Petroleum Contracts: What does Contract Theory Tell Us?

Philippe Aghion1 Lucía Quesada2

1Harvard University
2Universidad Torcuato Di Tella

International Workshop on Microeconomics
Applied to the Energy Industry
December 15th, 2011
Introduction

- Increases in oil prices led to expropriations of oil and gas companies by countries.
 - Sizable expropriations like Bolivia and Venezuela.
Introduction

- Increases in oil prices led to expropriations of oil and gas companies by countries.
 - Sizable expropriations like Bolivia and Venezuela.
- What we do:
 - Describe the main characteristics of petroleum contracts.
 - Use contract theory to rationalize those contractual forms.
 - Try to understand why governments may be justified to renege on past agreements.
Outline of the talk

- Type of petroleum contracts that prevail. Emphasis on the most common ones:
 - Production Sharing Agreements and
 - Concession Contracts.
Outline of the talk

- Type of petroleum contracts that prevail. Emphasis on the most common ones:
 - Production Sharing Agreements and
 - Concession Contracts.
- Model of contracting customized to the oil industry.
Outline of the talk

- Type of petroleum contracts that prevail. Emphasis on the most common ones:
 - Production Sharing Agreements and
 - Concession Contracts.
- Model of contracting customized to the oil industry.
- Contracting issues in the industry.
 - Moral hazard.
 - Hold-up.
 - Enforcement problems.
 - Uncertainty and grievance.
Outline of the talk

- Type of petroleum contracts that prevail. Emphasis on the most common ones:
 - Production Sharing Agreements and
 - Concession Contracts.
- Model of contracting customized to the oil industry.
- Contracting issues in the industry.
 - Moral hazard.
 - Hold-up.
 - Enforcement problems.
 - Uncertainty and grievance.
- Conclusions
Prevailing contracts between countries and oil companies

- Production Sharing Agreements (PSA).
Prevailing contracts between countries and oil companies

- Production Sharing Agreements (PSA).
- Concession Contracts.
Prevailing contracts between countries and oil companies

- Production Sharing Agreements (PSA).
- Concession Contracts.
- Risk Service Agreements: Company supplies services and know-how to the State in exchange for a fee. It bears all the exploration costs. The State remains the owner of the produced oil.
Prevailing contracts between countries and oil companies

- Production Sharing Agreements (PSA).
- Concession Contracts.
- Risk Service Agreements: Company supplies services and know-how to the State in exchange for a fee. It bears all the exploration costs. The State remains the owner of the produced oil.
- Joint Ventures: Ownership of the production is specified by the participation of the company and the government on the venture. Government is entitled to a share of profits, but it also bears a share of development and operation costs.
Production Sharing Agreements

- State owns the resource and all the installations and plants.
Production Sharing Agreements

- State owns the resource and all the installations and plants.
- Company is hired to explore, exploit and develop the resource in exchange of a share of production.
Production Sharing Agreements

- State owns the resource and all the installations and plants.
- Company is hired to explore, exploit and develop the resource in exchange of a share of production.
- Risk of exploration entirely born by the company.

After discovery and extraction, company pays a royalty. Company retains a percentage of production to recover costs (cost-oil). Remaining production is shared between country and company (profit-oil) according to some specified rule.
Production Sharing Agreements

- State owns the resource and all the installations and plants.
- Company is hired to explore, exploit and develop the resource in exchange of a share of production.
- Risk of exploration entirely born by the company.
- After discovery and extraction, company pays a royalty.
Production Sharing Agreements

- State owns the resource and all the installations and plants.
- Company is hired to explore, exploit and develop the resource in exchange of a share of production.
- Risk of exploration entirely born by the company.
- After discovery and extraction, company pays a royalty.
- Company retains a percentage of production to recover costs (cost-oil).
Production Sharing Agreements

- State owns the resource and all the installations and plants.
- Company is hired to explore, exploit and develop the resource in exchange of a share of production.
- Risk of exploration entirely born by the company.
- After discovery and extraction, company pays a royalty.
- Company retains a percentage of production to recover costs (cost-oil).
- Remaining production is shared between country and company (profit-oil) according to some specified rule.
Concession Contracts

- Grant exclusive rights to explore, develop and export petroleum on a specific territory and for a specific period of time.

- State transfers ownership of the mineral resource to the company for the duration of the contract.

- Company has to secure the entire financing and technological capabilities and bears all exploration and production risks.

