de esforços por parte da empresa. Pelo contrário, pode significar a existência de barreiras que a empresa, por si só, não conseguiu superar. Por outro lado, às vezes, segundo Hobday et. al (2004), empresas optam, explícita ou implicitamente, por se estabelecerem em determinado nível ou padrão tecnológico (não pretendendo, portanto, se posicionar na fronteira tecnológica), pois acreditam que conseguem continuar se movendo adiante tecnologicamente, sem incorrer nos riscos e custos de desenvolvimento de novos produtos. Ou seja, a manutenção em um determinado nível de capacidade tornou-se estratégia deliberada, e não o resultado de incapacidade ou obstáculos que a empresa não conseguiu superar, ou seja, foi uma questão de escolha, onde, por exemplo, decidiram permanecer competindo à base de estratégias voltadas para qualidade elevada e baixo custo. Assim, somente uma análise contínua, de longo prazo é capaz de fornecer informações coerentes e condizentes à realidade dentro das empresas.

Do ponto de vista das estratégias empresariais, a complementação de dados obtidos a partir de perspectivas mais agregadas, de nível macro, no nível de países, setores ou indústrias com aquelas obtidos a partir de um olhar mais específico, no nível intra-organizacional, permite que o gestor detenha informações mais ricas, tanto de suas próprias capacidades quanto de seu entorno, sobretudo concorrentes e parceiros. De um lado, é possível verificar, de forma geral, as principais alianças; as redes de cooperação onde a empresa se insere; os principais concorrentes, tanto no nível de empresas quanto de indústrias (já que diversas indústrias podem concorrer pela obtenção de algum tipo de insumo, ou para satisfação de algum tipo de necessidade, ou mesmo concorrer por recursos); as principais fontes de informação, exportadores e importadores. De outro, estágios/níveis das capacidades necessárias ao desenvolvimento de atividades específicas; pontos de gargalo; atividades (funções tecnológicas) deficientes ou destacadas; a relação entre as diversas atividades; fatores influentes do processo de aprendizagem e direção e velocidade do acúmulo de competências; etc. Assim, a conjugação das duas perspectivas permite, do ponto de vista organizacional, por exemplo, (i) identificar empresas assemelhadas, para que possam trocar experiências, informações, habilidades a fim de fortalecer a posição tecnológica de ambas e facilitar e acelerar o aprendizado conjunto; (ii) identificar outras
empresas que possuam competências em um nível que possa auxiliar na superação de suas deficiências; (iii) identificar a situação de seus concorrentes para posicionamento relativo; (iv) gerir de forma eficiente não só a própria empresa, mas também a rede de alianças na qual está inserida; (v) identificar de que forma o entorno e as externalidades influenciam as atividades e competências da empresa e de que forma esta reage a tais estímulos, etc.

Portanto, espera-se que os resultados apresentados possam auxiliar na reestruturação dos mecanismos de mensuração e levantamento de capacidades tecnológicas em países em desenvolvimento, para que possam auxiliar na elaboração de estratégias através do fornecimento de subsídios para (i) decisões tais como setores a serem preferencialmente alcançados (seja por se encontrarem em posição de atraso, necessitando maior desenvolvimento, seja por se tratar de setor essencial, de primeira necessidade, ou mesmo por estarem situados em um ramo de atividade onde se vislumbram oportunidades futuras); (ii) potencialidades a serem exploradas; (iii) destinação e concentração de recursos em prioridades tecnológicas claras (diante da impossibilidade de cobrir todo o espectro de áreas tecnológicas em uma mesma intensidade); (iv) identificação de barreiras e obstáculos a um melhor desempenho inovador; (v) estabelecimento de metas para o desenvolvimento de capacidades tecnológicas, o que é possível com o rastreamento das escalas de tempo envolvidas e a trajetória desempenhada pelas empresas ao longo do tempo; enfim, para que possam fornecer elementos e fundamento aos processos decisórios, a fim de que sejam capazes de conhecer e interpretar o que ocorre nos sistemas científicos e tecnológicos.

