Dynamic coordination among heterogeneous agents

Bernardo Guimaraes
Ana Elisa Pereira
Os artigos dos *Textos para Discussão da Escola de Economia de São Paulo da Fundação Getulio Vargas* são de inteira responsabilidade dos autores e não refletem necessariamente a opinião da FGV-EESP. É permitida a reprodução total ou parcial dos artigos, desde que creditada a fonte.

Escola de Economia de São Paulo da Fundação Getulio Vargas FGV-EESP

www.eesp.fgv.br
Dynamic coordination among heterogeneous agents∗

Bernardo Guimaraes† Ana Elisa Pereira‡

March 2015

Abstract

We study a dynamic model of coordination with timing frictions and payoff heterogeneity. There is a unique equilibrium, characterized by thresholds that determine the choices of each type of agent. We characterize equilibrium for the limiting cases of vanishing timing frictions and vanishing shocks to fundamentals. A lot of conformity emerges: despite payoff heterogeneity, agents’ equilibrium thresholds partially coincide as long as there exists a set of beliefs that would make this coincidence possible – though they never fully coincide. In case of vanishing frictions, the economy behaves almost as if all agents were equal to an average type. Conformity is not inefficient. The efficient solution would have agents following others even more often and giving less importance to the fundamental.

Keywords: coordination, conformity, timing frictions, heterogeneous agents, dynamic games.

JEL Classification: C73, D84.

1 Introduction

Profitability of investment decisions depends on future demand for a firm’s good, which depends on whether other firms will be investing as well but also on idiosyncratic factors that affect demand for a particular product. In a problem of debt roll-over, both coordination motives and an individual’s appetite for risk have to be considered. When deciding between Facebook and Google+, a consumer will take into account what others have been choosing but also her own tastes. Similarly, adopting a new technology may not be the best decision if others in the production chain will keep working with an old technology but heterogeneity in agents’ productivity might also play an important role in this decision. In all these settings, both payoff complementarities and idiosyncratic features of preferences or technologies are important for an agent’s choice.

∗We thank Luis Araujo, Braz Camargo, Itay Goldstein, Caio Machado, Daniel Monte, Jakub Steiner and seminar participants at CERGE-EI, LAMES 2014 (Sao Paulo), Wharton and the Sao Paulo School of Economics – FGV. Bernardo Guimaraes gratefully acknowledges financial support from CNPq. Ana Elisa Pereira gratefully acknowledges financial support from FAPESP.
†Sao Paulo School of Economics – CNPq.
‡Sao Paulo School of Economics – FGV and the Wharton School at University of Pennsylvania.
Strategic complementarities induce players to try to do the same thing. In a dynamic setting, that means following what others are doing and what they are likely to choose in the future. However, the idiosyncratic component of payoffs might push agents in different directions. This paper studies the interplay of complementarities and heterogeneity in payoffs in a dynamic setting.

In order to study this question we consider a dynamic environment with timing frictions as in Frankel and Pauzner (2000). Agents make a binary choice between two actions (say joining Facebook or not). Agents’ instantaneous utility flow depends on an exogenously moving fundamental (which captures the intrinsic quality of Facebook), on how many others are in the network and on idiosyncratic tastes. Agents get opportunities to revise their behavior (join or leave Facebook) according to a Poisson clock, which can be seen as an attention friction modeled in a reduced form way.

We first show there is a unique rationalizable equilibrium where agents of a given type play according to a threshold that depends on the total number of agents in a network and on the exogenous fundamental. We then obtain analytical results for the limiting cases of vanishing shocks and vanishing frictions, and provide an analytical characterization of the equilibrium thresholds in a tractable case with linear utility. Last, we solve the planner’s problem to understand the inefficiencies that arise in equilibrium and assess the effects of policies targeting distinct types.

Each type of agent joins the network if the exogenous fundamental (θ) is larger than a threshold that is a function of the fraction of agents in the network (n). In the tractable limiting cases, a lot of conformity arises. Different types will always play the same strategy for some values on n unless their preferences are so heterogeneous that there is no set of (arbitrary) beliefs that would induce them to play according to the same threshold. Agents’ choices are more similar for intermediate values of n, when there is more heterogeneity in their behavior – and more dispersion of beliefs in a neighborhood around the threshold. In case of vanishing frictions, although agents play according to different strategies, the economy behaves almost as if all agents were identical and equal to an average type (again, unless agents’ preferences are so heterogeneous that no set of beliefs could induce conformity).

However, from a social point of view, there is not enough conformity. For the social planner, the region where idiosyncratic tastes are relevant is smaller than the analogous region in the decentralized equilibrium. The planner also gives less importance to the exogenous fundamental than the agents. In a problem of two-sided network externalities, that means the planner assigns a lower weight to the intrinsic quality of each good than the agents. For example, agents tend to follow the crowd and choose the QWERTY keyboard over the
Dvorak alternative because everybody else is used to the QWERTY standard, even though the Dvorak keyboard is better in terms of its intrinsic quality.\(^1\) The planner would be even more inclined towards QWERTY.

As an application, we consider a simple economy where investment generates positive externalities and study how subsidies to each type affect the equilibrium. For an economy in a state where nobody is investing, the most ‘productive’ agents are the ones who trigger a recovery. The model can be used to understand whether the government should target the most productive agents with investment subsidies in order to get investment going. Interestingly, in case of vanishing frictions, the distribution of subsidies is essentially irrelevant for agents’ decisions, as subsidies to less productive agents have a strong effect on the behavior of the more productive ones.

This paper builds on the model of Frankel and Pauzner (2000). They base their analysis on a model of sectorial choice (along the lines of Matsuyama (1991)), but their framework has been used to analyze location choices (Frankel and Pauzner (2002)), carry trades and speculation (Plantin and Shin (2006)), speculative attacks (Daniëls (2009)) and investment and business cycles (Frankel and Burdzy (2005), Guimaraes and Machado (2014)). The model of currency attacks in Guimaraes (2006) and the model of debt runs in He and Xiong (2012) employ similar timing frictions.

The paper is related to the literature on coordination in games with strategic complementarities. With complete information and no shocks, these games might exhibit multiple self-fulfilling equilibria. Carlsson and Van Damme (1993), Morris and Shin (1998) and Frankel et al. (2003) have shown that a unique equilibrium arise in a static environment in which fundamentals are not common knowledge and agents have idiosyncratic information about them (the so called global games). Frankel and Pauzner (2000) and Burdzy et al. (2001) show that a small amount of shocks in a dynamic model (with no private information) yields similar results. The relation between both literatures is discussed in Morris (2014).\(^2\) In a related contribution, Herrendorf et al. (2000) show that if there is enough heterogeneity and a continuum of types, there is a unique equilibrium even in a dynamic setting with complete information.

Applied work employing the global games methodology has often considered heterogeneous populations.\(^3\) Our results can be used in applied settings where dynamic coordination and heterogeneity are important. The application developed in this paper is inspired by Sakovics and Steiner (2012) who consider a static coordination game played by a heterogeneous population and study the effect of investment incentives for each type of agent. They conclude

\(^1\)See David (1985).

\(^2\)See also Morris and Shin (2003).

\(^3\)Examples include heterogeneity in roles (Goldstein (2005)); wealth (Goldstein and Pauzner (2004)), risk aversion and consumption profile (Guimaraes and Morris (2007)); and financial health (Choi (2014)).
the government should subsidize those who generate important externalities but are not importantly affected by others’s actions.

The paper is also related to literature on network externalities, in which strategic complementarities arise from consumption externalities. Agents’ optimal choices typically depend on what they expect others will do. However, most of this literature makes ad-hoc assumptions on how agents coordinate. One important exception is Argenziano (2008). She studies welfare in a model with differentiated networks in a static global-game model and highlights two sources of inefficiencies: agents give too much importance to their own idiosyncratic tastes and firms with the larger network charge a higher price. Both effects contribute to make the network “too balanced”. Our work complements her work by pointing out inefficiencies coming from the dynamic interaction among agents.

The efficiency results here contrast with those in models with information externalities that generate herd behavior (e.g., Bikhchandani et al. (1992)). In those models, agents follow others too much from a social point of view. Here, conformity of behavior arises because of preferences, not through learning, and they follow others too little.

2 The model

There is a continuum of infinitely-lived agents indexed by $i \in [0, 1]$. Time is continuous and agents discount the future at rate ρ. There are two possible actions $a_i \in \{0, 1\}$, but agents cannot switch from one to another at will. They receive chances to revise their actions according to a Poisson process with arrival rate δ, and stay committed to this choice until the arrival of another opportunity. This timing friction might represent an attention friction of consumers or firms, a machine break-up in an environment with a choice between two technologies or maturity of debt in a model of debt runs.

The flow payoff an agent gets from either action depends on fundamentals, on her idiosyncratic preferences and on the actions of others (there are strategic complementarities). Let n be the proportion of agents choosing action 1. Strategic complementarities can arise owing to either one-sided externalities or two-sided externalities: either the payoff of choosing action 0 is independent of the amount of agents making the same choice, but the payoff of choosing 1 is increasing in n (as in Matsuyama (1991)); or both actions become more appealing the larger is the proportion of agents taking them (as in Argenziano (2008)); or flow-payoffs from both actions can be increasing in n, but the difference in payoffs is also monotonically increasing.

\footnote{This literature has started with Katz and Shapiro (1985) and Katz and Shapiro (1986). See Shy (2011) for a survey.}
\footnote{For instance, Katz and Shapiro (1986) assume that whenever there are multiple equilibria in the model, agents manage to coordinate their decisions in order to achieve the Pareto-superior outcome.}
\footnote{See also Ambrus and Argenziano (2009).}
in \(n \) (as in Guimaraes and Machado (2014)).

We denote agent \(i \)'s relative flow-payoff of choosing action 1 by \(\pi_{q(i)}(\theta, n) \), where \(\theta \in \mathbb{R} \) denotes the fundamentals of the economy, \(n \equiv \int_0^1 a_di \) is the fraction of agents currently committed to action 1 and \(q(i) \in \{1, ..., Q\} \) is agent \(i \)'s type. All functions \(\pi_{q(.)} \) are continuous and strictly increasing in both arguments. If we let \(\alpha_q \) denote the mass of type-\(q \) agents in the population and \(n_q \) the proportion of type-\(q \) agents currently playing 1, \(n \) can be written as \(n = \sum_{q=1}^{Q} \alpha_q n_q \).

An agent who receives a chance to revise her choice at time \(\tau \) will choose \(a_i = 1 \) whenever

\[
\mathbb{E} \int_\tau^\infty e^{-(\rho+\delta)(t-\tau)}\pi_{q(i)}(\theta_t, n_t)dt \geq 0
\]

and \(a_i = 0 \) otherwise. The expected discounted payoff takes into account only the states in which the agent believes she will still be committed to her action (\(e^{-\delta(t-\tau)} \) expresses the probability of not receiving a revising opportunity between \(\tau \) and \(t \)).

We further assume that payoff functions \(\pi_{q(.)} \) are such that there are dominance regions for all types of agents. For each type, there is a region in the \(\mathbb{R} \times [0, 1] \) space where choosing action 0 is a dominant action, and a region in which choosing action 1 is a dominant action. In other words, for any given initial \(n \), there is a sufficiently low level of fundamentals at which an agent prefers to play 0 even if she expects all others to play 1 when they get a chance to revise their actions, and there is a sufficiently high level of fundamentals such that it is preferable to play 1 even if no one else is expected to choose so in the future.

Let \(P_q \) be the boundary of the upper dominance region of a type-\(q \) agent, i.e., the curve on which such agent is indifferent between the two actions if she believes everyone after her will choose 0 (\(P \) stands for pessimistic about the proportion of agents playing 1 in the future). This boundary is downward sloping: since \(\pi_q(\theta, n) \) is increasing in \(\theta \) and \(n \), a higher \(n \) today means that the value of \(\theta \) needed to make agents indifferent between the two actions is smaller. At the other extreme, let \(O_q \) be the boundary of the lower dominance region for a type-\(q \) player, that is, the curve on which this type of agent is indifferent between the two actions under the belief that everyone will choose 1 when they get the chance (\(O \) stands for optimistic). This curve is also downward sloping.

2.1 Unique equilibrium

Suppose \(\theta \) is constant. When \(\theta \) lies either to the right of all upper dominance regions boundaries, or to the left of all lower dominance regions boundaries, there is only one rationalizable action. Nevertheless, there always exists a subset of the state space with equilibrium multi-
However, when there are shocks to θ, the equilibrium is unique for any amount of heterogeneity. Proposition 1 presents this result. The following lemma is key for the demonstration. It states that the dynamics of n depends on (θ_t, n_t) but not on each $n_{q,t}$, $q \in \{1, ..., Q\}$ (for a given n_t).

Lemma 1. For any given strategy profile, the dynamics of n depends only on the state (θ_t, n_t).