- Company pays royalties as a portion of petroleum production. Computed based on:
 - Surface area granted (surface royalty).
 - Petroleum production (proportional royalty).
Concession Contracts

- Grant exclusive rights to explore, develop and export petroleum on a specific territory and for a specific period of time.
- State transfers ownership of the mineral resource to the company for the duration of the contract.
Concession Contracts

- Grant exclusive rights to explore, develop and export petroleum on a specific territory and for a specific period of time.
- State transfers ownership of the mineral resource to the company for the duration of the contract.
- Company has to secure the entire financing and technological capabilities and bears all exploration and production risks.

- Company pays royalties as a portion of petroleum production. Computed based on Surface area granted (surface royalty). Petrolem production (proportional royalty).
Concession Contracts

- Grant exclusive rights to explore, develop and export petroleum on a specific territory and for a specific period of time.
- State transfers ownership of the mineral resource to the company for the duration of the contract.
- Company has to secure the entire financing and technological capabilities and bears all exploration and production risks.
- Company pays royalties as a portion of petroleum production. Computed based on
 - Surface area granted (surface royalty).
 - Petroleum production (proportional royalty).
Contracting Model

- Two parties to the contract: Company \((C)\) and State \((G)\).

3 periods: \(t = 0\), contracting and exploration; \(t = 1, 2\), production.

The contract assigns control rights and a profit sharing rule.

To start exploration: sunk, non-contractible investment \(I\).

An oil reserve is discovered with probability \(q(I)\).

Size of the reserve \(R\) is observed by both parties but not verifiable.

Production in period \(t\) requires a non-contractible effort \(e_t\), which costs \(\psi(e_t, I)\).

Production costs = 0.

Production is \(y_t\) is random. Depends on effort: Higher effort increases the probability of higher production.

Prices are unknown at \(t = 0\) but known before production.

Company pays income taxes at a rate equal to \(i_t\).
Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: $t = 0$, contracting and exploration; $t = 1, 2$, production.
Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: $t = 0$, contracting and exploration; $t = 1, 2$, production.
- Contract assigns control rights and a profit sharing rule.

To start exploration: sunk, non-contractible investment I.

An oil reserve is discovered with probability $q(I)$.

Size of the reserve R is observed by both parties but not verifiable.

Production in period t requires a non-contractible effort e_t, which costs $\psi(e_t, I)$.

Production costs = 0.

Production is y_t is random. Depends on effort: Higher effort increases the probability of higher production.

Prices are unknown at $t = 0$ but known before production.

Company pays income taxes at a rate equal to i_t.

Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: $t = 0$, contracting and exploration; $t = 1, 2$, production.
- Contract assigns control rights and a profit sharing rule.
- To start exploration: sunk, non-contractible investment I.

An oil reserve is discovered with probability $q(I)$. Size of the reserve R is observed by both parties but not verifiable. Production in period t requires a non-contractible effort e_t, which costs $\psi(e_t, I)$. Production costs = 0. Production is y_t is random. Depends on effort: Higher effort increases the probability of higher production. Prices are unknown at $t = 0$ but known before production. Company pays income taxes at a rate equal to i_t.

Aghion, Quesada (Harvard, UTDT)
Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: \(t = 0 \), contracting and exploration; \(t = 1, 2 \), production.
- Contract assigns control rights and a profit sharing rule.
- To start exploration: sunk, non-contractible investment \(I \).
- An oil reserve is discovered with probability \(q(I) \).
Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: \(t = 0 \), contracting and exploration; \(t = 1, 2 \), production.
- Contract assigns control rights and a profit sharing rule.
- To start exploration: sunk, non-contractible investment \(I \).
- An oil reserve is discovered with probability \(q(I) \).
- Size of the reserve \(R \) is observed by both parties but not verifiable.
Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: $t = 0$, contracting and exploration; $t = 1, 2$, production.
- Contract assigns control rights and a profit sharing rule.
- To start exploration: sunk, non-contractible investment I.
- An oil reserve is discovered with probability $q(I)$.
- Size of the reserve R is observed by both parties but not verifiable.
- Production in period t requires a non-contractible effort e_t, which costs $\psi(e_t, I)$. Production costs $= 0$.

Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: $t = 0$, contracting and exploration; $t = 1, 2$, production.
- Contract assigns control rights and a profit sharing rule.
- To start exploration: sunk, non-contractible investment I.
- An oil reserve is discovered with probability $q(I)$.
- Size of the reserve R is observed by both parties but not verifiable.
- Production in period t requires a non-contractible effort e_t, which costs $\psi(e_t, I)$. Production costs $= 0$.
- Production is y_t is random. Depends on effort: Higher effort increases the probability of higher production.
Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: $t = 0$, contracting and exploration; $t = 1, 2$, production.
- Contract assigns control rights and a profit sharing rule.
- To start exploration: sunk, non-contractible investment I.
- An oil reserve is discovered with probability $q(I)$.
- Size of the reserve R is observed by both parties but not verifiable.
- Production in period t requires a non-contractible effort e_t, which costs $\psi(e_t, I)$. Production costs $= 0$.
- Production is y_t is random. Depends on effort: Higher effort increases the probability of higher production.
- Prices are unknown at $t = 0$ but known before production.
Contracting Model

- Two parties to the contract: Company (C) and State (G).
- 3 periods: \(t = 0 \), contracting and exploration; \(t = 1, 2 \), production.
- Contract assigns control rights and a profit sharing rule.
- To start exploration: sunk, non-contractible investment \(I \).
- An oil reserve is discovered with probability \(q(I) \).
- Size of the reserve \(R \) is observed by both parties but not verifiable.
- Production in period \(t \) requires a non-contractible effort \(e_t \), which costs \(\psi(e_t, I) \). Production costs = 0.
- Production is \(y_t \) is random. Depends on effort: Higher effort increases the probability of higher production.
- Prices are unknown at \(t = 0 \) but known before production.
- Company pays income taxes at a rate equal to \(i_t \).
Initial investment I and the effort levels (e_1, e_2) are chosen by C.
Concession Contract

- Initial investment I and the effort levels (e_1, e_2) are chosen by C.
- At the end of periods 1 and 2, C pays royalties, T_t, to G. Royalties can be
 - Surface royalties: $T_t = p_t \bar{y}$
 - Proportional royalties: $T_t = p_t \gamma y_t$, $\gamma \in (0, 1)$.

Aghion, Quesada (Harvard, UTDT)
Concession Contract

- Initial investment I and the effort levels (e_1, e_2) are chosen by C.
- At the end of periods 1 and 2, C pays royalties, T_t, to G. Royalties can be:
 - Surface royalties: $T_t = p_t \bar{y}$
 - Proportional royalties: $T_t = p_t \gamma y_t$, $\gamma \in (0, 1)$.
- Government take is

 $$u_t = T_t + i_t(p_t y_t - T_t).$$
Concession Contract

- Initial investment I and the effort levels (e_1, e_2) are chosen by C.
- At the end of periods 1 and 2, C pays royalties, T_t, to G. Royalties can be
 - Surface royalties: $T_t = p_t \bar{y}$
 - Proportional royalties: $T_t = p_t \gamma y_t$, $\gamma \in (0, 1)$.
- Government take is
 $$u_t = T_t + i_t (p_t y_t - T_t).$$
- Company take is
 $$\pi_t = (1 - i_t)(p_t y_t - T_t) - \psi(e_t, I).$$
PSA

- Initial investment I and the effort levels (e_1, e_2) are chosen by C.

\[c_1 = \begin{cases}
 I/p_1 & \text{if } p_1 \beta y_1 \geq I \\
 0 & \text{if } p_1 \beta y_1 < I
\end{cases} \]

\[c_2 = \begin{cases}
 0 & \text{if } p_1 \beta y_1 \geq I \land p_2 \beta y_2 \geq I - p_1 \beta y_1 \\
 (I - p_1 \beta y_1) / p_2 & \text{if } p_1 \beta y_1 < I \land p_2 \beta y_2 < I - p_1 \beta y_1
\end{cases} \]
Initial investment I and the effort levels (e_1, e_2) are chosen by C.

β (cost-recovery factor) is specified by the contract, usually between 30% and 50%.
PSA

- Initial investment l and the effort levels (e_1, e_2) are chosen by C.
- β (cost-recovery factor) is specified by the contract, usually between 30% and 50%.
- Cost-oil in period $t = 1$ is

$$c_1 = \begin{cases}
\frac{l}{p_1} & \text{if } p_1 \beta y_1 \geq l \\
\beta y_1 & \text{if } p_1 \beta y_1 < l.
\end{cases}$$
Initial investment I and the effort levels (e_1, e_2) are chosen by C.

