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Resumo

Esta tese é composta de três artigos sobre �nanças. O primeiro tem o título �Nonparametric
Option Pricing with Generalized Entropic Estimators � e estuda um método de apreçamento de
derivativos em mercados incompletos. Este método está relacionado com membros da família de
funções de Cressie-Read em que cada membro fornece uma medida neutra ao risco. Vários testes
são feitos. Os resultados destes testes sugerem um modo de de�nir um intervalo robusto para
preços de opções. Os outros dois artigos são sobre anúncios agendados em diferentes situações.
O segundo se chama "Watching the News: Optimal Stopping Time and Scheduled Announce-
ments"e estuda problemas de tempo de parada ótimo na presença de saltos numa data �xa em
modelos de difusão com salto. Fornece resultados sobre a otimalidade do tempo de parada um
pouco antes do anúncio. O artigo aplica os resultados ao tempo de exercício de Opções Ameri-
canas e ao tempo ótimo de venda de um ativo. Finalmente o terceiro artigo estuda um problema
de carteira ótima na presença de custo �xo quando os preços podem saltar numa data �xa. Seu
título é "Dynamic Portfolio Selection with Transactions Costs and Scheduled Announcement"e
o resultado mais interessante é que o comportamento do investidor é consistente com estudos
empíricos sobre volume de transações em momentos próximos de anúncios.

Palavras-chave: Apreçamento de Opções, Métodos Não-Paramétricos, Anúncios Agendados,
Tempo de Parada Ótimo, Problemas de Portfólio Ótimo, Métodos Numéricos.

Abstract

This thesis is comprised of three articles about �nance. The �rst one has the title �Nonpara-
metric Option Pricing with Generalized Entropic Estimators� and studies a pricing method in
incomplete markets. This method is linked to members in the Cressie-Read family function with
each one providing one risk-neutral measure. Several tests are performed. The results suggest a
way to de�ne a robust intervals for option prices. The others two articles are about scheduled
announcements in di¤erent settings. The second one is titled �Watching the News: Optimal
Stopping Time and Scheduled Announcements�and studies optimal stopping times problems in
the presence of a jump at a �xed time. It provides results concerning the optimality to whether
stop or not just before the news. It applies such results to the optimal time to exercise time of an
American Option and to the optimal time to sell an asset. Finally the third article numerically
studies an optimal portfolio problem with �xed cost when the price may jump at a �xed date. It
is called �Dynamic Portfolio Selection with Transactions Costs and Scheduled Announcement�
and the most interesting result is that the trading behavior of the investor is consistent with
empirical �ndings for trading volume around announcements.

Keywords: Option Pricing, Nonparametric Methods, Scheduled Announcements, Optimal
Stopping Time, Optimal Portfolio Problems, Numerical Methods.
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Chapter 1

Introduction

This thesis is comprised of three articles about �nance. The �rst one studies a derivative pricing
method in incomplete markets, the second one characterizes optimal stopping time problems
in the presence of scheduled announcement and the third article solves numerically an optimal
portfolio problem with �xed cost for each transaction in the presence of scheduled announce-
ments.

The �rst article is a joint work with Caio Almeida and has the title: �Nonparametric Op-
tion Pricing with Generalized Entropic Estimators�. It investigates a generalization of a non-
parametric pricing method proposed in Stutzer (1996). Originally, the method obtains a risk-
neutral measure from a price history of the underlying asset and uses the entropy concept found
in Information Theory (equivalent to the physical entropy). Such concept is used as a way to
de�ne distance between two probability distributions. Our work uses a generalization of the
entropy distance by applying the Cressie-Read (CR) family function. In this case, each element
in the CR family provides a di¤erent risk-neutral measure. It allows us to de�ne an interval of
possible prices for derivatives similar to what is proposed in Bernardo and Ledoit (2000) and
Cochrane and Saa-Requejo (2000).

The method only makes very general hypothesis about the data generating process (DGP)
and is applied in the same way whether the prices are obtained from the Black-Scholes Model,
Jump-di¤usion model or real world data. Thus the �rst article�s main goal is to assess if the
method is able to give a good estimate of derivatives prices for di¤erent DGPs. We test it for the
Black-Scholes (B&S) model, for Heston model and for an a¢ ne jump di¤usion model. The later
model is the closest to the real world data as argued by some authors (for instance, as argued
by Broadie et al. (2007)). It is an incomplete model and we use the parameters estimated by
Eraker et al. (2003) using only the S&P 500 Index data and by Broadie et al. (2007) using
option data.