Proof. Fix a strategy profile \(\{s_q(i)\}_{q \in \{1, ..., Q\}} \). Denote by I_t the set of types playing 1 at time t. Notice that the path of n_q is given by the following differential equation:

$$\frac{\partial n_{q,t}}{\partial t} = \begin{cases} \delta (1 - n_{q,t}) & \text{if } q \in I_t \\ -\delta n_{q,t} & \text{if } q \notin I_t \end{cases}$$

Equation 1 means that a type-q agent whose strategy prescribes playing 1 and is currently playing 0 will switch to action 1 when she receives an opportunity to revise her choice (there are $1 - n_{q,t}$ such agents). Likewise, every type-q agent whose strategy prescribes playing 0 and who has previously chosen 1 will switch to action 0 at the first opportunity. Using the fact that $n = \sum_{q=1}^{Q} \alpha_q n_{q,t}$, we have that $\frac{\partial n_t}{\partial t}$ is given by:

$$\frac{\partial n_t}{\partial t} = \sum_{q=1}^{Q} \left(\alpha_q \frac{\partial n_{q,t}}{\partial t} \right)$$

$$= \sum_{q \in I_t} \alpha_q \delta (1 - n_{q,t}) + \sum_{q \notin I_t} \alpha_q (-\delta n_{q,t})$$

$$= \delta \left[\sum_{q \in I_t} \alpha_q - \sum_{q=1}^{Q} \alpha_q n_{q,t} \right]$$

\(^7\)Herrendorf et al. (2000) shows that in a similar environment with no shocks and a continuum of types, multiplicity is ruled out if there is a sufficient amount of heterogeneity.
\[\Rightarrow \frac{\partial n_t}{\partial t} = \delta \left[\sum_{q \in I_t} \alpha_q - n_t \right] \]

Lemma 1 allows us to deal with this problem in a two-dimensional space: agents only need to look at the fundamentals \((\theta_t)\) and at the aggregate mass of agents currently committed to action 1 in order to understand the dynamics of the system. One could expect this dynamics to depend on the proportion of each type of agent currently on each option, but due to the assumption of a Poisson process for the arrival of opportunities to switch actions, that is not true. It suffices to know the aggregate \(n_t\) and each type’s strategy to compute \(\partial n_t/\partial t\).

Proposition 1. Suppose \(\theta\) follows a Brownian motion with drift \(\mu\) and variance \(\sigma^2 > 0\). There is a unique equilibrium characterized by downward sloping thresholds \((Z^*_q)_{q \in \{1, \ldots, Q\}}\) in the \(\mathbb{R} \times [0,1]\) space, such that

\[
a_{i,t} = \begin{cases}
1 & \text{if } \theta_t > Z^*_{q(i)}(n_t) \\
0 & \text{if } \theta_t < Z^*_{q(i)}(n_t)
\end{cases}
\]

That is, each agent \(i\) called upon acting at time \(t\) plays 1 when to the right and 0 when to the left of \(Z^*_{q(i)}\).

Proof. See Appendix B.1.

The proof of equilibrium uniqueness employs a strategy of iterative elimination of strictly dominated strategies, starting from the dominance regions. Even if these regions are very remote, making it unlikely that the fundamentals will reach one of them before an agent receives another chance to revise her action, the existence of such regions triggers an iterative contagion effect until there is a single rationalizable strategy left (for each type of agent). The basic intuition is as follows: an agent at any point on the boundary of her upper dominance region is indifferent between actions 0 or 1 under the assumption that, at all future dates, all other agents will choose 0. But once shocks to fundamentals are introduced, she knows there is a positive probability that fundamentals will reach regions in which it is dominant for some agents to play 1 (while she is still committed to her choice). Thus, she cannot hold the belief that others will play 0 under any circumstances. The most pessimistic belief she can hold is that agents will play 0 whenever it is not strictly dominated to do so, and under this new (a bit more optimistic) belief, there is another (smaller) level of fundamentals that makes such agent indifferent between the two actions. Extending this reasoning to all

\(^8\text{Notice timing frictions are key for the proof. However, the uniqueness result still holds as } \delta \to \infty.\)
following rounds and employing an analogous procedure starting from the lower dominance regions yields a unique rationalizable equilibrium. An interesting aspect of this result – which was demonstrated by Frankel and Pauzner (2000) for the case of identical individuals – is that uniqueness of equilibrium can be achieved even with vanishing shocks to fundamentals (that is, in the limit as $\mu, \sigma \to 0$). Multiplicity of equilibrium in this environment do not survive the introduction of the smallest amount of shocks.

The unique equilibrium is characterized by thresholds for each type of agent, to the right of which these agents play 1, and to the left of which they play 0. Depending on the initial value of n, these strategies imply an upward or downward path for n_t. Figure 2 below exemplifies the dynamics around the equilibrium for a case with three types of agents.

\begin{align*}
\dot{n} &= \delta (1 - n) \\
\dot{n} &= -\delta n \\
\dot{n} &= \delta (\alpha_1 - n) \\
\dot{n} &= \delta (\alpha_1 + \alpha_2 - n)
\end{align*}

3 Limiting cases

We now restrict our attention to situations with two types, $Q = 2$, and analyze two limiting cases: vanishing shocks to fundamentals and vanishing timing frictions. Assume $q(i) = \bar{q}$ $\forall i \in [0, \alpha]$ and $q(i) = q$ $\forall i \in (\alpha, 1]$, i.e., there is a mass α of type-\bar{q} agents in the economy and a mass $1 - \alpha$ of type-q agents. Denote their payoff functions, respectively, by $\pi(\theta, n)$ and $\pi(\theta, n)$. We assume that for any pair (θ, n), $\pi(\theta, n) > \bar{\pi}(\theta, n)$, that is, type-$\bar{q}$ agents have a higher relative instantaneous payoff of choosing action 1 in every state.

The next lemma, based on Burdzy et al. (1998), characterizes agents’ beliefs on the equilibrium threshold and is key for the results of the paper.

Lemma 2. Suppose agents play according to distinct thresholds $\overline{Z}(n) < \underline{Z}(n)$ for all n in some interval (n^1, n^2). Consider a point (θ, n) with $\theta = Z^*_i(n)$ for some $i \in [0, 1]$ and $n \in (n^1, n^2)$. As $\mu, \sigma \to 0$, the time it takes for the system to bifurcate either up or down converges to zero.
Moreover, the probabilities of an upward or a downward bifurcation are computed as follows:

(i) Consider a point \((\theta, n)\) with \(\theta = Z(n)\).

\[
 P(\text{up}) = \begin{cases}
 0 & \text{if } n \geq \alpha \\
 1 - \frac{n}{\alpha} & \text{if } n < \alpha
 \end{cases}
\]

and \(P(\text{down}) = 1 - P(\text{up})\).

(ii) Consider a point \((\theta, n)\) with \(\theta = Z(n)\).

\[
 P(\text{up}) = \begin{cases}
 \frac{1-n}{1-\alpha} & \text{if } n > \alpha \\
 1 & \text{if } n \leq \alpha
 \end{cases}
\]

and \(P(\text{down}) = 1 - P(\text{up})\).

Proof. See Appendix B.2. \(\square\)

Figure 3 shows the dynamics around the two types’ thresholds in case they do not intersect (computed as in the proof of Lemma 1) and the implied bifurcation probabilities along the thresholds (computed as in Lemma 2). The idea behind Lemma 2 is that, considering an initial point exactly on an agent’s threshold, the probability of the system going up or down depends on the speed of increase or decrease of \(n\) at each side of the threshold. Intuitively, once the economy has headed off in one direction, it does not revert to \(Z^*_i\), since thresholds are downward sloping and shocks to fundamentals are small, but will it start going up or down? That depends on the realization of the Brownian motion in a tiny space of time and on the speed of decrease and increase of \(n\) at each side of the threshold that pull the economy away from the (downward sloping) threshold.

A few examples help to illustrate the result in Lemma 2. Consider an agent called upon
revising her action when the economy is at p_1 in Figure 3. As $n = 0$, a small negative shock pushing θ slightly to the left will make no difference (n cannot decrease anymore), while a small positive shock to θ will lead high type agents to choose action 1, so agents believe that n will increase with probability one. An agent at point p_2 holds the opposite belief but for a different reason: both to the left and to the right of Z, n is decreasing, so the agent assigns probability one to n heading towards zero. Last, look at point p_3 in Figure 3. A small negative shock to θ means that all high-type agents who get the chance will play 1, but all low-types will play 0. Since there are more agents currently committed to 1 than agents willing to choose 1 (because $n > \alpha$), n decreases in that region at a rate $\delta(n - \alpha)$. A small positive shock, though, would make every agent willing to switch to action 1, hence n would increase at rate $\delta(1 - n)$. This dynamics implies that at p_3, the probability of the system bifurcating up is proportional to the relative rate at which it goes up: $\frac{\delta(1-n)}{\delta(1-n) + \delta(n-\alpha)} = \frac{1-n}{1-\alpha}$.

3.1 Vanishing shocks

Consider the limiting case in which shocks to fundamentals vanish, that is, $\mu \to 0$ and $\sigma \to 0$. Let $Z(n)$ and $Z(n)$ denote the two types’ equilibrium thresholds. The equilibrium properties depend on the degree of payoff heterogeneity.

The relative position of the dominance regions for the two types of agents on the $R \times [0, 1]$ space reflects the degree of heterogeneity in their payoff functions. For a sufficiently large degree of heterogeneity, we have that $P(n) < Q(n) \forall n$: a high-type agent that holds the worst possible belief concerning future choices of others demands a smaller value of the fundamental to be indifferent between the two actions than a low-type agent under the most optimistic belief. This implies there is no region in the state space in which neither type has a dominant action. On the other hand, if heterogeneity is not too large, dominance regions can be such that $Q(n) < P(n) \forall n$, so there is a region in which neither action is dominant for both types of agents. Figure 4 exemplifies those two cases.

In the case of vanishing shocks, the upper dominance region boundary of a high-type agent can be computed as:

$$\int_0^\infty e^{-(\rho+\delta)t}\pi(P, n_i^\dagger)dt = 0,$$

where $n_i^\dagger = n_0 e^{-\delta t}$. The lower dominance region boundary of a low-type agent is given by

$$\int_0^\infty e^{-(\rho+\delta)t}\pi(Q, n_i^\dagger)dt = 0,$$

where $n_i^\dagger = 1 - (1 - n_0)e^{-\delta t}$.
Expressions for the equilibrium thresholds are provided in Appendix A.1. Proposition 2 shows the main equilibrium properties for the case of vanishing shocks.

Proposition 2. Suppose there are two types of agents in the economy, \(q \) and \(\bar{q} \), with payoff functions given by \(\pi(\theta, n) \) and \(\pi(\theta, n) \), respectively, with \(\pi(.) > \pi(.) \forall(\theta, n) \). In the limit as \(\mu, \sigma \to 0 \), in the unique rationalizable equilibrium:

(i) if \(Q(n) > \bar{P}(n) \forall n \), then \(Z(n) < \bar{Z}(n) \forall n \), so different types’ thresholds do not intersect;

(ii) if \(Q(n) < \bar{P}(n) \forall n \), then \(\bar{Z}(n) = \bar{Z}(n) \) for all \(n \) in an interval containing \(\alpha \). Moreover, there are neighborhoods around 0 and 1 in which \(\bar{Z}(n) < \bar{Z}(n) \).

Proof. See Appendix B.3.

The first part of Proposition 2 states that when there is a lot of heterogeneity so that there is no intersection between the regions in which each type does not have a dominant strategy, each type of agent will play according to a distinct threshold. Their equilibrium thresholds will never coincide, which is not surprising since that would require some agents to play a
The second part of Proposition 2 brings a surprising result: there is some conformity in agents’ behavior as long as heterogeneity is not large enough to make it impossible for agents to play according to the same threshold for any (arbitrary) set of beliefs. Proposition 2 also states that different players will choose according to the same threshold for an intermediate range of \(n \). Their thresholds will never fully coincide though: for extreme values of \(n \), heterogeneity beats coordination and each type has a distinct threshold. Figure 5 exemplifies this result.

![Figure 5: Not so large heterogeneity](image)

In order to understand the result in Proposition 2, suppose agents play according to different thresholds as in Figure 3. For \(n = \alpha \), an agent at the lower threshold (the one at the left) holds the most pessimistic beliefs, \(n \) will surely decrease from then on. That is because all low-type agents will be choosing \(0 \), and at \(n = \alpha \) they are just enough to determine the path of the economy. Hence an agent will not choose action 1 unless it is dominant to do so. Conversely, an agent at the higher threshold (the one at the right) holds the most optimistic beliefs for exactly the same reason: high-type agents are choosing \(1 \) and at \(n = \alpha \) they are just enough to drive the economy up. Hence an agent will not choose \(0 \) unless it is dominant to do so.

This reasoning implies that an equilibrium with two distinct thresholds at \(n = \alpha \) requires (i) high-type agents being indifferent between either choice for some \(\tilde{\theta} \) holding the most pessimistic beliefs; and (ii) low-type agents being indifferent between either choice for some \(\theta > \tilde{\theta} \) holding the most optimistic beliefs. This can only happen in case of very large payoff heterogeneity. If that is not the case, owing to the large dispersion in beliefs offsetting idiosyncratic payoffs, both thresholds will coincide at \(n = \alpha \).

This reasoning also explains why conformity fails to arise for extreme values of \(n \). As shown in Figure 5, when \(n = 0 \), beliefs at both thresholds are not so different: both types know the economy will move up. The speed is not the same in both cases, but that is a minor
difference in beliefs. Hence even a small difference in preferences leads to the existence of two distinct thresholds.