β (cost-recovery factor) is specified by the contract, usually between 30% and 50%.

Cost-oil in period $t = 1$ is

$$c_1 = \begin{cases}
\frac{I}{p_1} & \text{if } p_1 \beta y_1 \geq I \\
\beta y_1 & \text{if } p_1 \beta y_1 < I.
\end{cases}$$

Cost-oil in period $t = 2$ is

$$c_2 = \begin{cases}
0 & \text{if } p_1 \beta y_1 \geq I \\
\frac{(I - p_1 \beta y_1)}{p_2} & \text{if } p_1 \beta y_1 < I \wedge p_2 \beta y_2 \geq I - p_1 \beta y_1 \\
\beta y_2 & \text{if } p_1 \beta y_1 < I \wedge p_2 \beta y_2 < I - p_1 \beta y_1.
\end{cases}$$
Reminder production in each period is profit-oil, $\tilde{\pi}_t = y_t - c_t$.
Reminder production in each period is profit-oil, \(\tilde{\pi}_t = y_t - c_t \).

\(\tilde{\pi}_t \) is shared in a proportion \(\alpha_t \) for \(G \) and \(1 - \alpha_t \) for \(C \).
Reminder production in each period is profit-oil, $\tilde{\pi}_t = y_t - c_t$.

$\tilde{\pi}_t$ is shared in a proportion α_t for G and $1 - \alpha_t$ for C.

α_t can be fixed (fixed shares) or a function of production (sliding scales).
Reminder production in each period is profit-oil, $\tilde{\pi}_t = y_t - c_t$.

$\tilde{\pi}_t$ is shared in a proportion α_t for G and $1 - \alpha_t$ for C.

α_t can be fixed (fixed shares) or a function of production (sliding scales).

Government take is

$$u_t = p_t\alpha_t(y_t - c_t) + i_t p_t (y_t - \alpha_t(y_t - c_t)).$$
Reminder production in each period is profit-oil, \(\tilde{\pi}_t = y_t - c_t \).

\(\tilde{\pi}_t \) is shared in a proportion \(\alpha_t \) for \(G \) and \(1 - \alpha_t \) for \(C \).

\(\alpha_t \) can be fixed (fixed shares) or a function of production (sliding scales).

Government take is

\[
\begin{align*}
 u_t &= p_t \alpha_t(y_t - c_t) + i_t p_t(y_t - \alpha_t(y_t - c_t)).
\end{align*}
\]

Company take is

\[
\begin{align*}
 \pi_t &= (1 - i_t) p_t(y_t - \alpha_t(y_t - c_t)) - \psi(e_t, l).
\end{align*}
\]
Moral Hazard and Risk Sharing

When effort is not observable, if company does not fully appropriate the benefits of effort ⇒ it exerts inefficiently low levels of effort.
Moral Hazard and Risk Sharing

When effort is not observable, if company does not fully appropriate the benefits of effort ⇒ it exerts inefficiently low levels of effort.

- Sources of uncertainty:
 - Existence, size and quality of the reserve unknown before exploration.
 - Drilling costs depend on the unknown characteristics of the field.
 - Government owns the resources under the surface: risk of expropriations or contract renegotiations.
Moral Hazard and Risk Sharing

When effort is not observable, if company does not fully appropriate the benefits of effort ⇒ it exerts inefficiently low levels of effort.

- **Sources of uncertainty:**
 - Existence, size and quality of the reserve unknown before exploration.
 - Drilling costs depend on the unknown characteristics of the field.
 - Government owns the resources under the surface: risk of expropriations or contract renegotiations.

- Large companies drill wells in different locations ⇒ Diversify risk. Can be thought of as (almost) risk neutral.
Moral Hazard and Risk Sharing

When effort is not observable, if company does not fully appropriate the benefits of effort ⇒ it exerts inefficiently low levels of effort.

- Sources of uncertainty:
 - Existence, size and quality of the reserve unknown before exploration.
 - Drilling costs depend on the unknown characteristics of the field.
 - Government owns the resources under the surface: risk of expropriations or contract renegotiations.

- Large companies drill wells in different locations ⇒ Diversify risk. Can be thought of as (almost) risk neutral.

