An alert on the recent fall of the fiscal reaction in Brazil

Eduardo Lima Campos, Rubens Penha Cysne

URL: http://hdl.handle.net/10438/24715
Os artigos publicados são de inteira responsabilidade de seus autores. As opiniões neles emitidas não exprimem, necessariamente, o ponto de vista da Fundação Getulio Vargas.

EPGE Escola Brasileira de Economia e Finanças

Diretor Geral: Rubens Penha Cysne
Vice-Diretor: Aloísio Araujo
Diretor de Regulação Institucional: Luís Henrique Bertolino Braido
Diretores de Graduação: Luís Henrique Bertolino Braido & André Arruda Villela
Coordenadores de Pós-graduação Acadêmica: Humberto Moreira & Lucas Jóver Maestri
Coordenadores do Mestrado Profissional em Economia e Finanças: Ricardo de Oliveira Cavalcanti & Joísa Campanher Dutra

Lima Campos, Eduardo
An alert on the recent fall of the fiscal reaction in Brazil/ Eduardo Lima Campos, Rubens Penha Cysne - Rio de Janeiro:
FGV,EPGE, 2018
12p. - (Ensaios Econômicos; 799)
Inclui bibliografia.

CDD-330
AN ALERT ON THE RECENT FALL OF THE FISCAL REACTION IN BRAZIL

Eduardo Lima Campos
Rubens Penha Cysne

Abstract
Recent evaluations of how the Brazilian government’s primary surplus reacts to the evolution of the debt to GDP ratio convey two important (and worrisome) messages: first, the reaction function has been almost steadily decreasing since 2012. Second, it has turned from positive to negative figures as of October of 2017. With effective real interest rates (over the net government debt) higher than prospects of GDP growth, negative figures for the fiscal reaction function mean a non-sustainable debt trajectory. Significant fiscal adjustments will have to be made in the short run.

Key words: Brazil, public debt, fiscal reaction, fiscal sustainability, Kalman filter.

JEL Classification Codes: H 30, H 60, E 50.

1. Introduction
A usual debt-sustainability condition requires that the discounted sum of anticipated future primary surpluses is sufficient to pay off the debt. The use of statistical analysis is adequate in the evaluation of this condition for at least two reasons. First, future values of GDP growth and real interest rates are subject to uncertainty. Second, past data and past behavior somehow translate the institutional, legal and political conditions under which the control of public revenue and expenditures is to be achieved in the future.

One approach to investigating debt sustainability [Bohn (1998)] relies on the concept of a fiscal-reaction function, which establishes a relationship between primary surpluses and the debt/GDP ratio. The underlying idea is to assess if, and to what extent, fiscal revenues and expenditures react to the evolution of the debt/GDP ratio.

1 Professor at ENCE/IBGE and FGV/EPGE. E-mail: eduardolimacampos@yahoo.com.br.
2 Professor at FGV/EPGE. E-mail: rubens.cysne@fgv.br.
This paper draws on Campos and Cysne (2018) to investigate two specific issues. First, the fall of the fiscal-reaction function in the more recent period, leading to negative values of this coefficient as of October/2017; and second, the robustness of the results achieved Campos and Cysne (2018) regarding an alternative concept of government. The database is extended, relatively to Campos and Cysne (2018), to a different definition of government and to a more recent period.

We estimate the Brazilian fiscal-reaction function allowing for time-varying coefficients. The data covers the period from January 2012 to June 2018. The specifications follow the functional form proposed by Bohn (1998), while taking into consideration specificities of the Brazilian case.

The data indicates a nonsustainable public debt trajectory. As in Campos and Cysne (2018), we reject the constant-coefficients hypothesis for the Brazilian fiscal-reaction function for all the period of study, reinforcing the relevance of applying time-varying coefficient methods.

Concerning the remaining of this paper, section 2 presents a general overview of the main variables used in the econometric procedures. Section 3 is used to present basic debt dynamic equations and define fiscal sustainability under some particular simplifying assumptions. Under the framework presented, debt sustainability requires that the difference between the real effective interest rate – corrected for GDP growth - and the fiscal reaction coefficient be negative. Since effective real interest rates accruing on the net public debt are clearly higher than the prospects of GDP growth, a negative fiscal reaction function, as obtained in the more recent period, indicates very clearly the nonsustainability of the present fiscal policy in Brazil.