We obtain encouraging results. The numerical tests for B&S model suggest that some mem-
ber of the CR family provides the theoretical derivative price. This is indeed the case and we
show that the SDF implied by the B&S model is the same as one implied by the non-parametric
pricing method for a speci�c member of the CR family. The numerical tests for the other two
models are encouraging also. In particular, the tests for the Jump-Di¤usion model suggest that
the prices provided by the method are close to the theoretical ones for several members in CR
family. Nonetheless, in this case, the optimal member seems to depend upon the derivative
maturity.

The second and third articles are about scheduled announcements in di¤erent settings. There
is a voluminous literature about this issue with articles published in the most important journals
of �nance, economics and accounting (see Bamber et al. (2011) for a review). We are interested
in the price behavior and the trading volume around that type of news. The information
contained in it is incorporated into securities�prices very quickly. The bulk of the change can be
seen within 5 minutes after the announcement in some markets. Such behavior suggests we can
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model the information arrival with a jump in the price process, i.e., the price as function of time
is continuous except for a few points (the jumps). The last two articles model the scheduled
announcement as a jump in the price process occurring (with positive probability) at a �xed
time known by the agents. The articles consider also situations in which the price doesn�t jump
but the price process parameters may change at a �xed date.

The article �Watching the News: Optimal Stopping Time and Scheduled Announcements�
studies optimal stopping times problems in the presence of a jump at a �xed time. It charac-
terizes situations in which it is not optimal to stop just before the jump. The results may be
applied to the most diverse situations but the paper focus on �nance. Note that such type of
problems arises naturally in the context of American Options. It is the �rst application and it is
shown that it is never optimal to exercise the option just before the announcement if the payo¤
is convex. The second application studies the problem of selling an asset in the presence of �xed
cost. Depending upon the type of the jump or the utility function, it is not optimal to sell just
before the news. A numerical solution is provided for a particular case. The last application is
consistent with agents that need to sell the asset for exogenous reason but has time discretion.

The last article titled as �Dynamic Portfolio Selection with Transactions Costs and Scheduled
Announcement�is a joint work with Marco Bonomo. It numerically studies an optimal portfolio
problem in continuous time when the price may jump at a �xed date. At a given time the
investor chooses how much to consume and whether to balance his/her portfolio or not. When
there is a trading, i.e., when the investor rebalances the portfolio, it is necessary to pay a
fee. We model this fee as a �xed transaction cost implying that the investor rebalances the
portfolio infrequently. It is a combined Stochastic Control with Impulse Control and we solve
it numerically with a relatively recent method developed in Chancelier et al. (2007). We solve
three situations: a jump with high average and low variance, a jump with high variance, and
no jump but a random change in risk-free rate. An interesting trading pattern emerges. The
�rst situation is the most striking: the investor has a low chance to transact a little before the
announcement but has very high chance to trade just before and just after it paying the �xed
cost twice. This is consistent with Chae�s empirical �ndings on trading volume behavior around
announcements (Chae (2005)). He �nds that the trading volume is lower than normal for 10 to
3 days before the scheduled announcements. Then the trading activity is greater than normal
the day before the announcement remaining high for a few days after it.



Chapter 2

Nonparametric Option Pricing with
Generalized Entropic Estimators

Chapter Abstract1

Pricing options in arbitrage-free incomplete markets is a challenging task since there are
potentially in�nite risk-neutral measures, each giving an alternative price. In such context, we
analyze a large family of Cressie Read entropic discrepancy functions. Each discrepancy implies
a risk-neutral measure that takes into account speci�c combinations of higher moments of the
underlying return process. Based on a simulation experiment with a DGP for the underlying
asset given by a realistic jump-di¤usion process, we test the ability of these risk-neutral measures
to approach theoretical option prices for di¤erent moneyness and maturities. A speci�c subset
of Cressie Read measures is identi�ed to be the most appropriate to price options under the
adopted jump-di¤usion model. We make use of this subset of measures to suggest robust price
intervals for options as opposed to single prices.

Keywords: Risk-Neutral Measure, Option Pricing, Nonparametric Estimation, Robustness,
Minimum Contrast Estimators, Cressie�Read Discrepancies.