- Hence, avoid MH by making the firm residual claimant.
Moral Hazard and Risk Sharing: Contractual Provisions

- A concession contract with surface royalties makes the firm residual claimant → guarantees efficient effort at production stage.
Moral Hazard and Risk Sharing: Contractual Provisions

- A concession contract with surface royalties makes the firm residual claimant \Rightarrow guarantees efficient effort at production stage.

- Not true under PSA \Rightarrow
 - Contracts include work programs with commitments in terms of drilling and production.
 - This calls for monitoring effort from the State.
Hart and Moore (1988): Suppose that

- Parties have to make sunk relationship-specific investments.
- Outcome is difficult to describe at the contractual stage (non-contractible).
- Contract can be renegotiated once the outcome becomes observable.
Hart and Moore (1988): Suppose that

- Parties have to make sunk relationship-specific investments.
- Outcome is difficult to describe at the contractual stage (non-contractible).
- Contract can be renegotiated once the outcome becomes observable.

Then,

- Parties are exposed to opportunistic behavior (hold-up): share the benefits of the investment with the other party.
- Parties lower their initial investment.
Assets Specificity and Hold-up

Investments in oil exploration \(I \) are large and highly specific in nature.
Assets Specificity and Hold-up

- Investments in oil exploration I are large and highly specific in nature.
- Company is in charge of this investment in all existing contractual arrangements.
Assets Specificity and Hold-up

- Investments in oil exploration I are large and highly specific in nature.

- Company is in charge of this investment in all existing contractual arrangements.

- Exposed to opportunistic behavior and hold-up once a discovery is made. Usually through adjustments in the tax system.
Investments in oil exploration I are large and highly specific in nature.

Company is in charge of this investment in all existing contractual arrangements.

Exposed to opportunistic behavior and hold-up once a discovery is made. Usually through adjustments in the tax system.

Idea: It is ex-post optimal for the government to increase the tax rate when I is large.
Assets Specificity and Hold-up

- Investments in oil exploration \(I \) are large and highly specific in nature.
- Company is in charge of this investment in all existing contractual arrangements.
- Exposed to opportunistic behavior and hold-up once a discovery is made. Usually through adjustments in the tax system.
- Idea: It is ex-post optimal for the government to increase the tax rate when \(I \) is large.
- Hence, company invests less than the efficient level.
Assets Specificity and Hold-up: Contractual Provisions

- Make the state a partner in the exploration phase (share the costs):
 - Make exploration costs deductible from income-taxes.
 - State reimburses part of the exploration costs.
 - Assign residual control rights to C (Grossman and Hart, 1986):
 - Stabilization clause: State commits not to change its laws.
 - Allow the company to sell all its share of oil in the international market (avoid hold-up through exchange-rate policy).
 - Appropriate renegotiation design (Aghion, Dewatripont and Rey, 1994):
 - Renegotiation clause that makes explicit the conditions for renegotiations.
 - Duration of the contract structured in short-term phases. Company can opt-out at the end of each phase.
Assets Specificity and Hold-up: Contractual Provisions

- Make the state a partner in the exploration phase (share the costs):
 - Make exploration costs deductible from income-taxes.
 - State reimburses part of the exploration costs.
- Assign residual control rights to C (Grossman and Hart, 1986):
 - Stabilization clause: State commits not to change its laws.
 - Allow the company to sell all its share of oil in the international market (avoid hold-up through exchange-rate policy).
Make the state a partner in the exploration phase (share the costs):
- Make exploration costs deductible from income-taxes.
- State reimburses part of the exploration costs.

Assign residual control rights to C (Grossman and Hart, 1986):
- Stabilization clause: State commits not to change its laws.
- Allow the company to sell all its share of oil in the international market (avoid hold-up through exchange-rate policy).

Appropriate renegotiation design (Aghion, Dewatripont and Rey, 1994):
- Renegotiation clause that makes explicit the conditions for renegotiations.
- Duration of the contract structured in short-term phases. Company can opt-out at the end of each phase.
Poor Enforcement: Framework

Suppose that

- There is a probability that the contract will not be fully enforced in the future.
 - This probability is likely to be increasing in the company’s profits (higher when prices are higher).
 - Expropriations or unilateral change of terms of the contract (increased royalties or reduced share of profit-oil).
Poor Enforcement: Framework

Suppose that

- There is a probability that the contract will not be fully enforced in the future.
 - This probability is likely to be increasing in the company’s profits (higher when prices are higher).
 - Expropriations or unilateral change of terms of the contract (increased royalties or reduced share of profit-oil).