Assim sendo, o monitoramento e acompanhamento sistemáticos dos processos que dizem respeito à inovação são importantes em dois sentidos principais. Primeiro, fornecem informações e dados referentes aos diversos aspectos envolvidos na gestão da inovação, auxiliando e servindo como instrumento gerencial de subsídio a estratégias e políticas, tanto pública quanto privadas, de incentivo, apoio e articulação dos elementos envolvidos nos processos inovadores. E de outro lado, os dados coletados também servem como medida para qualificação e análise do impacto e aderência das estratégias anteriormente direcionadas, por propiciar conhecer a extensão na qual as empresas vêm respondendo aos mecanismos de gestão aplicados, como também servem de base à adequação e ajuste de instrumentos futuros, na medida em que os resultados apresentados, reflexo das estratégias adotadas, são capazes de informar se aquilo que se pretendia originalmente foi real e
efetivamente alcançado e em que sentido ações devem ser incluídas, alteradas ou descartadas.

8.2. Implicações e recomendações para pesquisas futuras

Uma das principais implicações para pesquisas observadas ao longo deste trabalho é a importância de se conhecer as capacidades acumuladas pelas empresas e seus esforços direcionados para o aumento e aprofundamento de tais capacidades, que representam e determinam as chances que as empresas terão em obter vantagens das oportunidades encontradas no mercado ou mesmo de criar suas próprias oportunidades. Relacionada a esta consideração, está a importância em se reconhecer que há diversos graus de inovação, desde as mais básicas até as mais complexas, que normalmente não são captados pelos estudos à base dos indicadores convencionais, mas cuja consideração permite que se identifique a progressão das empresas por meio dos diferentes níveis/estágios de desenvolvimento tecnológico. Assim, de forma relacionada e paralela, está a necessidade de indicadores capazes de identificar e tratar não somente as empresas inovadoras, definidas como aquelas que atingiram algum resultado, ou seja, introduziram efetivamente uma inovação no mercado, mas também aquelas com potencial de inovação. Assim, aderindo ao argumento de Lugones e Peirano (2004b), devem ser capturadas empresas que inovaram no passado e aquelas com capacidade de inovação, auxiliando as políticas de fomento à inovação através da indicação das barreiras e obstáculos que estejam impedindo a concretização dos esforços desenvolvidos pelas empresas.

Adicionalmente, merece destaque a consideração da análise em longos períodos de tempo e, de forma mais específica, que a mensuração seja um processo contínuo e periódico. Parcela significativa da literatura sobre o tema adota uma perspectiva estática, ou seja, procura avaliar o comportamento da empresa e as capacidades inovadoras existentes em um ponto no tempo ou em um período curto. Entretanto, uma vez que o que se pretende medir e avaliar se trata de um fenômeno caracterizado pela mudança e desenvolvimento contínuos e constantes, é essencial a utilização de abordagens que permitam informar a evolução da empresa ao longo do tempo, ou seja, que representem o processo dinâmico desenvolvido dentro das empresas, expondo sua trajetória e performance, não somente seu estado em determinado momento e, sim, um histórico, que possibilite avaliar sua
habilidade de desenvolvimento e sustento de capacidades, bem como nuances na trajetória
tal como estagnação em determinados níveis de capacidade ou reversão (retrocesso) a
níveis menos complexos. Por outro lado, este tipo de análise também não pode deixar de
considerar e verificar a velocidade com que as empresas desenvolvem suas capacidades e,
consequentemente, a taxa de mudança em direção a níveis de capacidades e atividades
mais complexas, uma vez que este é um dos grandes méritos, já que a identificação do
simples atingimento de determinado estágio não implica, necessariamente, eficiência de
desempenho, pois outros fatores também devem ser levados em consideração, tais como a
posição e velocidade relativa de concorrentes e também de parceiros, o tempo demandado
em cada um dos níveis, pontos e períodos de gargalo, eventuais retrocessos e tempo para
retomada, etc.

Neste mesmo sentido, como enfatizado em Bell (2006), a natureza qualitativa das
atividades desempenhadas pelas empresas costuma se modificar de forma lenta,
prejudicando que análises aplicadas a um ponto no tempo, ou mesmo a pequenos
intervalos de tempo, identifiquem movimentos em direção a tipos e níveis de atividades
e/ou capacidades mais complexos e profundos. Portanto, no que se refere à continuidade e
periodicidade da mensuração, espera-se que o número crescente de levantamentos de
inovação que vêm sendo conduzidos no contexto de países em desenvolvimento, como
ainda são recentes, facilite, gradualmente, o uso de séries de dados para rastrear mudança
ao longo do tempo relacionadas à aprendizagem tecnológica e emergência e evolução dos
sistemas nacionais de inovação. Assim, torna-se essencialmente importante que os surveys
sejam continuamente realizados e que seus dados sejam analisados e interpretados não
somente relativamente à pesquisa corrente, que normalmente abarcam períodos curtos
(cerca de 3 anos), mas também que examinem a série histórica de tais dados, verificando, a
partir da complementação com observações mais recentes, mudanças de tendência, reforço
de posições, reversões, estagnações.