In sum, for intermediate values of \(n \), there is huge heterogeneity in expectations about the path of \(n \) around the equilibrium threshold, which makes payoff heterogeneity less relevant. In contrast, for extreme values of \(n \), there is less uncertainty about the path of \(n \) around the equilibrium thresholds and hence heterogeneity in preference matters for agents’ optimal choice.

3.2 Vanishing frictions

We now consider the limiting case of \(\delta \to \infty \) so that agents receive very frequent opportunities to revise their actions. Expressions for equilibrium thresholds under a general payoff function and vanishing frictions are provided in Appendix A.2. Proposition 3 emphasizes some properties of the equilibrium when distinct types’ flow payoffs differ by a constant.

Proposition 3. Let \(\pi(\theta, n) = \pi(\theta, n) + \bar{\varepsilon} \) and \(\bar{\pi}(\theta, n) = \pi(\theta, n) + \bar{\varepsilon} \), \(\bar{\varepsilon} > \varepsilon \). Define \(\hat{\varepsilon} \equiv \alpha \bar{\varepsilon} + (1 - \alpha) \varepsilon \) and \(\hat{\pi}^* \), \(\bar{\pi}^* \) and \(\hat{\pi}^* \) as satisfying

\[
\int_0^\alpha \pi(\bar{\pi}^*, n)dn = -\alpha \bar{\varepsilon}, \quad \int_\alpha^1 \pi(\hat{\pi}^*, n)dn = -(1 - \alpha) \bar{\varepsilon}
\]

Also \(\int_0^1 \pi(\hat{\pi}^*, n)dn = -\hat{\varepsilon} \), respectively. In the limit as \(\delta \to \infty \):

(i) if \(Q(n) > \bar{P}(n) \) \(\forall n \), the state space is divided in three regions: whenever \(\theta_t > \bar{\pi}^* \), \(n_t \approx 1 \); whenever \(\bar{\pi}^* < \theta_t < \hat{\pi}^* \), \(n_t \approx \alpha \) and whenever \(\theta_t < \bar{\pi}^* \), \(n_t \approx 0 \).

(ii) if \(Q(n) \leq \bar{P}(n) \) \(\forall n \), the vertical line \(\hat{\pi}^* \) divides the state space in two regions: whenever \(\theta_t > \hat{\pi}^* \), \(n_t \approx 1 \) and whenever \(\theta_t < \hat{\pi}^* \), \(n_t \approx 0 \).

Proof. See Appendix B.4.

Proposition 3 states that in case of very large heterogeneity, at a given point in time, (almost) all agents of a given type will be playing the same action but different types might be playing different actions. The bounds of the region where behavior is heterogeneous (the switching point for each group) are determined by the value of \(\theta \) such that, at \(n = \alpha \): (i) high types with pessimistic beliefs are indifferent between either action; and (ii) low types with optimistic beliefs are indifferent between either action.

When heterogeneity is not so large, in the limiting case of vanishing frictions, the economy behaves as if agents were identical and had an intermediate preference parameter \(\hat{\varepsilon} \). Although agents’ strategies differ, whenever fundamentals cross the vertical division line, all agents of a certain type immediately switch actions, leading the opposite type to consider it profitable to switch actions as well. Since chances to switch arrive at a very large rate, the dynamics of the economy is basically the same as if agents were identical with preferences given by \(\hat{\pi}(\theta, n) = \pi(\theta, n) + \hat{\varepsilon} \). Hence the economy behaves as in Frankel and Pauzner (2000).
the limiting case of vanishing frictions, two networks can only coexist if there is no set of (arbitrary) beliefs that would lead different agents to play according to the same threshold.

Figure 6 depicts the equilibrium in case of not so large heterogeneity. Note that agents’ strategies differ for values of n close to 0 and 1. As explained before, that is because for high and low values of n, beliefs at both thresholds are not so different, so payoff heterogeneity matters. This intuition is not affected when δ is large – agents at $n = 0$ at the right of \hat{z}^* know n will be moving up fast, but also that they will quickly get another chance to choose.

4 Linear payoff function

We now present a linear example that provides intuition on the forces at play and helps us to understand the relative effects of payoff heterogeneity and complementarities in preferences. Let the relative flow-payoff of action 1 in comparison to action 0 be given by:

$$\pi_i(\theta_t, n_t) = \theta_t + \gamma n_t + \varepsilon_i$$

with

$$\varepsilon_i = \begin{cases} \bar{\varepsilon} & \forall i \in [0, \alpha] \\ \varepsilon & \forall i \in (\alpha, 1] \end{cases},$$

that is, there are two types of agents: a proportion α with preference parameter $\bar{\varepsilon}$ and a proportion $1 - \alpha$ with preference parameter ε, $\bar{\varepsilon} > \varepsilon$.

As before, we will analyze the two limiting cases in which we can derive analytical results, starting by the case of slow moving fundamentals.
4.1 Vanishing shocks

Consider again the case of $\mu, \sigma \to 0$. First, we compute the two dominance regions’ boundaries that can be used to measure the degree of heterogeneity in agents’ payoffs. Substituting our linear payoff function in equations (2) and (3) and solving the integrals yields the upper dominance region boundary of a high-type agent:

$$P(n_0) = -\varepsilon - \frac{\gamma(\rho + \delta)}{\rho + 2\delta} n_0,$$

and the lower dominance region boundary of a low-type agent:

$$Q(n_0) = -\varepsilon - \frac{\gamma\delta}{\rho + 2\delta} - \frac{\gamma(\rho + \delta)}{\rho + 2\delta} n_0.$$

Large heterogeneity

The condition ensuring that $P(n_0) < Q(n_0) \forall n_0$ is equivalent to

$$\varepsilon - \varepsilon > \frac{\gamma\delta}{\rho + 2\delta}.$$

If the difference between idiosyncratic preference parameters is large enough in comparison to the importance of strategic complementarities (γ), the curve on which a high-type agent with pessimistic beliefs about n is indifferent between 0 and 1 is located to the left of the curve on which a low-type agent with optimistic beliefs is indifferent between the two actions. The intersection between the region in which neither action is dominant for a high-type agent and the region with no dominant action for a low-type agent is empty (as in the top picture of Figure 4).

If condition (6) holds, then there is no set of beliefs that could induce different agents to play according to the same strategy for any value of n_0. Hence, whenever this condition is satisfied, the equilibrium in the limit as $\mu, \sigma \to 0$ will be such that type-ε and type-ε agents play according to thresholds that do not intersect, as stated in Proposition 2.

How can we analytically compute the thresholds in this case? First note that for all $n \geq \alpha$ the high-type threshold coincides with the high-type upper dominance region. The belief a type-ε agent holds in equilibrium at some point (θ, n) with $n \geq \alpha$ is that n will fall at the maximum rate with probability one (see Figure 3). Under the most pessimistic belief, this agent is indifferent between the two actions. Thus, type-ε agents’ threshold above α is a function $Z(n_0) = P(n_0)$, and thus satisfies equation (4). Likewise, for all $n \leq \alpha$ the low-type

This is a continuation of text from the previous page.

9All the following derivations are equivalent to directly applying Proposition 5 in the Appendix A.1 for the case of linear payoffs.
threshold must coincide with the low-type lower dominance region (in which agents hold the most optimistic belief), so for \(n_0 \leq \alpha \), \(Q(n_0) \) is given by equation (5).

What about the high-type threshold below \(\alpha \) and the low-type threshold above \(\alpha \)? Suppose, for now, that heterogeneity is large enough so that the following inequality holds:

\[
\bar{\sigma} - \underline{\sigma} > \frac{\gamma(\delta + \rho \alpha)}{\rho + 2\delta}.
\]

This condition ensures the equilibrium is such that \(Z(0) < Z(\alpha) \), so that if the economy is initially at some point on \(Z(n_0) \) with \(n_0 < \alpha \), it will never reach \(n = 1 \): it will either go down towards \(n = 0 \) or up towards \(n = \alpha \). In other words, the system will never cross the other type's threshold. Graphically, it means that \(p_1 \) is to the left of \(p_2 \) in Figure 7. We can then compute the high-type equilibrium threshold below \(\alpha \) as follows:

\[
\int_0^\infty \frac{(\alpha - n_0)}{\alpha} e^{-(\rho + \delta)t} \pi(Z, \alpha - (\alpha - n_0)e^{-\delta t}) dt + \int_0^\infty \frac{n_0}{\alpha} e^{-(\rho + \delta)t} \pi(Z, n_0 e^{-\delta t}) dt = 0.
\]

The first term of the sum is the probability of an upward bifurcation times the discounted relative payoff of action 1 when the agent expects \(n_t \) to grow until it approaches \(\alpha \). The second term is the probability of a downward bifurcation times the discounted payoff when the agent expects \(n_t \) to decrease towards zero. Substituting our linear functional form for \(\pi(\cdot) \) and solving the integrals, we have that, whenever (7) holds, \(Z \) is given by

\[
Z(n_0) = \begin{cases}
-\bar{\sigma} - \frac{\gamma(\rho + \delta)}{\rho + 2\delta} n_0 & \text{if } n_0 \geq \alpha \\
-\bar{\sigma} - \frac{\alpha \gamma \delta}{\rho + 2\delta} - \frac{\gamma \rho}{\rho + 2\delta} n_0 & \text{if } n_0 < \alpha
\end{cases}.
\]

Analogous expressions for the low-type equilibrium threshold are derived in Appendix A.3. Figure 7 depicts the equilibrium in case \(\bar{\sigma} - \underline{\sigma} > \frac{\gamma(\delta + \rho \max\{\alpha, 1-\alpha\})}{\rho + 2\delta} \), that is, the case in which if the economy starts at one threshold, it will never cross the other one. \(^{10}\)

Now, suppose heterogeneity is still large so that \(P \) is to the left of \(Q \), but not as large as before. Specifically, assume

\[
\frac{\gamma \delta}{\rho + 2\delta} < \bar{\sigma} - \underline{\sigma} \leq \frac{\gamma(\delta + \rho \alpha)}{\rho + 2\delta}.
\]

Define \(n' \equiv \alpha - \frac{(\rho + 2\delta)(\bar{\sigma} - \underline{\sigma})}{\gamma \rho} \). \(^{11}\) The threshold \(Z \) is still given by equation (8) for all

\(^{10}\)This condition is analogous to \(Z_0 < Z_{\alpha} \) and \(Z_{\alpha} < Z_1 \) in Proposition 5.

\(^{11}\)The bound \(n' \) is the value satisfying \(Z(n') = Z(\alpha) \).
Figure 7: Case $\bar{z} - \varepsilon \geq \frac{\gamma(\delta + \rho \max\{\alpha, 1 - \alpha\})}{\rho + 2\delta}$

$n_0 \geq n'$, but for all $n_0 < n'$, it satisfies:

\[
\frac{(\alpha - n_0)}{\alpha} \left\{ \int_0^\tau e^{-(\rho + \delta)t} \pi(Z, \alpha - (\alpha - n_0)e^{-\delta t}) dt + \int_\tau^\infty e^{-(\rho + \delta)t} \pi(Z, 1 - (1 - n_0)e^{-\delta(t-\tau)}) dt \right\} + \frac{n_0}{\alpha} \int_0^\tau e^{-(\rho + \delta)t} \pi(Z, n_0 e^{-\delta t}) dt = 0 \quad (10)
\]

where τ is the time at which the system reaches the other type's threshold, and it is given by $\tau = -\frac{1}{\delta} \ln \frac{\alpha - n_0}{\alpha n_0}$, $n_\tau = Z^{-1} \left(Z(n_0) \right)$. This expression can be better understood with the aid of Figure 8. There is a range of n (is sufficient low) such that a type-\bar{z} agent on her threshold knows that, if the system bifurcates up, it will cross the other type's threshold at some point, and thereafter n will grow at a higher rate. Then, given this more optimistic belief, the increase in the level of fundamentals an agent demands to be indifferent between the two actions for a given decrease in n_0 is smaller, i.e., the threshold is steeper.

Using the fact that $Z(n) = Q(n)$ for all $n \leq \alpha$ and performing a change of variables in equation (10), we find that, whenever (9) holds, $\forall n_0 < n'$, Z satisfies

\[
(\rho + 2\delta)(Z + \varepsilon) + \gamma \rho n_0 + \gamma \delta \alpha + \gamma^\delta \left(\frac{1 - \alpha}{\alpha} \right) \left(\frac{1}{\alpha - n_0} \right) \left[\alpha + \frac{(Z + \varepsilon)(\rho + 2\delta) + \gamma \delta}{\gamma(\rho + \delta)} \right]^{\frac{\alpha + \delta}{\delta}} = 0. \quad (11)
\]
Figure 8: Case $\frac{\gamma \delta}{\rho + 2\delta} < \varepsilon - \bar{\varepsilon} \leq \frac{\gamma \delta + \gamma \rho \min\{\alpha, 1 - \alpha\}}{\rho + 2\delta}$

Not so large heterogeneity

Finally, consider the case in which $P(n_0) \geq O(n_0) \forall n_0$, which is equivalent to

$$\varepsilon - \bar{\varepsilon} \leq \frac{\gamma \delta}{\rho + 2\delta}. \tag{12}$$

We know by Proposition 2 that different-type agents’ strategies will coincide for some values of n, but never fully coincide. The equilibrium in this case is as depicted in Figure 9.