Then,

- Company loses part (or all) of its assets ⇒ reduces the expected returns of the investment.
- Implicitly increases the company’s discount factor (values the present relatively more, while the contract is still enforced).
Poor Enforcement

- Main problem: Find an impartial third party within the country’s judiciary system.
Poor Enforcement

- Main problem: Find an impartial third party within the country’s judiciary system.
- Important issue: Reserves under the soil are property of the State.
Poor Enforcement

- Main problem: Find an impartial third party within the country’s judiciary system.
- Important issue: Reserves under the soil are property of the State.
- This creates sovereign risk: unilaterally changing the terms of the contract or expropriating.
Poor Enforcement

- Main problem: Find an impartial third party within the country’s judiciary system.
- Important issue: Reserves under the soil are property of the State.
- This creates sovereign risk: unilaterally changing the terms of the contract or expropriating.
- Enforcement problems (say, possibility of expropriation) are associated with:
 - Inefficiently low levels of initial investment (I).
 - Too quick extraction rates: Early extraction.
Poor Enforcement: Contractual provisions

- Safeguard clauses to create mechanisms to resolve disputes (improve enforcement).
 - Disputes to be solved outside the State’s judiciary system. Credible and fair third party to mediate: International Commercial Arbitration.
 - Which law governs the oil contract? In general, the host State law. Sometimes, a combination of international law and the host State law.
 - Highly progressive income taxes (reduce temptation).
Poor Enforcement: Contractual provisions

- Safeguard clauses to create mechanisms to resolve disputes (improve enforcement).
 - Disputes to be solved outside the State’s judiciary system. Credible and fair third party to mediate: International Commercial Arbitration.
 - Which law governs the oil contract? In general, the host State law. Sometimes, a combination of international law and the host State law.
 - Highly progressive income taxes (reduce temptation).

- Extra contractual tools:
 - Reputation concerns on the State’s side: Compliance improves future contract terms. Loses power if government worry only about short-term.
 - Threat of not reinvesting in the country by the company. May lose power once oil has been found (easy to find a replacement).
Hart and Moore (2008): Contractual performance depends upon the contracting parties’ willingness to cooperate ex-post on some aspects of the agreement that are not ex-ante contractible.
Hart and Moore (2008): Contractual performance depends upon the contracting parties’ willingness to cooperate ex-post on some aspects of the agreement that are not ex-ante contractible.

- Performance “within the letter of the contract” (enforceable) vs. performance “within the spirit of the contract” (non-enforceable).
- Contract works as a reference point for the parties’ perceptions of entitlement.
- Party who gets less than what he/she feels entitled to, reduces ex-post cooperation (provides only enforceable performance).
Ex-post Uncertainty and Grievance: Framework

Hart and Moore (2008): Contractual performance depends upon the contracting parties’ willingness to cooperate ex-post on some aspects of the agreement that are not ex-ante contractible.

- Performance “within the letter of the contract” (enforceable) vs. performance “within the spirit of the contract” (non-enforceable).
- Contract works as a reference point for the parties’ perceptions of entitlement.
- Party who gets less than what he/she feels entitled to, reduces ex-post cooperation (provides only enforceable performance).

Then

- Under certainty, rigid contracts are efficient (no room for grievance).
- With uncertainty: trade-off between rigidity and flexibility.
Ex-post Uncertainty and Grievance

How can parties who feel aggrieved reduce ex-post cooperation?

- Cutting quality of the oil delivered.
- Delaying payment of royalties.
- Performing excessive controls.
- Changing regulations.
- Generating hostile feeling among the population about foreign firms.
- Generate inefficiencies in multiple aspects of the contract execution.
How can parties who feel aggrieved reduce ex-post cooperation?

Company:
- Cutting quality of the oil delivered.
- Delaying payment of royalties.
Ex-post Uncertainty and Grievance

How can parties who feel aggrieved reduce ex-post cooperation?

Company:
- Cutting quality of the oil delivered.
- Delaying payment of royalties.

State:
- Performing excessive controls.
- Changing regulations.
- Generating hostile feeling among the population about foreign firms.
Ex-post Uncertainty and Grievance

How can parties who feel aggrieved reduce ex-post cooperation?

- **Company:**
 - Cutting quality of the oil delivered.
 - Delaying payment of royalties.