Além destes pontos, deve ser destacado o grande enfoque de pesquisas comumente
conferido aos esforços de P&D como indicador ou mesmo determinante das capacidades
inovadoras. Como visto, as capacidades tecnológicas das empresas abordam um conjunto
de elementos (sistemas técnico-físicos; capital humano; organizacionais, gerenciais e
institucionais; produtos e serviços) que não se restringem às atividades de P&D. Não
obstante, ainda são inúmeros os estudos que focam nas atividades de P&D desenvolvidas
pelas empresas como indicador do nível tecnológico, baseados em grande parte no que ocorre nos países desenvolvidos, que, de acordo com dados anualmente divulgados, vêm aumentando continuamente os gastos com este tipo de atividade. Assim, uma das sugestões decorrentes do exame realizado nesta dissertação seria no sentido de tentar retirar do foco dos estudos a preocupação quase que exclusiva ou isolada com as atividades relacionadas à P&D, mais especificamente, os dispêndios relacionados. Este tipo de abordagem tende a gerar perpectivas e generalizações pessimistas em relação aos países em desenvolvimento, tais como aqueles argumentos de que as atividades de P&D permaneceriam em países tecnologicamente avançados, enquanto que países em desenvolvimento estariam confinados às atividades de manufatura. Portanto, de forma geral, pesquisadores e estudiosos do fenômeno da inovação em países em desenvolvimento devem ampliar o foco de seus estudos, fornecer evidências empíricas obtidas à luz de taxonomias coerentes e realistas e, portanto, deixar de lado os argumentos tradicionalmente encontrados na literatura, sobretudo aqueles que tratam a inovação tecnológica no contexto de economias de industrialização tardia como algo secundário ou inerte. Além disso, trabalhos futuros que utilizem a abordagem baseada em tipos e níveis de capacidades poderiam focar em demais setores e empresas ainda não pesquisados, ou mesmo se aprofundar nos setores já tratados, de forma a manter contínua a avaliação e rastreamento das atividades conduzidas pelas empresas, além de poderem considerar e estudar a influência de uma série de outros fatores, tanto internos às empresas quanto relacionados ao seu ambiente de atuação, nas trajetórias de desenvolvimento de capacidades desempenhadas pelas empresas. Poderiam ainda, a partir da produção de uma base de dados e informações considerável e significativa, verificar se existem padrões típicos na maneira e na taxa de acumulação de capacidades, sobretudo diante da presença/ausência de determinadas características, além de verificar como a evolução destas características e demais mecanismos influencia na própria evolução e desenvolvimento do acúmulo de competências tecnológicas tanto da empresa quanto do seu entorno.
Portanto, esta dissertação procurou fornecer argumentos e uma idéia geral de por que (dadas as especificidades, características e composição do conjunto de empresas localizadas em países em desenvolvimento) e como (a partir de uma perspectiva que utilize as abordagens à base de indicadores de C&T e de tipos e níveis de capacidades de forma complementar) pesquisas e levantamentos de inovação à base de análises agregadas podem e devem ser complementados com informações mais detalhadas e focadas para que o resultado desse “casamento” seja capaz de fornecer informações mais adequadas e detalhadas, que fundamentem e apóiem decisões estratégicas e políticas governamentais, tanto as de caráter mais amplo quanto as mais focadas, por meio de uma visão ampla, contínua e dinâmica.
REFERÊNCIAS BIBLIOGRÁFICAS

GUSMÃO, R. Indicadores FAPESP de CT&I: Um diagnóstico atualizado dos esforços de Ciência, Tecnologia e Inovação no Estado de São Paulo, RICYT - *VI Taller de Indicadores de Ciencia y Tecnologia Iberoamericano e Interamericano*, 2004.

HOLBROOK, J. A. D. The Use of National Systems of Innovation Models to Develop Indicators of Innovation and Technological Capacity, Third Iberoamerican Workshop on S&T Indicators. Santiago, Chile: RICyT, 1997.

LUGONES, G., PEIRANO, F. Proposal for an annex to the Oslo Manual as a guide for innovation surveys in less developed countries non-member of the OECD. *Red Iberoamericana de Indicadores de Ciencia y Tecnología – RICYT*, 2004b.