JEL Classi�cation Numbers: C1,C5,C6,G1.

2.1 Introduction

The most important information embedded in �nancial instruments is the state price density
(SPD), or the Arrow-Debreu state prices. Arrow-Debreu securities are very simple instruments
that pay one unit on one speci�c state of nature and zero elsewhere, and they are very useful
to price any new or exotic �nancial instrument. The estimation of such SPDs has been a very
important topic of research within the �nancial economics community2.

As documented by Ait-Sahalia and Lo (1998), there are di¤erent ways to estimate state
price densities implicit in �nancial instruments. Some methods focus on the underlying asset
price dynamics, others in specifying parametric forms for the state price density, and others in
nonparametric estimation of the state price density. Ait-Sahalia and Lo (1998) suggest that
nonparametric methods are valuable since they allow for the data to indicate important features
of the distributions of �nancial instruments.

1Joint work with Caio Almeida.
2See for instance Jarrow and Rudd (1982) , Rubinstein (1994) , Jackwerth and Rubinstein (1996) , Stutzer

(1996), Ait-Sahalia and Lo (1998) , and Ait-Sahalia and Duarte (2003).
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In an important work on nonparametric pricing, Stutzer (1996) proposed the method of
Canonical Valuation (CV) to price interest rate derivatives. Given a panel of asset pricing re-
turns, CV chooses from the set of all risk neutral measures that price those assets, the one
that is closest on the Kullback Leibler (KLIC) sense, to the empirical distribution of the re-
turns. Stutzer (1996) applied his method to returns simulated from a controlled "Black-Scholes
world"and compared its performance to the Black & Scholes model adopting historical volatility
to price options. Results were encouraging: Even not having direct information on the DGP
process, the CV method only slightly underperforms the Black-Scholes model. In addition, when
applied to real returns data, the CV method produces implied volatilities that follow a smile
pattern similar to that of real world option prices.

Subsequently, researchers have identi�ed two important dimensions to further explore the
CV method. First, the necessity of testing more realistic returns DGPs in order to verify the
robustness of the method to non-Gaussian distributions. Second, the interest in suggesting
alternative ways of choosing a risk-neutral measure to price options, given that CV suggests
only one speci�c way based on KLIC. These two venues have been explored separately in the
literature.

On the exploration of more robust DGPs, Gray and Newmann (2005) tested the CV method
adopting the stochastic volatility model proposed by Heston (1993) as the underlying return
process. In their analysis, CV outperforms the Black-Scholes model with historical volatility.
More recently Haley and Walker (2010) suggested the adoption of members of the Cressie-Read
family of discrepancy functions (Cressie and Read (1984)) as alternative ways of measuring dis-
tance in the space of probabilities. They compared the performance of three speci�c members
of this family (Empirical Likelihood, KLIC, and Euclidean Distance) when the DGP for returns
was either the log-normal Black-Scholes environment or Heston�s stochastic volatility environ-
ment. They identi�ed that performance of each estimator depends on the number of outliers,
and on the options�maturity, and that the best nonparametric estimator changes depending
on combinations of those characteristics. They further identi�ed that the Empirical Likelihood
estimator achieved overall the best results.

In this paper, we make the following contributions with respect to the previous literature.
First, we build on the work of Almeida and Garcia (2009, 2012) and Haley and Walker (2010)
by proposing a comprehensive analysis of the Cressie-Read family of discrepancies. Almeida and
Garcia (2009, 2012) showed that the Cressie Read family is extremely rich including an in�nity
of functions each generating a risk-neutral measure that represents a speci�c nonlinear function
of the original returns. In fact, each discrepancy corresponds to a risk-neutral measure coming
from an optimization problem with speci�c weights given to skewness, kurtosis and other higher
moments of returns. This is important because in the context of incomplete markets, where the
number of states is larger than the number of assets, the CV method is only one speci�c way of
choosing a risk-neutral measure from the in�nity of possible measures implied by the observed
data. We advocate here in favor of a more robust treatment of option pricing in the spirit of
Cochrane and Saa-Requejo (2000) , Bernardo and Ledoit (2000) and Cerny (2003), by providing
intervals of prices instead of point values that are usually obtained through a speci�c parametric
model and therefore subject to model misspeci�cation. If the real unknown DGP process for
the underlying asset in equity markets leads to fat tailed and skewed returns, analyzing the
sensitivity of risk-neutral measures to higher moments of returns can give us important insights
on the pricing of derivatives in incomplete markets.