Section 4 presents a detailed description of the variables used in the econometric model and section 5 the basic results. Section 6 concludes.

2- Data Overview

Figure 2.1 shows the evolution of the two mains variables concerning the calculation of the fiscal-reaction function, the debt to GDP ratio and the primary surplus. A complete description of these variables is presented in Section 4. In both cases, we extend the analysis presented in Campos and Cysne (2018) and work with two definitions of government: the “consolidated public sector (CPS)” and the, so called, “general government (GG)”.

In Figure 2.1, PSND and GGND stand for the net debt, respectively, of the consolidated public sector and of the general government.
As one can note from Figure 2.1, the differences concerning the two definitions of government is practically immaterial for the variables considered. Very close results, therefore, should be expected from the empirical analysis under these two different sets of data.

The debt/GDP ratio shows initially a decreasing trend, and then an increasing trend as of January of 2014. The series change the sign of the correlation, as shown by the 48-month moving-average correlations below, in figure 2.2. The negative correlation of these two variables as of January 2015 is a hint about a possible change of sign of the fiscal-reaction coefficient. In order to have a sustainable debt/GDP ratio, one would wish a positive, rather than a negative statistical correlation between these two variables.
Debt/GDP and Primary Surplus/GDP correlations
(48-month moving window)

3. Debt Sustainability

This Section draws on Campos and Cysne (2018) to derive a condition on debt sustainability in the present framework. It requires that that the fiscal-reaction coefficient be big enough to compensate for the positive difference between real-interest and GDP growth rates.

The government budget constraint, in nominal terms, is represented as follows:

\[B_t = G_t - T_t + (1+i_t)B_{t-1} \] \hspace{1cm} (3.1)

where \(B_t \) stands for net debt, \(G_t \) for government's primary expenditures (consumption, investment and transfers, not including interest payments), \(T_t \) are the primary revenues (tax plus other net current revenues) - all computed at the end of time \(t \) - and \(i_t \) is the nominal interest rate, associated with a public security purchased at time \(t-1 \) and remunerated at \(t \).

A public debt series or, accordingly, the fiscal policy associated with it, is characterized as

3Considering \(B_t \) as the gross debt would imply disregarding the government assets and the remuneration thereof, which would result in equation (3.1) describing just an approximation for the debt evolution. Equation (3.1) applies only to net debt, assuming an equal interest rate accruing on government’s both assets and liabilities.
sustainable if the present value of future surpluses is sufficient to offset the present debt value. To formalize this condition, the budget constraint in (3.1) must be solved iteratively for \(t = 1, 2, \ldots, T \) (it is considered, for simplicity, that \(i_t = i \)):

\[
B_t = (1+i)^t B_0 + \sum_{k=1}^{t} (1+i)^{t-k} (G_k - T_k), \text{ or even: } B_0 = \frac{B_t}{(1+i)^t} + \sum_{k=1}^{t} \frac{S_k}{(1+i)^k},
\]

Where \(S_k = T_k - G_k \) is the primary surplus at \(t = k \).

The condition for debt sustainability is:

\[
\lim_{t \to \infty} \frac{B_t}{(1+i)^t} = 0 \quad (3.2)
\]

At (3.2), \(B_0 = \sum_{k=1}^{\infty} \frac{S_k}{(1+i)^k} \), i.e., the discounted sum of primary surpluses at present value is equal to the current debt.

The following notation is now defined. Let \(X \) be any variable (representing, for instance, \(B \), \(G \), or \(T \)). Make \(x = X/Y \) (\(Y \) is the GDP). Divide both sides of (3.1) by \(Y_t \), to obtain:

\[
b_t = g_t - t_t + (1+i_t)b_{t-1} \frac{Y_{t-1}}{Y_t} \quad (3.3)
\]

Define the GDP growth rate as \(\theta_t \):

\[
Y_t = (1+\theta_t)Y_{t-1} \quad (3.4)
\]

Use (3.4) in (3.3) and make \(s_t = t_t - g_t \) stand for the primary surplus as a fraction of GDP to obtain:

\[
b_t = -s_t + \frac{(1+i_t)}{(1+\theta_t)}b_{t-1} \quad (3.5)
\]

Bohn (1998) establishes a fiscal reaction mechanism, defined as follows:

\[
s_t = \rho b_{t-1} + \gamma X_t \quad (3.6)
\]

where \(X_t \) is a vector of control variables.