- **State:**
 - Performing excessive controls.
 - Changing regulations.
 - Generating hostile feeling among the population about foreign firms.

Generate inefficiencies in multiple aspects of the contract execution.
Ex-post Uncertainty and Grievance: Contractual Provisions

- Under uncertainty, rigid contracts often call for renegotiations:
 - Size of the reserve is low and company wants to renegotiate.
 - Oil quality is very high and the State wants to renegotiate.
Under uncertainty, rigid contracts often call for renegotiations:
- Size of the reserve is low and company wants to renegotiate.
- Oil quality is very high and the State wants to renegotiate.

Make the contract more flexible to reduce this renegotiation-type grievance.
- Flexibility in concession contracts: Progressive royalty scheme based on some profitability indicators.
- Flexibility in PSAs through non-linear schemes for sharing profit-oil.
Governments often care only about the short-term.
Governments often care only about the short-term.

Company faces many successive short-termist governments.
Governments often care only about the short-term.

Company faces many successive short-termist governments.

Governments want to maximize private benefits from holding power.
Governments often care only about the short-term.

Company faces many successive short-termist governments.

Governments want to maximize private benefits from holding power.

First government may accept to sign a contract that ensures high levels of bribes to government officials, but is detrimental to the country in the long run.
Governments often care only about the short-term.

Company faces many successive short-termist governments.

Governments want to maximize private benefits from holding power.

First government may accept to sign a contract that ensures high levels of bribes to government officials, but is detrimental to the country in the long run.

Even under certainty the country may feel aggrieved ex-post.
Governments often care only about the short-term.

Company faces many successive short-termist governments.

Governments want to maximize private benefits from holding power.

First government may accept to sign a contract that ensures high levels of bribes to government officials, but is detrimental to the country in the long run.

Even under certainty the country may feel aggrieved ex-post.

May justify expropriations.
Conclusions

- Contract theory is useful to explain the evolution of petroleum contracts.
Conclusions

- Contract theory is useful to explain the evolution of petroleum contracts.
- Moral hazard: Inefficiently low effort levels \Rightarrow Work programs and monitoring effort.

Hold-up: Inefficiently low initial investments \Rightarrow Commitment clauses and renegotiation rules.

Enforcement problems: Inefficiently low investment and too quick extraction rates \Rightarrow International commercial arbitration and contract law; reputation and threat of not reinvesting.

Uncertainty and grievance: Inefficient compliance \Rightarrow Increased flexibility.

Add short-termist governments: Renegade on previous agreements (expropriations).
Conclusions

- Contract theory is useful to explain the evolution of petroleum contracts.
- Moral hazard: Inefficiently low effort levels \Rightarrow Work programs and monitoring effort.
- Hold-up: Inefficiently low initial investments \Rightarrow Commitment clauses and renegotiation rules.
Conclusions

- Contract theory is useful to explain the evolution of petroleum contracts.
- Moral hazard: Inefficiently low effort levels \Rightarrow Work programs and monitoring effort.
- Hold-up: Inefficiently low initial investments \Rightarrow Commitment clauses and renegotiation rules.
- Enforcement problems: Inefficiently low investment and too quick extraction rates \Rightarrow International commercial arbitration and contract law; reputation and threat of not reinvesting.
Conclusions

- Contract theory is useful to explain the evolution of petroleum contracts.
- Moral hazard: Inefficiently low effort levels \Rightarrow Work programs and monitoring effort.
- Hold-up: Inefficiently low initial investments \Rightarrow Commitment clauses and renegotiation rules.
- Enforcement problems: Inefficiently low investment and too quick extraction rates \Rightarrow International commercial arbitration and contract law; reputation and threat of not reinvesting.
- Uncertainty and grievance: Inefficient compliance \Rightarrow Increased flexibility.
Conclusions

- Contract theory is useful to explain the evolution of petroleum contracts.
- Moral hazard: Inefficiently low effort levels \Rightarrow Work programs and monitoring effort.
- Hold-up: Inefficiently low initial investments \Rightarrow Commitment clauses and renegotiation rules.
- Enforcement problems: Inefficiently low investment and too quick extraction rates \Rightarrow International commercial arbitration and contract law; reputation and threat of not reinvesting.
- Uncertainty and grievance: Inefficient compliance \Rightarrow Increased flexibility.
- Add short-termist governments: Renege on previous agreements (expropriations).