Our second contribution is to propose a more complete DGP process for the underlying
asset to analyze the nonparametric option pricing methods based on the Cressie Read family
of discrepancies3. It is now well documented that returns in equity markets and many other

3Previous papers that analyze the performance of the CV method and its variations make use of either a
log-normal or Heston stochastic volatility model as DGP. See Gray and Newmann (2005) and Haley and Walker
(2010).
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markets contain jump components in addition to stochastic volatility. For this reason we choose
to work with a jump-di¤usion process �rst suggested by Bates (2000) that is pervasively adopted
in the �nancial economics literature.

There are several studies in the literature on the estimation and testing of a¢ ne jump-
di¤usion models. Bates (2000) �nds evidence against some speci�cations with pure stochastic
volatility components or only jumps in returns and is favorable to a model that presents
stochastic volatility and correlated jumps in returns and volatility (SVCJ model). Eraker et
al. (2003), Chernov et al. (2003) and Eraker (2004) estimate variations of the above-mentioned
SVCJ model using US stock market data and / or short panels of option prices. Broadie et al.
(2007) complements their work by estimating the risk-neutral parameters of the SVCJ model
using simultaneously derivatives and spot price data, including a much larger set of option prices
in the estimation process.

In the present work, due to its extensive use and to the favorable evidence with respect to
its performance, we adopt the SVCJ model as the DGP for returns of the underlying asset. In
addition to the favorable evidence, there are some other practical advantages in adopting the
SVCJ model. It acknowledges several characteristic of the real world data, there are reliable
estimates of objective and risk-neutral parameters of this model available (see Broadie et al.
(2007)), and closed-form formulas for option prices (apart from solving an integral) (see Du¢ e
et al. (2000)) that are much less costly and more accurate than Monte Carlo methods. In
addition, Broadie and Kaya (2006) describe a method to sample from the exact distribution of
the SVCJ model, therefore avoiding the bias introduced on simulations of stochastic volatility
models using Euler discretization schemes (see, for example, Du¢ e and Glynn (1996)).

Our results suggest that when the DGP process is given by the SVCJ model, there is no
speci�c element within the Cressie Read family that performs best when considering options
with di¤erent moneyness and time to maturity (see Table 2.4). However, an interesting feature
of our analysis is that the best Cressie Read probability measures in terms of Mean Absolute
Percentage Errors (MAPE) or Mean Percentage Errors (MPE) of options, are in a narrow range
of elements of the family ( 2 [�2;�0:9] for MAPE and  2 [�3:7;�1] for MPE). Those regions
include the Empirical Likelihood risk neutral measure ( = �1) found to have the best pricing
performance in previous studies that did not include jumps. However, they also include other
measures that put more weights on higher moments of returns. Since pricing errors are small
for a large range of option maturities and moneynesses, and since the DGP process for the
underlying asset is recognized to capture well empirical features of the US equity market, we use
these results to suggest a new method to price options. The idea is in the spirit of Cochrane and
Saa-Requejo (2000) and Bernardo and Ledoit (2000) to provide intervals of prices for options as
opposed to a unique price determined by a speci�c option pricing model.

In the paper, as a secondary but interesting contribution, we also present an analytical result
that shows that the best Cressie Read estimator, when the DGP process follows a log-normal
Black and Scholes type distribution, is a speci�c function of the three parameters that de�ne
risk-premia (�; r; �) on the Black and Scholes model (see Appendix 2.A). This clearly generalizes
Stutzer (1996) who analyzed numerically the properties of KLIC when pricing options under the
Black and Scholes model. We show, in particular, that when the parameters adopted by Stutzer
(1996) are used the best Cressie Read estimator is not KLIC ( = 0) but an element very close
to the Empirical Likelihood estimator ( = �1).