For all $n_0 \leq \hat{n}$, the type-ε threshold is identical to $P(n_0)$, and for all $n_0 \geq \hat{\hat{n}}$, the type-ε threshold is given by (11). Analogous equations describing the low-type threshold are provided in Appendix A.3.

In equilibrium, there is conformity in agents’ strategies for intermediate values of n as long as the condition in (12) holds. In most applications, ρ (time discount rate) is much smaller than δ (frequency of opportunities to revise behavior), so the expression in (12) can be approximated by $\varepsilon - \bar{\varepsilon} \leq \gamma / 2$. In words, an equilibrium where agents play according to different thresholds requires payoff heterogeneity to be as important as an increase in n equal to half of the population. When (12) does not hold, there is no set of beliefs that would make conformity possible as P is to the left of O.

The bounds \hat{n} and $\hat{\hat{n}}$ in Figure 9 are given by

$$\hat{n} = \alpha \frac{(\bar{\varepsilon} - \varepsilon)(\rho + 2\delta)}{\gamma \delta},$$
\[\hat{n} = 1 - (1 - \alpha) \frac{\tau - \varepsilon}{\gamma \delta} \frac{\rho + 2\delta}{\rho} \]

In case \(\alpha = 1/2 \) and \(\rho \) is much smaller than \(\delta \), we get \(\hat{n} \approx (\tau - \varepsilon) / \gamma \), thus \(\hat{n} \) is approximately equal to the increase in \(n \) that would compensate the idiosyncratic difference in payoffs.

Intuitively, the existence of type-\(\varepsilon \) agents increases incentives for type-\(\varepsilon \) to choose action 1, while the existence of type-\(\varepsilon \) agents increases incentives for type-\(\varepsilon \) to opt for 0. In consequence, agents behave in a more similar way. That is particularly true when \(n \) is in an intermediate range so that the path of the economy will be decided by the actions of both groups.

4.2 Vanishing frictions

In case \(\delta \to \infty \), we can fully characterize the equilibrium threshold. Our linear payoff function satisfies the assumptions in Proposition 3. In order to compute the equilibrium in the limit case of vanishing timing frictions (even if \(\mu, \sigma > 0 \)), it suffices to apply the results in
Proposition 6, or equivalently, take the limit as $\delta \to \infty$ of all equilibrium thresholds computed in the previous subsection. The more interesting case is when O is to the left of P, which is equivalent to $\bar{e} - \xi \leq \gamma/2$. Equilibrium is as in Figure 10. The line \hat{Z} divides the state space in two regions: whenever $\theta_t > \hat{Z}$, $n_t \approx 1$, and whenever $\theta_t < \hat{Z}$, $n_t \approx 0$. \hat{Z} coincides with the equilibrium that would be played if there was just one type of agent in the economy with preference parameter $\hat{\epsilon} \equiv \alpha \bar{e} + (1 - \alpha)\xi$. \hat{Z} satisfies

$$\hat{Z} = -\hat{\epsilon} - \gamma/2.$$

The increase in n when θ crosses to the right of \hat{Z} at $n \approx 0$ is triggered by high-type agents choosing action 1, as low-type agents initially keep choosing 0. However, this difference in behavior will be very short lived. One implication of this result is that an increase in the mass of high-type agents (α) will affect the behavior of everyone in the economy (it will shift the threshold to the left) but there will be virtually no difference in the behavior of low-type and high-type agents.

5 The planner’s problem

We now solve the planner’s problem for the case of linear payoffs in order to analyze efficiency in this environment. All results in this section refer to the case of very small shocks, $\mu, \sigma \to 0$.

Agents face the choice between two actions, 0 and 1. The flow utility agent i derives from being committed to action 1 is given by $u^1_i(\theta^1_t, n_t) = \theta^1_t + \nu^1 n_t + \epsilon^1_t$, and the flow utility from
being at 0 is given by \(u^0_t(\theta^0_t, n_t) = \theta^0_t + \nu^0(1 - n_t) + \varepsilon^0_t \). \(n_t \) is the mass of agents currently playing 1, \(\nu^j > 0 \) is a parameter measuring the relative importance of strategic complementarities in the choice of \(j \), \(\theta^j_t \) represents the fundamentals affecting the flow-payoff of playing \(j \) at time \(t \), and \(\varepsilon^j_t \) captures an idiosyncratic preference for action \(j \), \(j \in \{0, 1\} \).\(^{12}\) We will refer to 0 and 1 as networks, since the measure of agents playing each action generates externalities that can be thought of as network effects.

5.1 The case with ex-ante identical agents

In the case with ex-ante identical agents, we can set \(\varepsilon^j_t = 0 \) for \(j \in \{0, 1\} \). Hence the relative payoff function can be written as

\[
\pi_i(\theta_t, n_t) = \theta_t + \gamma n_t \quad \forall i,
\]

where \(\theta_t \equiv \theta^1_t - \theta^0_t - \nu^0 \) and \(\gamma \equiv \nu^0 + \nu^1 \).

The planner’s problem at time zero is to maximize the discounted sum of payoffs across agents, i.e.,

\[
W = \mathbb{E} \int_{t=0}^{\infty} e^{-\rho t} \left[n_t u^1_t + (1 - n_t) u^0_t \right] dt = \int_{t=0}^{\infty} e^{-\rho t} \left[n_t \left(\theta_t - \nu^0 \right) + \gamma n_t^2 \right] dt. \tag{13}
\]

At every point in time, the planner decides whether those with an opportunity to revise their actions will opt for 0 or 1. Action 1 is optimal if an infinitesimal increase in \(n_t \) pays off. The effect on \(n_t \) of an increase in \(n_0 \) by \(dn_0 \) is given by \(dn_t = dn_0 e^{-\delta t} \) since the initial increase in \(n_0 \) depreciates at a rate \(\delta \). From (13), the planner is indifferent between actions 0 and 1 if

\[
\mathbb{E} \int_0^{\infty} \frac{\partial}{\partial n_t} \left[e^{-\rho t} \left(n_t \left(\theta_t - \nu^0 \right) + \gamma n_t^2 \right) \right] \frac{dn_t}{dn_0} dt = 0,
\]

which can be written as

\[
\mathbb{E} \int_{t=0}^{\infty} e^{(\rho + \delta) t} \left[\theta_t - \nu^0 + 2\gamma n_t \right] dt = 0. \tag{14}
\]

This expression is very similar to the indifference condition in the decentralized equilibrium: an agent is indifferent between 0 and 1 when \(\mathbb{E} \int_{t=0}^{\infty} e^{(\rho + \delta) t} \left[\theta + \gamma n_t \right] dt = 0 \). There are two differences: (i) the externality is more important for the planner (\(\gamma \) is multiplied by 2) because the planner also takes into account the spillovers on others; and (ii) the planner might be more inclined towards one of the actions depending on whether we have one-sided or two-sided network externalities (which is captured by \(\nu^0 \) in the equation).

\(^{12}\)If either \(\nu^0 \) or \(\nu^1 \) are equal to zero, we have one-sided externalities instead of two-sided externalities.
Mathematically, this problem is very similar to the one solved by agents in the decentralized equilibrium: at every time t, the planner chooses according to (14) and beliefs about the future path of n must be consistent with optimality at every point. Hence the planner’s problem is equivalent to a game played by agents with payoffs given in (14), so the planner would choose according to a downward sloping threshold. Proposition 4 relates the planner’s solution to the decentralized equilibrium.

Proposition 4. Suppose there is a single type of agent in the economy. The decentralized equilibrium prescribes playing 1 whenever $\theta_t > Z^*(n_t)$ and 0 otherwise, where Z^* is given by

$$Z^*(n) = -\frac{\gamma \delta}{\rho + 2\delta} - \frac{\gamma \rho}{\rho + 2\delta} n.$$

(15)

The planner’s solution prescribes playing 1 whenever $\theta_t > Z^P(n_t)$ and 0 otherwise, where Z^P is given by

$$Z^P(n) = \nu^0 - \frac{2\gamma \delta}{\rho + 2\delta} - \frac{2\gamma \rho}{\rho + 2\delta} n.$$

In the case of symmetric network effects, that is, $\nu^0 = \nu^1$, the planner’s solution becomes

$$Z^P(n) = -\frac{\gamma \delta}{(\rho + 2\delta)} + \frac{\gamma \rho}{2(\rho + 2\delta)} - \frac{2\gamma \rho}{\rho + 2\delta} n.$$

(16)

Proof. See Appendix B.5.

The weight given by the planner to the current size of the network in (16) is twice as large as the weight given by agents in the decentralized equilibrium in (15). Common sense might suggest that the planner would push the agents towards the best “fundamentals” (1 when θ is high, 0 when θ is low) but the planner actually cares less about fundamentals than the agents. If agents prefer the QWERTY over the fundamentally more efficient Dvorak (i.e., if agents prefer to choose 0 even though action 1 would be the optimal choice if θ were the only relevant factor), the planner would be even more inclined to choose the fundamentally worse option. Intuitively, the planner takes into account the externality on others that agents fail to internalize, while the intrinsic quality of each good is fully taken into account by agents in the decentralized equilibrium.\[13\]

Figure 11 depicts the results in Proposition 4 when $\nu^0 = \nu^1$, so there is no difference in terms of externalities. The planner rotates the threshold so that its slope is half of the slope in a decentralized equilibrium, which means n is relatively more important for the planner.

\[13\] The planner would choose the more efficient Dvorak keyboard style if all agents’ machines were to be replaced at a given point in time, while the agents problem in a static setting would exhibit multiple equilibria. However, this intuition is not correct.
When the network effect is asymmetric, that is, $\nu^0 \neq \nu^1$, the planner not only rotate the threshold around $n = 0.5$, but it also shifts the threshold in order to enlarge the region in which agents choose the action that generates more externalities. Figure 12 depicts the planner’s solution when ν^1/ν^0 is larger then $(\rho + \delta)/\delta$.

When the externality in one network is large enough in comparison to the other, as in Figure 12, the planner’s threshold lies completely on the agents’ lower dominance region, so in the region between the lower dominance region boundary and Z^p, the planner prescribes a strictly dominated strategy to be played by everyone. To see why, consider for example the case in which n is large. The planner takes into account that a lot of agents are stuck in action in a dynamic environment with staggered decisions.
1 (due to timing frictions) and they all would benefit from the network effects generated by an additional increase in \(n \).

5.2 The case with two types of agents

In this section, we consider the planner’s problem in the case with two types of agents. Proposition 4 shows that differences between externalities from each network (\(\nu^0 \) and \(\nu^1 \)) only add a constant to the planner’s threshold, so we now focus on the case \(\nu^0 = \nu^1 = \nu \), for simplicity of exposition. The planner’s problem in this case can be written as

\[
\max E \alpha \int_0^\infty e^{-\rho t} \left\{ \theta_t^1 + \nu n_t + \bar{\varepsilon}^1 \right\} dt + (1 - \alpha) \int_0^\infty e^{-\rho t} \left\{ \theta_t^0 + \nu(1 - n_t) + \bar{\varepsilon}^0 \right\} dt,
\]

which is equivalent to

\[
\max E \int_0^\infty e^{-\rho t} \left\{ n_t \left[\theta_t - \gamma/2 + \gamma n_t \right] + \alpha \bar{\varepsilon} + (1 - \alpha) \mu \bar{\varepsilon} \right\} dt,
\]

where \(\bar{\varepsilon} \equiv \bar{\varepsilon}^1 - \bar{\varepsilon}^0 \) and \(\bar{\varepsilon} \equiv \bar{\varepsilon}^1 - \bar{\varepsilon}^0 \). Following the same reasoning as in the case of identical agents, we find that the optimality conditions for the planner are given by

\[
E \int_0^\infty e^{-(\rho + \delta)t} \left(\theta_t + \bar{\varepsilon} - \gamma/2 + 2\gamma n_t \right) dt = 0,
\]

and

\[
E \int_0^\infty e^{-(\rho + \delta)t} \left(\theta_t + \bar{\varepsilon} - \gamma/2 + 2\gamma n_t \right) dt = 0.
\]

Proposition 7 in Appendix A.4 characterizes the planner’s solution analytically. Some of the results are illustrated in the figures below.

The planner’s solution has interesting properties. As before, its threshold is always flatter than in the decentralized equilibrium, meaning that the planner sacrifices gains stemming from good fundamentals in order to explore strategic complementarities (the planner is an enthusiast of QWERTY in this case as well). Moreover, the region in which the planner prescribes that the same strategy must be played by different types is always larger, showing that the planner cares less about idiosyncratic preferences as well.\(^{14}\) Figures 13 and 14 depict the planner’s solutions for different ranges of heterogeneity in comparison to the decentralized solution.

\(^{14}\)In Argenziano (2008), the planner also gives a lower weight to idiosyncratic preferences but the dynamic (QWERTY) effect is absent.
Figure 13: Planner’s solution when \(\frac{\gamma(\delta + \rho \max\{\alpha, (1-\alpha)\})}{\rho+23} < \varepsilon - \xi \leq \frac{2\gamma\delta}{\rho+23} \)

Figure 13 considers a case with large heterogeneity. In the decentralized equilibrium, for some values of \(\theta \), two networks will coexist for long periods of time, with some agents choosing 1 and others going for 0. However, the efficient outcome would feature a single network (except for brief transition periods). The strategies prescribed by the planner imply that \(n \) would almost always be very close to 0 or 1.