With the purpose of evaluating the sustainability condition for the simplest case, the
parameters ρ, i and θ are considered constant\(^4\).

Replacing (3.6) in (3.5)\(^5\):

$$b_t = \left(\frac{1 + i}{1 + \theta} - \rho \right) b_{t-1}$$

(3.7)

Solving (3.7) iteratively:

$$b_t = \left(\frac{1 + i}{1 + \theta} - \rho \right)^t b_0$$

(3.8)

Under the approximation $\frac{1 + i}{1 + \theta} \approx 1 + i - \theta$, the debt sustainability condition implies:

$$\rho > i - \theta$$

(3.10)

4. Data

In this paper we used monthly data from January 2012 to Jun 2018. The concept of government considers not only the consolidated public sector (federal, state, and local governments, social security, Central Bank and government-controlled companies - except Petrobras and Eletrobras), but also the General Government (Federal, state and local governments, and social security). This concerns both the debt and primary surplus figures.

For S_t we used the consolidated primary result of the public sector accumulated for the previous 12 months. This is the reference used in the Budget Guidelines Law for the elaboration of the annual primary-income targets.

To calculate the Debt-to-GDP ratio, $b_t = B_t/Y_t$, and the primary surplus-to-GDP ratio, $s_t = S_t/Y_t$, it was considered that $Y_t = \text{monthly nominal GDP estimated by the central bank - based on IBGE quarterly data }$-also accumulated for 12 months (accumulating variables attenuates the

\(^4\) The reaction function does not establish whether surpluses are generated by an increase in revenue or a containment of expenses. As a possible alternative, for example, Nguyen (2007) and Jesus (2013) specify their fiscal reaction functions with revenue and expenditure, respectively, as dependent variable.

\(^5\) For simplicity, the term γX_t is supposed to be convergent and is omitted in the stability analysis; for the present purpose we are only interested in the characteristic root of the homogenous difference equation in b_t.

6
impact of seasonality).

Bohn (1998) suggests, as control variables, the output gap - to capture the effect of oscillations in economic activity - and a variable indicative of sudden rises in spending. Both effects were considered. In order to calculate the output gap of period \(t \) we used the monthly estimated GDP, \(Y_t^R \), provided by the IBRE/FGV GDP monitor.\(^6\) The potential product \(Y_t' \) was obtained via Hodrick-Prescott filter, applying the formula: \(h_t = (Y_t^R - Y_t') / Y_t' \). To represent the cycles of sudden rise in expenditures, binary variables indicating the election years were used.

We list below some controls important for the Brazilian case:\(^7\)
\(i_t \): basic interest rate (Selic);
\(i_t^* \): implicit interest rate\(^8\);
\(r_t \): debt Risk-measure of risk perception associated with debt insolvency, calculated as a ratio between EMBI+ (monthly average) and the rating risk assigned by Standard & Poors\(^9\);
\(\pi_t \): inflation - monthly series obtained as IPCA relative variation for the previous 12 months;
\(se_t \): deficit in the current account of the balance of payments;

\(^6\)Some studies use the industrial production index or IBC-Br of the Brazilian Central Bank, however these series are only proxies for the Real GDP.

\(^8\) It is assumed that \(i_t^* \) is the gross rate on public debt, i.e., without deducing the portion that returns to the government in the form of taxes on interest, such taxes being included in the variable \(T_t \). The alternative of considering \(i_t \) as the net rate and not including in \(T_t \) the taxes on interest would not change the results.

\(^9\)See Lopes (2007), and Megale (2003). The EMBI+ is an index based on debt securities issued by emerging countries, reflecting the difference between the rate of return on these securities and the return on US Treasury bills. The classifications have been converted into a numerical variable as follows: D (defaulter) = 0; SD = 1; CC = 2; CCC- = 2.5; CCC = 3; CCC+ = 3.5; B- = 4; adding 1 point for each promotion. For the positive (negative) concepts attributed by S&P, an increase (decrease) of 0.25 is considered.
terms of trade = ratio between export and import prices.