The rest of the paper is organized as follows: Section 2.2 describes the Canonical Valuation
and its extension using the Cressie-Read family. Section 2.3 de�nes and discusses the SCVJ
model and its simulation. Section 2.4 presents the results of a monte carlo experiment when
the DGP of the underlying asset follows a SVCJ model. Section 2.5 brie�y describes the Co-
chrane and Saa-Requejo (2000), Bernardo and Ledoit (2000) methodologies and compare those
methodologies to our robust price intervals for options. Section 2.6 concludes.
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2.2 Risk-Neutral Measures via Canonical Valuation or Cressie-
Read

Given a probability space (
; F; P ), suppose that we are interested in pricing derivatives on a
certain underlying asset, whose prices p~t are observed under the probability measure P . An
assumption of absence of arbitrage guarantees the existence of at least one risk-neutral measure
Q equivalent to P under which the discounted price of any asset is a martingale (see Du¢ e
(2001)). In particular, considering an European call with h days to maturity, its price at time t
will be given by:

C = EQt

�
max (pt+h �B; 0)

(1 + rf )h

�
; (2.1)

where EQt is the conditional expectation operator under Q, B is the option strike, rf is the
risk-free rate for one day, and pt+h is the price of the underlying asset at time t+ h.

Assuming stationarity and ergodicity of the underlying asset returns under P , we adopt a
historical time series of its prices fp~tg~t=t�nh;t�(n�1)h;:::t�h;t to generate a discrete version of the
future price distribution. Each possible future outcome has empirical probability �k = 1

n under P

and is de�ned by p(k)t+h = pt�Rk, where Rk is the kth historical return Rk =
pt0+kh

pt0+(k�1)h
; k = 1; :::; n.

In such a context, a sample version of the conditional expectation in Eq. (2.1) can be written
as:

C =

nX
k=1

�Qk
max (Rkpt �B; 0)

(1 + rf )h
(2.2)

where �Qk is the probability of the kth outcome under a discrete version of the risk-neutral
measure Q.

If the number of observed states n is bigger than the number of primitives assets, the market
is incomplete and in general there is an in�nity of risk-neutral measures. In this setting, the
pricing problem becomes how to properly choose one speci�c measure �Qk from the set of existing
risk-neutral measures.

Stutzer (1996) suggested the Canonical Valuation method that consists in choosing the risk-
neutral measure �Q that is closest to the equiprobable objective measure4 �, by minimizing the
Kulback-Leibler Information Criterion (KLIC) between �Q and �:

I(�Q; �) =
nX
k=1

�Qk log

 
�Qk
�k

!
(2.3)

One possible generalization (Walker and Halley (2010), Almeida and Garcia (2009)) is to
substitute the KLIC by a more general function that captures the Cressie-Read (CR) family of
discrepancies:

CR(�
Q; �) =

nX
k=1

�k

�
�Qk
�k

�+1
� 1

( + 1)
(2.4)

where  de�nes one function in the CR family.
Note that the KLIC is a particular case of CR:

lim
!0

CR(�
Q; �) = I(�Q; �): (2.5)

4This is an optimal non-parametric estimator of the objective distribution given some conditions. See Bahadur
et al. (1980, sec 3) .
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Finally, making � equiprobable (�k = 1=n;8k) the optimization problem becomes:

�Q
�
= argminCR(�

Q; 1=n) (2.6)

s:t:
nX
k=1

�Qk = 1 (2.7)

�Qk > 0 (2.8)

1

(1 + rf )h

nX
k=1

�Qk Rk = 1 (2.9)

The �rst two restrictions guarantee that �Q is a probability measure, and the last one is a pricing
equation that guarantees that it is a risk-neutral measure when primitive assets are the risk-free
and the underlying asset.

If the set of known prices at t includes one option with premium eC and strike eB 6= B this
information may be added to the set of restrictions:

eC = nX
k=1

�Qk

max
�
RkPt � eB; 0�
(1 + rf )h

: (2.10)

and in this case the primitive assets include not only the risk-free and underlying asset, but
also the observed option with price ~C.

2.2.1 The Dual Problem

The number of variables n on the optimization problem above depends on the size of the time
series of returns adopted to approximate the future price distribution. In general this number
is large what imposes some di¢ culties on the implementation of this problem. Fortunately
Borwein and Lewis (1991) show that this type of convex problem can be solved in a usually much
smaller dimensinal dual space. In this case it is possible to show that the moment conditions
(Euler Equations) that generate Lagrange Multipliers on the primal problem become the active
variables � on the following dual concave problem:

b� = arg sup
�2�

� 1

 + 1

nX
k=1

�
1 + �

�
Rk � (1 + rf )h

��� +1


�
(2.11)

with � =
�
� 2 Rj

�
1 + �

�
Rk � (1 + rf )h

��
> 0 for all k

	
.