In the example in Figure 14, heterogeneity is not so large and the equilibrium threshold of both types coincide for some values of \(n \). In this case, the range of values of \(n \) for which agents choose different actions is (exactly) twice as large as the analogous range for the planner.

Figure 14: Planner’s solution when \(\varepsilon - \xi \leq \frac{\gamma\delta}{\rho+23} \)
6 Who matters in dynamic coordination problems?

We now consider the case where the planner would like agents to choose action 1 more often. For concreteness, suppose the choice agents face is between investing or not. Investment generates positive spillovers, so the payoff from investing depends positively on a fundamental (θ) and on the fraction of agents that have chosen to invest (n).\(^{15}\) Who matters in this dynamic coordination problem?\(^{16}\)

Consider the case where heterogeneity is not so large, as in Figure 9. If the economy is at a low-n state, the planner is mostly concerned with the high-type agents, since they are the ones who will trigger a switch to the regime with large n. Would the planner be particularly interested in subsidizing the high type then? In general, should the target of investment subsidies vary along the business cycle?

We briefly examine this question by studying the effect of a constant subsidy to agents, a flow amount of s to each high-type agent and s to each low type conditional on them playing 1 (investing). Payoffs are linear and shocks are very small as in Section 4. Relative payoffs from investing are given by:

$$
\pi(\theta_t, n_t) = \theta_t + \gamma n_t + \varepsilon + s \\
\pi(\theta_t, n_t) = \theta_t + \gamma n_t + \varepsilon + s
$$

Consider a situation in which n is close to 0 (few firms are investing) and subsidies are intended to trigger a switch to a high-n state. Using the expressions for the high- and low-type thresholds at low values of n given by (11) and (35), respectively, we have that:

$$
\frac{\partial Z}{\partial s} = -\frac{\alpha}{\alpha + (1 - \alpha)\Omega} \quad \text{and} \quad \frac{\partial Z}{\partial \varepsilon} = -\frac{(1 - \alpha)\Omega}{\alpha + (1 - \alpha)\Omega}
$$

where $\Omega = (\alpha - n)^{-\frac{1}{s}}\left[\frac{(Z + \varepsilon)\gamma + s}{\gamma + s}\right]^{\frac{1}{s}} < 1$ and

$$
\frac{\partial Z}{\partial \varepsilon} = 0 \quad \text{and} \quad \frac{\partial Z}{\partial \varepsilon} = -1.
$$

Since there is a proportion α of high-type agents, paying $1/\alpha$ units of subsidy to each high-type agent costs the same as paying $1/(1 - \alpha)$ units to each low type. Hence subsidies to high types have a stronger effect on their own threshold Z as long as $\Omega < 1$, which is always true. In contrast, the threshold for low types Z is importantly affected by subsidies to

\(^{15}\)Guimaraes and Machado (2014) present a macroeconomic model where investment decisions are strategic complements in a similar environment.

\(^{16}\)Sakovics and Steiner (2012) ask a related question in a static coordination game among heterogeneous agents allowing for a broad range of payoffs and information structures.
low-type agents but not at all by subsidies to high types.17 Intuitively, subsidies to low types affect the beliefs of high types in a pivotal contingency, but subsidies to high types have no effect on beliefs of low types – at their equilibrium threshold, for low values of \(n\), their beliefs are as optimistic as possible.

When \(n\) is small, shocks are very small and \(\theta\) is at the left of \(\overline{Z}\), we are mostly concerned with shifting \(\overline{Z}\) to the left, because \(\theta\) moves very slowly. Whenever the economy gets to the right of \(\overline{Z}\), high-types will start to invest, leading \(n\) to increase and soon the economy will cross the threshold for low types as well.18 Since \(\Omega < 1\), direct subsidies to high types are the best strategy to bring the economy closer to a recovery.

In contrast, when \(n\) is close to one, the best strategy to avoid an investment slump would be to subsidize the low types, who are the first ones to stop investing when fundamentals deteriorate. Preventing that is enough to keep high types willing to invest, without providing them with any direct incentives.

However, in many applications, it is reasonable to assume that \(\rho/\delta\) is small, that is, the rate at which agents discount the future is substantially smaller than the arrival rate of the Poisson process (which reflects, for example, the frequency at which a firm revises its investment and production decisions). In the limiting case of \(\rho/\delta \to 0\), we have that \(\Omega \to 1\), meaning that it does not matter who the government subsidizes. Interestingly, the indirect effect of \(s\) to low types on \(\overline{Z}\) and the direct effect of \(s\) to high types on \(\overline{Z}\) are exactly the same. Subsidizing low-type or high-type agents has exactly the same effect in the economy.

As shown in Proposition 3, the dynamics of this economy is well approximated by an economy with only one average type. Naturally, subsidies to either type have the same effect on the average type and hence will have the same effect on the equilibrium. Hence in case of very small frictions (very large values of \(\delta\)), in order to get high types to invest and trigger a recovery, indirect subsidies to low types are as effective as direct subsidies to high types.

7 Final remarks

This paper shows that in a dynamic coordination model with timing frictions, heterogeneous agents will often play similar strategies. Agents predisposed to a certain action will be less willing to take it anticipating the behavior of agents less inclined to choose that action, and vice versa. That is particularly true when there is an intermediate number of people

17The case with high \(n\) and subsidies aiming to avoid a decrease in \(n\) (prevent a recession as fundamentals start to deteriorate) is analogous. Subsidies to high types affect both thresholds, while subsidies to low types only affect \(\underbar{Z}\), but the effect on \(\underbar{Z}\) is stronger if subsidies are channeled to low types.

18A shift of the low-type threshold \(\overline{Z}\) to the left implies low types will choose to invest sooner after the recovery starts, but in case of very small shocks, this effect is much less important than triggering the recovery, owing to the slow movement of \(\theta\).
in a network, in which case there is more uncertainty about the path of the economy and coordination motives dominate idiosyncratic tastes. While the model is not intended to fit any particular application, the general lessons from the paper have implications for the policy debate.

As an example, the regulation of internet monopolies has been under discussion in the popular press and in the European Parliament.19 Network effects are key for internet companies. Therefore, according to this paper, we should expect a lot of conformity in people’s choices, hence a lot of concentration, but occasional large (positive or negative) shifts in the market share of these firms – which is consistent with the stylized facts. Policy should then take into account that a social planner would be even more inclined towards concentration and conformity.

A Expressions for the equilibrium thresholds

A.1 Vanishing shocks

Characterization of equilibrium in the limiting case of vanishing shocks is summarized in Proposition 5. Define Z_0, Z_α, \bar{Z} and \bar{Z}_1 as satisfying, respectively,

\begin{align}
\int_0^{\alpha} (\alpha - n)^{\frac{3}{2}} \pi (Z_0, n) \, dn &= 0 \tag{17} \\
\int_{\alpha}^{1} (1 - n)^{\frac{3}{2}} \pi (Z_\alpha, n) \, dn &= 0 \tag{18} \\
\int_0^{\alpha} n^{\frac{3}{2}} \pi (Z_\alpha, n) \, dn &= 0 \tag{19} \\
\int_{\alpha}^{1} (n - \alpha)^{\frac{3}{2}} \pi (Z_1, n) \, dn &= 0. \tag{20}
\end{align}

Proposition 5. In the limiting case in which $\mu, \sigma \to 0$, thresholds are computed as follows:

1. (Large heterogeneity) Case $\mathcal{P}(n) < Q(n) \forall n$

 (a) Type-\overline{q} agents’ threshold:

 i. If $Z_0 < Z_\alpha$, then

 \begin{itemize}
 \item $\forall n_0 \geq \alpha$, $Z(n_0) = \mathcal{P}(n_0)$ and satisfies
 \end{itemize}

\begin{align}
\int_0^{n_0} n^{\frac{3}{2}} \pi (Z, n) \, dn &= 0; \tag{21}
\end{align}

19This topic was in the front cover of the \textit{Economist} in November 2014.
\[\forall n_0 < \alpha, \mathcal{Z}(n_0) \text{ satisfies} \]
\[
\int_0^{n_0} \left(\frac{n}{n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn + \int_{n_0}^{n_0} \left(\frac{\alpha - n}{\alpha - n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn = 0. \tag{22}
\]

ii. If \(\mathcal{Z}_0 \geq \mathcal{Z}_\alpha \), then
- \(\forall n_0 \geq \alpha, \mathcal{Z}(n_0) = \mathcal{P}(n_0) \) and satisfies (21);
- \(\forall n_0 \in (n', \alpha), \mathcal{Z}(n_0) \) satisfies (22);
- \(\forall n_0 \leq n', \mathcal{Z}(n_0) \) is the solution to the system

\[
\int_0^{n_0} \left(\frac{n}{n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn + \int_{n_0}^{n_0} \left(\frac{\alpha - n}{\alpha - n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn + \left(\frac{\alpha - n_0}{1 - n_0} \right)^{\frac{\xi}{\alpha}} \int_{n_0}^{1} \left(\frac{1 - n}{1 - n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn = 0 \tag{23}
\]

\[
\int_{n_0}^{1} \left(1 - n \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn = 0.
\]

- \(n' \) is the value satisfying \(\mathcal{Z}(n') = \mathcal{Z}(\alpha) \).

(b) Type-\(q \) agents’ threshold:

i. If \(\mathcal{Z}_\alpha < \mathcal{Z}_1 \), then
- \(\forall n_0 \leq \alpha, \mathcal{Z}(n_0) = \mathcal{O}(n_0) \) and satisfies

\[
\int_{n_0}^{1} \left(1 - n \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn = 0; \tag{24}
\]

- \(\forall n_0 > \alpha, \mathcal{Z}(n_0) \) satisfies

\[
\int_{n_0}^{n_0} \left(\frac{n - \alpha}{n_0 - \alpha} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn + \int_{n_0}^{n_0} \left(\frac{1 - n}{1 - n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn = 0. \tag{25}
\]

ii. If \(\mathcal{Z}_\alpha \geq \mathcal{Z}_1 \), then
- \(\forall n_0 \leq \alpha, \mathcal{Z}(n_0) = \mathcal{O}(n_0) \) and satisfies (24);
- \(\forall n_0 \in (\alpha, n''), \mathcal{Z}(n_0) \) satisfies (25);
- \(\forall n_0 \geq n'', \mathcal{Z}(n_0) \) is the solution to the system

\[
\int_0^{n_0} \left(\frac{n}{n_0 - \alpha} \right)^{\frac{\xi}{\alpha}} \left(\frac{n_0 - \alpha}{n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn + \int_{n_0}^{n_0} \left(\frac{n - \alpha}{n_0 - \alpha} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn + \int_{n_0}^{1} \left(\frac{1 - n}{1 - n_0} \right)^{\frac{\xi}{\alpha}} \pi(\mathcal{Z}, n) dn = 0 \tag{26}
\]
\[\int_{0}^{n_t} n \pi(Z, n) dn = 0. \]

- \(n'' \) is the value satisfying \(Z(n'') = Z(\alpha) \).

2. (Not so large heterogeneity) Case \(P(n) \geq Q(n) \forall n \)

(a) Type-\(q \) agents’ threshold: For each \(n_0 \) such that \(Z(n_0) \neq Z(n_0) \),

- if \(n_0 > \alpha \), \(Z(n_0) = P(n_0) \) and satisfies (21);
- if \(n_0 < \alpha \), \(Z(n_0) \) is the solution to (23).

(b) Type-\(q \) agents’ threshold: For each \(n_0 \) such that \(Z(n_0) \neq Z(n_0) \),

- if \(n_0 > \alpha \), \(Z(n_0) \) is the solution to (26);
- if \(n_0 < \alpha \), \(Z(n_0) = Q(n_0) \) and satisfies (24).

Proof. Suppose \(\mu, \sigma \to 0 \).

Large heterogeneity Suppose \(P(n) < Q(n) \forall n \). By Proposition 2, we know that \(Z(n) < Z(n) \forall n \). So, we can apply Lemma 2 to compute the bifurcation probabilities at all points along the thresholds. For all \(n_0 \geq \alpha \), a type-\(q \) agent’s belief over \(n_t \) in equilibrium is exactly the belief we assume to compute her upper dominance region boundary, i.e., she assigns probability one to \(n \) going down at the maximum rate, \(\hat{n}_t = -\delta n_t \). Thus, type-\(q \) agents’ threshold \(\forall n_0 \geq \alpha \) is given by equation (2). Performing a change of variables such that \(n = n_t^\uparrow = n_0 e^{-\delta t} \), we obtain equation (21) in 1.(a)i. Likewise, for all \(n_0 \leq \alpha \), a type-\(q \) agent’s belief over \(n_t \) in equilibrium is the more optimistic as possible, so her threshold is given by equation (3) \(\forall n \leq \alpha \). A change of variables such that \(n = n_t^\downarrow = 1 - (1 - n_0) e^{-\delta t} \) gives us equation (24) in 1.(b)i.

We still have to compute type-\(q \) threshold below \(\alpha \) and type-\(q \) threshold above \(\alpha \) in the case of large heterogeneity (\(P \) to the left of \(Q \)). Consider a high-type agent. Let’s assume, for now, that the equilibrium is such that the distance between the thresholds of the two types of agents is big enough so that \(Z(0) < Z(\alpha) \) as in Figure 15. We will show that this is the case whenever \(Z_0 < Z_\alpha \).