To estimate the reaction function (3.6) proposed by Bohn (1998), we allow the coefficients of the function to vary over time, making possible to incorporate in the analysis structural changes and discretionary policy. Additional technical details regarding the estimations can be obtained in Campos and Cysne (2018).

5. Results

5.1 The Fiscal-Reaction Function

The fiscal-reaction function (consolidated public sector11) estimated by the Kalman-Filter [Kalman (1960), Kalman and Bucy (1961)] for June 2018 (last point of the sample) is given below:

\[s_t = 0.021 + 0.947s_{t-1} - 0.027b_{t-1} + 0.029h_{t-1} - 0.011PR_t. \]

This indicates that in this month, given the value of GDP, a debt increase of 1% of GDP roughly corresponds to a reduction in the primary surplus of around -0.027% of GDP, a negative fiscal reaction. This fact can be inferred from figures 1 and 2, and by the evolution of the tax reaction coefficient over the study period, which will be presented in section 5.2.

The lagged surplus coefficient \((s_{t-1})\) is significant, indicating a strong inertial component of the primary outcome series, as expected. The output-gap coefficient \(h_t\) is positive and significant, indicating that, in periods of expansion a larger primary surplus is generated, either by increasing revenues or reducing public spending (for example, unemployment insurance).

The coefficient for the inflation variable is not significant, which is in line with the fiscal reaction literature for the case of Brazil in the post-stabilization period (1994).

5.2 Evolution of the Fiscal-Reaction Coefficient

Figure 5.1 below shows the evolution of the fiscal reaction coefficient (consolidated public

10To implement the Kalman filter, the dlm function of the software “R” was used.

11Given the similarity of the results, as well as the graphs 2.1 and 2.2 for the consolidated public sector and for the general government, henceforth we shall focus only on the consolidated public sector. By way of illustration, the estimated reaction coefficient (June/2018) for the general government was -0.0258, a value statistically equal to the -0.027 presented in the equation below.
sector) over time, estimated by Kalman filter.

Figure 5.1
Estimated Fiscal Reaction Coefficient (CPS)

Note the negative sign of the fiscal reaction coefficient as of October of 2017. The average in the last 12 months of the sample was equal to -0.0157.

5.3 Implications Regarding Debt Sustainability

Table 5.1 summarize the sustainability results, based on condition (3.10), considering the Selic and the implicit interest rate on the net debt (calculated by the Central Bank) at different periods of analysis. All rates are logarithmic.

<table>
<thead>
<tr>
<th>Table 5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Debt Sustainability per Sub-Period (CPS)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>% (Nominal GDP)</td>
</tr>
<tr>
<td>Interest rate – Nominal GDP</td>
</tr>
<tr>
<td>Fiscal Reaction (Mean)</td>
</tr>
<tr>
<td>Sustainability (Condition 3.10)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
</tbody>
</table>

Particularly in the case of the Selic-based analysis, the transition to unsustainability as of January 2014 (in relation to the period beginning in January 2012) is due not only to changes in GDP and interest rates (with i-θ rising from -1.82% to +7.76%), but also to the reduction of the fiscal-reaction coefficient.

The debt trajectory is unsustainable as of June of 2014, whatever the interest rate considered. Between June 14 and June 2017, the fiscal reaction is positive and partially compensates for the difference between interest rates and GPD growth. As of June 2017 it adds to the difference, making the debt trajectory clearly unsustainable.

6. Conclusions

This paper draws attention to the recent fall of the fiscal reaction function in Brazil. And, as well, to the fact that it turns into negative figures as of June of 2017. This is to say that any positive value regarding the excess of effective interest rates (accruing on the net public debt) over GDP growth leads to a situation of unsustainable debt trajectory. The underlying message is that the country should be prepared for sharp changes regarding its conduction of fiscal policy.

A second contribution of the paper has been to show that the analysis developed here, as well as the one previously developed in Campos and Cysne (2018), are robust with respect to the definition of public sector. The study of fiscal imbalances based on the fiscal-reaction function shows how important the excess of interest rates over GDP growth may be for the sustainability of the debt to GPD ratio.

7. Bibliographic References

Financial Management”, 17, pp. 173-185

IBRE, FGV. Monitor do PIB.