Notice that at any point on \(Z \) below \(\alpha \), if the system bifurcates up, \(n_t \) will grow towards \(\alpha \) and it will never reach the low-type threshold. Consider an agent \(i \in [0, \alpha] \) at some point \((\theta_0, n_0) \) with \(\theta_0 = Z(n_0) \) and \(n_0 < \alpha \), i.e., at some point on her threshold below \(\alpha \). Equating her expected payoff to zero, we have:

\[
\left(\frac{\alpha - n_0}{P(\text{up})} \right) \int_{0}^{\infty} e^{-(\rho + \delta)t} \pi(Z, \alpha - (\alpha - n_0) e^{-\delta t}) dt + \frac{n_0}{P(\text{down})} \int_{0}^{\infty} e^{-(\rho + \delta)t} \pi(Z, n_0 e^{-\delta t}) dt = 0. \quad (27)
\]

The first term of the sum is the probability of an upward bifurcation times the discounted payoff when the agent expects \(n_t \) to grow until it approaches \(\alpha \). The second one is the probability of a
downward bifurcation times the discounted payoff when the agent expects n_t to decrease towards zero. Integrating by substitution the two terms in the equation above (letting $n = \alpha - (\alpha - n_0)e^{-\delta t}$ in the first and $n = n_0e^{-\delta t}$ in the second integral), we have equation (22) in 1.(a)i. Remember we have computed this threshold assuming $Z(0) < Z(\alpha)$, which is only the case when the value of $Z(0)$ obtained using the expression above is smaller than $Z(\alpha)$. Evaluating the equation above at $n_0 = 0$ and operating a change of variables such that $n = \alpha - \alpha e^{-\delta t}$, we have the expression for Z_0 in equation (17). Thus, whenever $Z_0 < Z_\alpha$, where $Z_\alpha = Z(\alpha)$, the high-type threshold is in fact given by equation (22) for all $n < \alpha$.

Now, assume instead that $Z_0 \geq Z_\alpha$. In that case, a high-type agent making a choice at some point on her threshold needs to take into account that, depending on the initial state (θ_0, n_0), the system may bifurcate up but not only towards $n_t = \alpha$. For some (low) values of n_0, following an upward bifurcation, n_t will grow at a lower rate (all high-type agents play 1 but all low types play 0) until the system crosses the low-type threshold, and thereafter everyone who gets the chance to revise theirs actions will choose 1. Figure 16 illustrates this case.

Define n' as satisfying $Z(n') = Z(\alpha)$. For all $n_0 \in (n', \alpha)$, $Z(n_0)$ is still given by equation (22).
But consider now an initial point \((\theta_0, n_0)\) with \(\theta_0 = Z(n_0)\) and \(n_0 \leq n'\). In this case, the high-type threshold can be computed as

\[
\left(\frac{\alpha - n_0}{\alpha} - \frac{\alpha}{P_{(up)}}\left(\int_{\bar{\tau}} e^{-\left(\rho + \delta\right)\bar{t}} \pi(Z, \alpha - (\alpha - n_0)e^{-\delta\bar{t}})dt + \int_{\bar{\tau}} e^{-\left(\rho + \delta\right)\bar{t}} \pi(Z, 1 - (1 - n_0)e^{-\delta\bar{t}})dt\right)\right)
\]

where \(\bar{\tau}\) denote the time at which the economy reaches \(Z\) in case an upward bifurcation occurs and \(n_{\bar{\tau}} = Z^{-1}(Z(n_0))\). Since \(n_{\bar{\tau}} = \alpha - (\alpha - n_0)e^{-\bar{\tau}}\), we have that \(\bar{\tau} = -\frac{1}{\delta} \ln \frac{\alpha - n_{\bar{\tau}}}{\alpha - n_0}\). Performing a change of variables in each one of the integrals in the equation above, we get to the first line of the system in (23). The second line is equivalent to \(n_{\bar{\tau}} = Z^{-1}(Z(n_0))\), using the fact that, for all \(n \leq \alpha\), \(Z\) is given by equation (24). The low-type threshold above \(\alpha\) when either \(Z_\alpha < Z_1\) or \(Z_\alpha \geq Z_1\) is computed following analogous steps.

Small heterogeneity Now, suppose \(P(n) \geq O(n)\forall n\). By Proposition 2, we know that there is a neighborhood of \(\alpha\) such that agents play according to the same strategy \(Z(n)\) whenever \(n\) is in this neighborhood, but thresholds never coincide for all \(n \in [0, 1]\). Parts of thresholds that coincide cannot be analytically computed, since agents are not indifferent anymore, although they both are strictly preferring to play 1 to the right and 0 to the left of it, under the belief that others are doing the same. Yet, for every value of \(n\) such that \(Z(n) \neq Z(n)\), it is possible to compute the thresholds using the bifurcation probabilities in Lemma 2, as in the case of large heterogeneity. If \(n_0 \geq \alpha\), \(Z(n_0) = P(n_0)\) and thus satisfies (21); \(Z(n_0)\) is the solution to (26), given that whenever the system bifurcates down, it eventually crosses \(Z\) and decreases towards \(n = 0\). If \(n_0 \leq \alpha\), \(Z(n_0)\) is the solution to (23) and \(Z(n_0) = Q(n_0)\) and thus satisfies (24). Computing the interval(s) of \(n\) such that thresholds coincide requires knowing the specific functional form of payoffs (see linear example.)

\[
A.2 \text{ Vanishing frictions}
\]

The next proposition characterize the equilibrium in the limit as timing frictions shrink.

Proposition 6. In the limit as frictions vanish \((\delta \to \infty)\), the equilibrium is characterized by thresholds \(Z^*(n_0)\) and \(Z^*(n_0)\) computed as follows. The dominance regions’ boundaries of interest now satisfy

\[
\int_0^{n_0} \pi(P^*, n)dn = 0,
\]

\[
\int_{n_0}^{1} \pi(Q^*, n)dn = 0.
\]
1. (Large heterogeneity) Case $P^*(n) < Q^*(n) \forall n$

(a) Type-q agents’ threshold:

- $\forall n_0 \geq \alpha$, $Z^*(n_0)$ satisfies
 \[\int_0^{n_0} \pi(Z^*, n) dn = 0; \quad (29) \]

- $\forall n < \alpha$, $Z^*(n_0)$ satisfies
 \[\int_0^{\alpha} \pi(Z^*, n) dn = 0, \quad (30) \]
 which is independent of n_0.

(b) Type-\underline{q} agents’ threshold:

- $\forall n_0 \leq \alpha$, $Z^*(n_0)$ satisfies
 \[\int_0^{n_0} \pi(Z^*, n) dn = 0; \quad (31) \]

- $\forall n_0 > \alpha$, $Z^*(n_0)$ satisfies
 \[\int_0^{\alpha} \pi(Z^*, n) dn = 0, \quad (32) \]
 which is independent of n_0.

2. (Not so large heterogeneity) Case $P^*(n) \geq Q^*(n) \forall n$

(a) Type-q agents’ threshold: For each n_0 such that $Z^*(n_0) \neq Z^*(n)$,

- if $n_0 > \alpha$, $Z^*(n_0) = P^*(n_0)$ and satisfies (29);
- if $n_0 < \alpha$, $Z^*(n_0)$ is the solution to the system
 \[\int_0^{n_0} \pi(Z^*, n) dn + \left(\frac{\alpha - n_0}{1 - n_0} \right)^{\alpha+\beta} \int_0^{1} \pi(Z^*, n) dn = 0 \]
 \[\int_0^{1} \pi(Z^*, n) dn = 0. \quad (33) \]
 Notice that Z^* is a vertical line for $n_0 < \alpha$.

(b) Type-\underline{q} agents’ threshold: For each n_0 such that $Z^*(n_0) \neq \overline{Z}(n_0)$,

- if $n_0 < \alpha$, $Z^*(n_0) = Q^*(n_0)$ and satisfies (31);
- if $n_0 > \alpha$, $Z^*(n_0)$ is the solution to the system
 \[\left(\frac{n_0 - \alpha}{n_0} \right)^{\alpha+\beta} \int_0^{n_0} \pi(Z^*, n) dn + \int_0^{1} \pi(Z^*, n) dn = 0 \]
 \[\int_0^{1} \pi(Z^*, n) dn = 0. \quad (34) \]
Notice that \bar{Z} is a vertical line for $n_0 > \alpha$.

If $\pi(\theta, n) = \pi(\theta, n) + \varepsilon$ and $\bar{\pi}(\theta, n) = \pi(\theta, n) + \underline{\varepsilon}$, with $\varepsilon > \underline{\varepsilon}$, the equilibrium is fully characterized as follows: Define $\varepsilon \equiv \alpha \varepsilon + (1 - \alpha)\underline{\varepsilon}$ and $\bar{\varepsilon}^* \equiv \alpha \bar{\varepsilon} + (1 - \alpha)\underline{\varepsilon}$ as satisfying $\int_{0}^{1} \pi(\bar{\varepsilon}^*, n)dn = -\varepsilon$. Whenever $n_0 \geq n_t$, $Z^*(n_0) = \bar{\varepsilon}^*$ and $\forall n_0 < n_t$, $Z^*(n_0)$ is given by equation (31). $\forall n_0 < n_t$, $Z^*(n_0) = \bar{\varepsilon}^*$ and $\forall n_0 > n_t$, $Z^*(n_0)$ is given by equation (29). n_\perp and n_t satisfy $\int_{n_\perp}^{n_t} \pi(\bar{\varepsilon}^*, n)dn = -n_\perp \underline{\varepsilon}$ and $\int_{n_\perp}^{n_t} \pi(\bar{\varepsilon}^*, n)dn = -(1 - n_t)\underline{\varepsilon}$, respectively.

Proof. We know that, for any t, $(\theta_t - \theta_0) \sim N(\mu, \sigma^2 t)$. If we rescale time as $\bar{t} = t/\delta$, as in Theorem 3 in Frankel and Pauzner (2000), we can apply Proposition 5 in order to compute the equilibrium, given that the limit as $\delta \to \infty$ is analogous to assuming $\mu, \sigma \to 0$. Proposition 5 and the fact that $\lim_{\delta \to \infty} \frac{\delta}{\bar{\varepsilon}} = 0$ and $\lim_{\delta \to \infty} \frac{\delta + \bar{\varepsilon}}{\bar{\varepsilon}} = 1$ give us the desired result. Notice that it is not necessary to divide the analysis of the large heterogeneity case in two: since the lower part of the high-type threshold and the upper part of the low-type threshold are vertical, whenever Q is to the left of \bar{P}, conditions $\bar{Z}_0 < Z_\alpha$ and $\bar{Z}_\alpha < Z_1$ (with $\rho/\delta \to 0$) are automatically satisfied.

Finally, suppose $\pi(\theta, n) = \pi(\theta, n) + \varepsilon$, $\bar{\pi}(\theta, n) = \pi(\theta, n) + \underline{\varepsilon}$ and not too large heterogeneity. Let \hat{Z} be the solution to system (33) (which gives us the high-type threshold for low values of n) and \bar{Z} be the solution to system (34) (which gives us the low-type threshold for high values of n). Solving the two systems, we find $\int_{0}^{1} \pi(\hat{Z}, n)dn = -[\alpha \varepsilon + (1 - \alpha)\underline{\varepsilon}] = -\bar{\varepsilon}$ and $\int_{0}^{1} \pi(\bar{Z}, n)dn = -\bar{\varepsilon}$, which implies $\hat{Z} = \bar{Z} = \bar{\varepsilon}^*$. Also, we know that $Z(n) = \bar{Z}(n)$ for n is some neighborhood of α. Since thresholds cannot be upward sloping, whenever agents play the same strategy, their threshold is also given by $\bar{\varepsilon}^*$. Hence, we can fully characterize the equilibrium in this particular case, which is depicted in Figure 6.

A.3 Low-type equilibrium threshold with linear payoffs

- If $\underline{\varepsilon} - \bar{\varepsilon} > \frac{\gamma(\delta + \rho(1-\alpha))}{\rho + 2\delta}$,

$$Z = \begin{cases}
-\bar{\varepsilon} - \frac{\gamma(1+\alpha)}{\rho + 2\delta} - \frac{\gamma \rho}{\rho + 2\delta} n & \text{if } n > \alpha \\
-\underline{\varepsilon} - \frac{\gamma \delta}{\rho + 2\delta} - \frac{\gamma(\rho + \delta)}{\rho + 2\delta} n & \text{if } n \leq \alpha
\end{cases} \quad (35)
$$

- If $\frac{\gamma (\delta + \rho(1-\alpha))}{\rho + 2\delta} \leq \bar{\varepsilon} - \underline{\varepsilon} < \frac{\gamma \delta}{\rho + 2\delta}$, Z is given by (35) $\forall n \leq n''$ and otherwise it satisfies

$$(1 - n) \left\{ \int_{0}^{\infty} e^{-(\rho + \delta)t} [Z + \bar{\varepsilon} + \gamma (1 - (1 - n)e^{-\delta t})] dt
+ \frac{n - \alpha}{1 - \alpha} \left\{ \int_{0}^{t} e^{-(\rho + \delta)t} [Z + \bar{\varepsilon} + \gamma (\alpha + (n - \alpha)e^{-\delta t})] dt + \int_{t}^{\infty} e^{-(\rho + \delta)t} [Z + \bar{\varepsilon} + \gamma (n_\perp e^{-\delta(t-t_\perp)})] dt \right\} = 0, \quad (36)$$
where \(t = -\frac{1}{\delta} \ln \frac{n_t - \alpha}{n_0 - \alpha} \) and \(n_t = -(Z + \bar{z})(\rho + 2\delta)/\gamma(\rho + \delta) \). Integrating by substitution, we can express \(Z(n) \forall n \leq n'' \) as satisfying

\[
(\rho + 2\delta)(Z + \bar{z}) + \gamma \rho n_0 + \gamma \delta (1 + \alpha) = \frac{\alpha}{1 - \alpha} \gamma \delta \left(\frac{1}{n_0 - \alpha} \right) \frac{\gamma (\rho + 2\delta)}{\gamma (\rho + \delta)} n + \frac{\gamma \delta (1 + \alpha)}{\gamma (\rho + \delta)} - \alpha \left(\frac{\gamma \delta (1 + \alpha)}{\gamma (\rho + \delta)} - \alpha \right)^{\frac{\gamma + \delta}{\gamma}} = 0.
\]

\(n'' \) is the value satisfying \(Z(n'') = Z(\alpha) \), which results in

\[
n'' = \alpha + \frac{(\bar{z} - \bar{\bar{z}})(\rho + 2\delta) - \gamma \delta}{\gamma (\rho + \delta)}.
\]

• If \(\bar{z} - \bar{\bar{z}} \leq \frac{\gamma \delta}{\rho + 2\delta} \), for all \(n \in [\hat{n}, \hat{\hat{n}}] \), the two types of agents play according to the same (downward sloping) threshold, which cannot be computed analytically. For all \(n \leq \hat{n} \),

\[
Z = -\bar{z} - \frac{\gamma \delta}{\rho + 2\delta} - \frac{\gamma (\rho + \delta)}{\rho + 2\delta} n,
\]

and for all \(n \geq \hat{n} \), \(Z \) satisfies (36). Since we know the equations describing the two types’ thresholds whenever they play distinct strategies, we can compute the values of \(n \) at which these thresholds intersect. By doing so, we find that

\[
\hat{n} = \alpha \frac{(\bar{z} - \bar{\bar{z}})(\rho + 2\delta)}{\gamma \delta} < \alpha
\]

and

\[
\hat{\hat{n}} = 1 - (1 - \alpha) \frac{(\bar{z} - \bar{\bar{z}})(\rho + 2\delta)}{\gamma \delta} > \alpha.
\]

A.4 Planner’s solution with two types of agents

Proposition 7. Consider the model with two types of agents and linear payoff functions with \(\nu^0 = \nu^1 \). The planner’s solution is characterized by thresholds \(Z^P \) and \(\bar{Z}^P \) as follows:

1. **Planner’s type-\(\bar{z} \) threshold:**

 \[
 (a) \quad \text{If } \bar{z} - \bar{\bar{z}} > \frac{2\gamma (\delta + \rho \alpha)}{\rho + 2\delta},
 \]
 \[
 Z^P = \begin{cases}
 -\bar{z} + \frac{\gamma}{2} - \frac{2\gamma (\rho + \delta)}{\rho + 2\delta} n & \text{if } n \geq \alpha \\
 -\bar{z} + \frac{\gamma}{2} - \frac{2\gamma \delta}{\rho + 2\delta} - \frac{2\gamma \rho}{\rho + 2\delta} n & \text{if } n < \alpha
 \end{cases}.
 \]

 \[
 (37)
 \]

 \[
 (b) \quad \text{If } \frac{2\gamma \delta}{\rho + 2\delta} < \bar{z} - \bar{\bar{z}} \leq \frac{2\gamma (\delta + \rho \alpha)}{\rho + 2\delta},
 \]

 - \forall n \geq n^P \equiv \alpha - \frac{(\bar{z} - \bar{\bar{z}})(\rho + 2\delta) - 2\gamma \delta}{2\gamma p}, \text{ } Z^P \text{ is given by equation (37);} \\
 - \forall n < n^P, \text{ it satisfies}
 \]

\[
(\rho + 2\delta) \left(\bar{Z}^P + \bar{z} - \gamma/2 \right) + 2\gamma \delta \alpha + 2\gamma \rho n_0
\]

\[
+ 2\gamma \delta \left(\frac{1}{\alpha} \right) \frac{\alpha}{\alpha - n_0} \left(\alpha + \frac{(\bar{Z} + \bar{z} - \gamma/2)(\rho + 2\delta) + 2\gamma \delta}{2\gamma (\rho + \delta)} \right)^{\frac{\gamma + \delta}{\gamma}} = 0
\]

\[
(38)
\]

35
(c) If \(\bar{\varepsilon} - \varepsilon \leq \frac{2\gamma \delta}{\rho + 2\delta} \),
\begin{itemize}
 \item \(\forall n \leq \hat{n}_P \equiv \alpha \frac{(\overline{\bar{\varepsilon}} - \varepsilon)(\rho + 2\delta)}{2\gamma \delta} \), \(Z \) satisfies (38);
 \item \(\forall n \geq \hat{n}_P \equiv 1 - (1 - \alpha) \frac{(\overline{\bar{\varepsilon}} - \varepsilon)(\rho + 2\delta)}{2\gamma \delta} \),
\end{itemize}
\[Z^P = -\bar{\varepsilon} + \frac{\gamma}{2} - \frac{2\gamma(\rho + \delta)}{\rho + 2\delta} n. \]

2. Planner’s type-\(\varepsilon \) threshold:

(a) If \(\bar{\varepsilon} - \varepsilon > \frac{2\gamma(\delta + \rho(1 - \alpha))}{\rho + 2\delta} \),
\[Z^P = \begin{cases}
-\bar{\varepsilon} + \frac{\gamma}{2} - \frac{2\gamma(\delta + \rho(1 - \alpha))}{\rho + 2\delta} - \frac{2\gamma \rho}{\rho + 2\delta} n & \text{if } n > \alpha \\
-\bar{\varepsilon} + \frac{\gamma}{2} - \frac{2\gamma}{\rho + 2\delta} - \frac{2\gamma(\delta + \rho)}{\rho + 2\delta} n & \text{if } n \leq \alpha
\end{cases} \] (39)

(b) If \(\frac{2\gamma \delta}{\rho + 2\delta} < \bar{\varepsilon} - \varepsilon \leq \frac{2\gamma(\delta + \rho(1 - \alpha))}{\rho + 2\delta} \),
\begin{itemize}
 \item \(\forall n \leq n''_P = \alpha + \frac{(\overline{\bar{\varepsilon}} - \varepsilon)(\rho + 2\delta) - 2\gamma \delta}{2\gamma \rho} \), \(Z^P \) is given by equation (39);
 \item \(\forall n > n''_P, Z^P \) satisfies
\end{itemize}
\[(\rho + 2\delta)(Z^P + \varepsilon - \gamma/2) + 2\gamma \rho m_0 + 2\gamma \delta(1 + \alpha) \\
+ 2\gamma \delta \alpha \left(\frac{1}{n_0 - \alpha} \right)^\varepsilon \left(\alpha + \frac{(Z + \varepsilon - \gamma/2)(\rho + 2\delta)}{2\gamma(\rho + \delta)} \right)^\varepsilon = 0 \] (40)

(c) If \(\bar{\varepsilon} - \varepsilon \leq \frac{2\gamma \delta}{\rho + 2\delta} \),
\begin{itemize}
 \item \(\forall n \geq \hat{n}_P, Z^P \) satisfies (40).
 \item \(\forall n \leq \hat{n}_P, \\
Z^P = -\bar{\varepsilon} + \frac{\gamma}{2} - \frac{2\gamma \delta}{\rho + 2\delta} - \frac{2\gamma(\rho + \delta)}{\rho + 2\delta} n
\end{itemize}

Proof. The proof of Proposition 7 is equivalent to the proof of Proposition 5 if we substitute agents’ flow-playoffs, \(\pi(\cdot) \) and \(\overline{\pi}(\cdot) \), by the expressions arising from the optimality conditions: \(Z^P_t + \varepsilon - \frac{\gamma}{2} + 2\gamma n_t \) and \(Z^P_t + \varepsilon - \frac{\gamma}{2} + 2\gamma n_t \), respectively.

\[\square \]

B Proofs

B.1 Proof of Proposition 1

The proof of equilibrium uniqueness follows an analogous reasoning as in the case of identical individuals (Frankel and Pauzner (2000)). Consider a type-\(q \) agent at some point on \(P_q \). She is indifferent between actions 0 and 1 under the belief that everyone called upon choosing an action while she is
committed to her choice will pick 0 under any circumstances. But when θ moves stochastically, there is always the possibility that it will spend some time to the right of some players’ dominance region boundaries. Notice that even if q is such that P_q is the leftmost upper boundary (say P_3 in Figure 1), she cannot expect every other player to choose 0 under any circumstances while she is committed to her choice. If θ moves slightly to the right, it will be strictly dominant for type-q agents to pick 1, and thus a fraction α_q of the agents that get the chance will not choose 0. The most pessimistic (regarding the path of n) belief that agents can hold consistent with the dominance regions is that each type-q agent plays 1 when to the right of P_q, and 0 when to the left of it. In other words, agents do not play strictly dominated strategies. Under this (more optimistic) new belief, the agent on P_q is not indifferent anymore, but strictly preferring to play 1. To make her indifferent, we must lower θ. We can then construct for each type q a new boundary P_q^2 (to the left of P_q), to the right of which a type-q player chooses 1 when she expects all other agents to play according to $(P_q)_{q \in \{1, \ldots, Q\}}$. This procedure can be repeated ad infinitum. At each round, we look for the curve P_q^k on which a type-q player has zero discounted payoff when assuming that other agents play according to $(P_q^{k-1})_{q \in \{1, \ldots, Q\}}$. Denote the limit of this sequence by $(P_q^\infty)_{q \in \{1, \ldots, Q\}}$. Notice that each agent i playing according to $P_q^\infty(i)$ is, in fact, an equilibrium: if she expects others to play according to $(P_q^\infty)_{q \in \{1, \ldots, Q\}}$, her best response is to play according to $P_q^\infty(i)$.

Figure 17: Iterative deletion of strictly dominated strategies from the upper dominance region

![Figure 17](image)

We now turn to a different iterative process starting from the lower dominance regions. Let $(P_q^{\lambda_0})_{q \in \{1, \ldots, Q\}}$ be translations of the curves P_q^∞ to the left by an amount λ_0. Fix λ_0 as the smallest distance such that all translations lie completely on the lower dominance region of each corresponding type. Figure 18 below exemplifies this step.

Now, construct for each type a new curve $P_q^{\lambda_1}$ as the rightmost translation of $P_q^{\lambda_0}$ to the left of which each type-q agent must play 0 if they expect others to play according to $(P_q^{\lambda_0})_{q \in \{1, \ldots, Q\}}$. Let $P_q^{\lambda_\infty}$ be the limit of this sequence, for each q. There is at least one point in some $P_q^{\lambda_\infty}$ curve on which a type-q agent is indifferent between the two networks, otherwise iterations would not have stopped. Without loss of generality, suppose there is a point of indifference in $P_1^{\lambda_\infty}$ and name it p. Let p' denote

20 Note that what we are doing is eliminating strictly dominated strategies once again, but we are not necessarily eliminating all dominated strategies each round.
the point on P_1^∞ at the same height as p. If we establish that p and p' coincide, we show that the whole curves coincide and, since we have translated all curves by the same λ's, $P_1^{\lambda\infty} = P_q^\infty \forall q$, that is, the equilibrium is unique.

Let's compare two type-1 players, one receiving an opportunity to choose an action on p (expecting others to play according to the limit translations), and the other on p' (expecting others to play according to $\left(P_q^\infty\right)_{q \in \{1, \ldots, Q\}}$). Let's name those players p and p', respectively. We know that both players expect changes in the fundamentals relative to its starting point to have the same distribution. Also, since the original curves and their translations have the same shape and the pairwise distances between $P_1^{\lambda\infty}$'s are the same as the distances between P_q^∞'s (each round, we have translated all curves by the same λ), we know by Lemma 1 that, for a given path of the fundamental, they both expect the same dynamics for n_t. If $\lambda_\infty > 0$, we get a contradiction: the two players expect the same relative dynamics for the (θ_t, n_t) system and the θ that p' expects at all times exceeds the θ that the agent on p expects, thus they cannot both have zero payoff. Then, $\lambda_\infty = 0$, that is, the points p and p' must coincide. The equilibrium is unique and it is characterized by thresholds $\left(Z_q^*\right)_{q \in \{1, \ldots, Q\}}$ where $Z_q^* \equiv P_q^\infty$.

We can show these thresholds are downward sloping by induction. Under the most pessimistic beliefs possible, a type-q agent’s incentives to choose action 1 is increasing in the initial values of both n and θ, meaning that P_q is downward sloping (for all q). Under the assumption that all other agents
are choosing according to downward sloping thresholds \(P_q^{k-1} \) for \(q \in \{1, \ldots, Q\} \), the relative payoff of a given agent must be again increasing in both initial values of \(\theta \) and \(n \), since increases in either of these values would make the system spend more time to the right of other agents’ thresholds for any given path of the Brownian motion, and thus \(P_q^k \) must also be downward sloping.

\[\square \]

B.2 Proof of Lemma 2

Suppose \(Z(n) < \overline{Z}(n) \) for all \(n \) in some interval. By Lemma 1, we know that the dynamics of \(n \) (whenever in that interval) is given by the following dynamic system:

\[
\dot{n}_t = \begin{cases}
-\delta n_t & \text{if } \theta_t < Z(n_t) \\
\delta(\alpha - n_t) & \text{if } \overline{Z}(n_t) < \theta_t < Z(n_t) \\
\delta(1 - n_t) & \text{if } \theta_t > \overline{Z}(n_t).
\end{cases}
\]

(i) Consider a starting point \((\theta_0, n_0)\) such that \(\theta_0 = \overline{Z}(n_0) \). With vanishing shocks, that is, \(\mu, \sigma \to 0 \), since \(Z(n) > \overline{Z}(n) \), we can focus on the behavior of the system only around \(\overline{Z}(n_0) \) to compute \(\dot{n}_t \) at \(t = 0 \) (shocks are not large enough to push \(\theta \) to the right of \(\overline{Z} \)). So, in a neighborhood of the threshold \(\overline{Z} \), we can write the dynamics of \(n \) as:

\[
\dot{x}_t = \begin{cases}
\delta(1 - x_t) & \text{if } \theta_t > \overline{Z}(\alpha x_t) \\
-\delta x_t & \text{if } \theta_t < \overline{Z}(\alpha x_t).
\end{cases}
\]

Defining \(x_t \equiv n_t/\alpha \), we have that \(\dot{x}_t = \dot{n}_t/\alpha \), that is,

\[
\dot{x}_t = \begin{cases}
\delta(1 - x_t) & \text{if } \theta_t > \overline{Z}(\alpha x_t) \\
-\delta x_t & \text{if } \theta_t < \overline{Z}(\alpha x_t).
\end{cases}
\]

We can, then, directly apply Theorem 2 in Burdzy et al. (1998), which gives us the desired result. The probability of the system bifurcating up at some point \((\theta_0, n_0)\) with \(\theta_0 = \overline{Z}(\alpha x_0) \equiv \overline{Z}(n_0) \) and \(n_0 < \alpha \) is given by \(P(\text{up}) = \frac{\delta(1-x_0)}{\delta(1-x_0)+\delta x_0} = 1 - x_0 = 1 - \frac{n_0}{\alpha} \), \(P(\text{down}) = \frac{n_0}{\alpha} \), and the time it takes for the system to bifurcate either up or down converges to zero. If \(n_0 > \alpha, \dot{n}_0 < 0 \) both to the left and to the right of \(\overline{Z}(n_0) \), so the system bifurcates down with probability one at time zero.\(^{21}\)

(ii) As \(\mu, \sigma \to 0 \), the dynamics around \(\overline{Z} \) can be written as:

\[
\dot{\bar{n}}_t = \begin{cases}
\delta(1 - n_t) & \text{if } \theta_t > \overline{Z}(n_t) \\
\delta(\alpha - n_t) & \text{if } \theta_t < \overline{Z}(n_t).
\end{cases}
\]

\(^{21}\)Exactly at \(n_0 = \alpha, \dot{n} = 0 \) to the right of \(\overline{Z}(n_0) \) and \(\dot{n} < 0 \) to the left of it, so \(P(\text{down}) \) is also equal to one.
Define \(y_t = \frac{n - \alpha}{1 - \alpha} \). \(\dot{y}_t = \dot{n}_t/(1 - \alpha) \), that is,

\[
\dot{y}_t = \begin{cases}
\delta(1 - y_t) & \text{if } \theta_t > \bar{Z}((1 - \alpha)y_t + \alpha) \\
-\delta(y_t) & \text{if } \theta_t < \bar{Z}((1 - \alpha)y_t + \alpha).
\end{cases}
\]

Applying Theorem 2 in Burdzy et al. (1998), we find that at \((\theta_0, n_0)\) with \(\theta_0 = \bar{Z}((1 - \alpha)y_t + \alpha) \equiv \bar{Z}(n_0)\) and \(n_0 > \alpha\), \(P(\text{up}) = 1 - y_0 = \frac{1 - n_0}{1 - \alpha}\), \(P(\text{down}) = \frac{n_0 - \alpha}{1 - \alpha}\) and the time it takes for the system to bifurcate either direction converges to zero. If \(n_0 \leq \alpha\), then \(\dot{n}_0 \geq 0\) both to the right and to the left of \(\bar{Z}\), so the system bifurcates up with probability one at time zero.\(^{22}\)

\[\square\]

B.3 Proof of Proposition 2

(i) Let \(Q(n) > \bar{P}(n) \forall n\). On the equilibrium, agents cannot play strictly dominated strategies, then \(\bar{Z}(n) \in [Q(n), \bar{P}(n)] \forall n\) and \(\bar{Z}(n) \in \left[\bar{O}(n), \bar{P}(n)\right] \forall n\). Since \([Q(n), \bar{P}(n)] \cap \left[\bar{O}(n), \bar{P}(n)\right] = \emptyset \forall n\), there is no \(n\) such that \(\bar{Z}(n) = \bar{Z}(n)\).

(ii) Let the dominance regions be such that \(Q(n) \leq \bar{P}(n) \forall n \in [0, 1]\). First, notice that it is never the case that \(\bar{Z}(n) > \bar{Z}(n)\), for any \(n\). Otherwise, at any point in \((\bar{Z}(n), \bar{Z}(n))\), both types of players would face the same \(\theta\), have the same expected path for \(n_t\), and type-\(q\) would have a higher preference for action 1. Yet, such player would have negative payoff, while a type-\(q\) player would have positive payoff of playing 1, a contradiction.

Suppose the equilibrium is such that \(\bar{Z}(\alpha) < \bar{Z}(\alpha)\). Lemma 2 implies that a type-\(q\) agent at \(\bar{Z}(\alpha)\) expects \(n_t\) to decrease with probability one at the maximum rate, while a type-\(q\) player at \(\bar{Z}(\alpha)\) expects \(n_t\) to increase with probability one at the maximum rate, which implies \(\bar{Z}(\alpha) = \bar{P}(\alpha)\) and \(\bar{Z}(\alpha) = Q(\alpha)\). Thus, \(\bar{P}(\alpha) < Q(\alpha)\), contradiction. We must have that \(\bar{Z}(\alpha) = \bar{Z}(\alpha)\). Moreover, this point must be somewhere in the interval \(\left[Q(\alpha), \bar{P}(\alpha)\right]\), so that no agent plays strictly dominated strategies in equilibrium.

We also need to show that agents never play the same strategy for every \(n \in [0, 1]\). Consider a type-\(q\) agent at her threshold at \(n = 0\). Regardless of the position of the other type’s threshold \((\bar{Z}(0) = \bar{Z}(0)\) or \(\bar{Z}(0) < \bar{Z}(0))\), the beliefs over \(n_t\) such agent hold are the most optimistic as possible, by Lemma 2, and thus we know she is indifferent between both actions exactly at \(Q(0)\). Hence, \(\bar{Z}(0) = Q(0)\). Now, consider the case of type-\(q\) agents. If they play according to \(Q(0)\), their gains from choosing 1 at this point must be strictly positive, since they have the same expected path for the fundamentals as the low-type agents, the same expected beliefs over the path of \(n_t\) and \(\pi(\theta, n) > \bar{\pi}(\theta, n) \forall (\theta, n)\) by assumption. As we move the candidate to the high-type threshold at \(n = 0\) to the left along the \(\theta\) axis starting at \(Q(0)\), the relative payoff of action 1 decreases for two reasons: the initial \(\theta\) is smaller, and also the beliefs over \(n_t\) become worse. Notice Lemma 2 implies that whenever \(\bar{Z}(n) < \bar{Z}(n)\) for \(n < \alpha\) we have that \(\bar{Z}(n) = Q(n)\). Then, since thresholds are downward sloping (by Proposition 1),

\(^{22}\)Exactly at \(n_0 = \alpha\), \(\dot{n} = 0\) to the left of \(\bar{Z}(n_0)\) and \(\dot{n} > 0\) to the right of it, so \(P(\text{up})\) is also equal to one.
if \(Z(0) < Z(0) = Q(0) \), it must be that \(Z(n) = Q(n) \) for all \(n \leq Q^{-1}(Z(0)) \). It implies that a type-\(\overline{q} \) agent at a threshold \(Z(0) < Z(0) \) holds the belief that \(n \) will bifurcate up with probability 1, but it will increase at a smaller rate (specifically \(\dot{n}_t = \delta(\alpha - n_t) \)) until it crosses \(Q^{-1}(Z(0)) \), and thereafter it will go up at the maximum rate towards one.\(^{23}\) We also know that if high-type agents play according to \(\overline{O}(0) \), their payoff must be strictly negative, since it would be zero under the most optimistic beliefs possible, which do not hold anymore. Hence, there must be a threshold \(Z(0) \) in \((\overline{O}(0),Q(0)) \) at which the relative payoff of type-\(\overline{q} \) agents is zero, i.e., they are indifferent between both actions. Thus, \(Z(0) < Z(0) \). This and the fact that thresholds are downward sloping imply that \(Z(n) < Z(n) \) for all \(n \) in some interval \([0,n_1]\). An analogous reasoning implies that \(Z(n) < Z(n) \) for all \(n \) in some interval \((n_2,1]\) as well.

Last, we must show that when the condition on the dominance regions holds with strict inequality, i.e. \(Q(n) < \overline{P}(n) \) \(\forall n \), \(Z(n) = Z(n) \) for all \(n \) in some interval \(C \supset \alpha \). Suppose there is no such \(C \). Then, for every arbitrary interval \(\check{C} \supset \alpha \), \(\exists n \in \check{C} \) such that \(Z(n) \neq Z(n) \). Fix \(\varepsilon > 0 \) and let \(\check{C} = [\alpha - \varepsilon, \alpha + \varepsilon] \). There must exist a point \(d \in \check{C} \) such that \(Z(d) \neq Z(d) \). Assume \(d > \alpha \).\(^{24}\) We can choose an appropriate \(\check{\varepsilon} \leq \varepsilon \) in order to write \(d = \alpha + \check{\varepsilon} \). Lemma 2 implies that \(Z(\alpha + \check{\varepsilon}) = \overline{P}(\alpha + \check{\varepsilon}) \) and since thresholds are downward sloping we must have that \(Z(\alpha) \in [\overline{P}(\alpha + \check{\varepsilon}),\overline{P}(\alpha)] \equiv A \).\(^{25}\) Now, consider a \(b \in [\alpha - \check{\varepsilon}, \alpha] \) and suppose by contradiction that \(Z(b) \neq Z(b) \). Using Lemma 2 once again, we have that \(Z(b) = Q(b) \) and, since \(Z \) is downward sloping, \(Z(\alpha) \in [Q(\alpha),Q(b)] \equiv B \). Notice that \(Z(\alpha) = Z(\alpha) \) must lie in \(A \cap B \). However, if \(\varepsilon \) is small enough, \(A \cap B = \emptyset \), given that \(Q(n) < \overline{P}(n) \) \(\forall n \), and hence we reach a contradiction. At \(n = b \), agents must play according to the same strategy. Finally, since we have fixed an arbitrary \(b \), it must be the case that \(Z(n) = Z(n) \) for all \(n \in [\alpha - \check{\varepsilon}, \alpha] \), contradicting the fact that \(\exists C \supset \alpha \) such that \(Z(n) = Z(n) \) \(\forall n \in C \). This concludes the proof. \(\square \)

B.4 Proof of Proposition 3

Proposition 3 follows from the results in Proposition 6 and the dynamics of \(n_t \) presented in the proof of Lemma 1 when \(\delta \to \infty \). \(\square \)

B.5 Proof of Proposition 4

When there is a single type of agent, as in Frankel and Pauzner (2000), the upward and downward bifurcation probabilities along the threshold are simply \((1-n)\) and \(n\), respectively (notice it is the same as assuming \(\alpha = 1 \) in Lemma 2). Hence, the equilibrium threshold as \(\mu, \sigma \to 0 \) is given by

\[
(1 - n_0) \int_0^\infty e^{-(\rho+\delta)t} \pi(Z^*, n_1^+)dt + n_0 \int_0^\infty e^{-(\rho+\delta)t} \pi(Z^*, n_1^+)dt = 0,
\]

\(\text{Notice that in the limiting case with } \mu, \sigma \to 0, \text{ this analysis can be done regardless of the position of equilibrium thresholds for higher values of } n, \text{ since thresholds are downward sloping and } \theta \text{ remains almost constant.}\)

\(\text{This is without loss of generality since an analogous argument holds if } d < \alpha.\)

\(\text{Remember we had before that } Z(\alpha) = Z(\alpha) \in [\overline{Q}(\alpha),\overline{P}(\alpha)].\)
where \(n_{\uparrow}^t = 1 - (1 - n_0)e^{-\delta t} \) and \(n_{\downarrow}^t = n_0 e^{-\delta t} \). Substituting \(\pi(.) = Z^* + \gamma n_t \) in the equation above and solving for \(Z^* \) gives us the agent’s threshold in a decentralized equilibrium. Substituting \(\pi(.) = Z^P - \nu^0 + 2\gamma n_t \) (from the optimality condition) in that equation and solving for \(Z^P \) gives us the planner’s solution.

References