The �rst order conditions on the problem above allow us to recover the implied risk neutral
probability via the following formula:

�;Qk =

�
1 + b� �Rk � (1 + rf )h��1=Pn

i=1

�
1 + b� (Ri � (1 + rf )h)�1= (2.12)

In the case of �nding a risk-neutral measure that prices the underlying asset and risk-free
rate, the dual problem becomes a simple one-dimensional optimization problem.

In what follows below we give a portfolio interpretation for the dual optimization problem
that will be important to economically motivate the choice of some speci�c implied risk neutral
measures to price options.
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Dual Problem, Utility Pricing and Representative Agent

The dual problem may be interpreted as an optimal portfolio problem. In a interesting way, if the
underlying asset is the market portfolio we can relate our work to macro-�nance literature5. One
strand of this literature discusses the ability of equilibrium models to explain option prices. After
the 1987�s crash it seems crucial to incorporate jumps in the market portfolio process in order to
accommodate the smirk in the implied volatility. Moreover a rare disaster in consumption might
explain the equity premium puzzle as Barro (2006) argues convincingly with an international
panel data.

There is an intimate relation between risk-neutral measure and dynamic equilibrium models.
In particular, if one knows the data generating process of asset prices and the risk-neutral density,
it is possible to infer the preference of a representative agent in an equilibrium model of asset
prices (see Ait-Sahalia and Lo, 1998). The simplest equilibrium model we can relate to our
setting, with a �xed Cressie Read discrepancy, is a two period model whose agents have the
same utility function, consume only on the second period and where the market is complete.
The only source of risk is the market portfolio process and each agent is endowed with a fraction
of it. In this case, we have a representative agent utility demanding the whole market portfolio
and nothing else.

There is a well known beautiful relationship relating the optimization problem of �nding an
optimal risk-neutral measure in the space of probability measures and solving a representative
agent model6. It turns out that the latter is the objective function of the dual problem of
the former, i.e., the dual problem de�ned by Equation 2.11 may be interpreted as an optimal
portfolio problem with HARA-type utility as shown in Almeida and Garcia (2009):

u(W ) = � 1

1 + 
(1� W )

+1
 ; (2.13)

where
W =W0

h
Rf +

Xb�j(Rj �Rf )i ; (2.14)

W0 is the initial wealth and Rf is the gross risk free rate, Rj is the gross return of the j-th asset
and we have the restriction 1 � W > 0 . The connection between the above problem and the
dual problem is evident if we de�ne b� as

� =
�b�

1� W0Rf
; (2.15)

and re-write the utility maximization problem as:

sup
�2�

E [u(W )] = sup
�2�

n
u(W0rf )E

h
(1 + �(R�Rf ))

+1


io
: (2.16)

2.3 Stochastic Volatility Models with Jumps

As mentioned before, we follow Bates (2000) adopting in this study the stochastic volatility model
with correlated jumps as the DGP process for equity returns. It is de�ned by two stochastic
di¤erential equations respectively for the price and volatility of the underlying asset. The jumps
in the price and in the volatility process happen at the same time and are therefore correlated.
The equity index price, St, and its spot variance, Vt, solve:

dSt = St�dt+ St
p
VtdW

s
t + d

 
NtX
n=1

S��n [e
Zsn � 1]

!
(2.17)

5Of particular interest here are: Riez (1987), Bates (2000), Barro (2006),Barro et al. (2010), Backus et. al
(2011) and Benzoni et al (2011) .

6See Follmer and Schweizer (2010) and references therein.
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dVt = �v (�v � Vt) dt+ �v
p
VtdW

v
t + d

 
NtX
n=1

Zvn

!
(2.18)

� = rt � �t + t � �s� (2.19)

� = exp(�s + �
2
s=2)� 1 (2.20)

where (dW s
t , dW

v
t ) is a bi-dimensional Brownian motion with E[dW

s
t dW

v
t ] = �t, Nt is the

number of jumps until time t described as a Poisson process with intensity �; Zvn is the nth jump
in volatility with an exponential distribution with mean �v; Z

s
n is associated to the nth jump

in price with a normal distribution conditional on Zvn with mean (�s + �sZ
v
n) and variance �

2
s;

�n is the time of nth jump, r is the risk-free rate, � is the dividend yield and  is the equity
premium.

We choose this model mainly because it acknowledges several characteristics found in the
empirical works (see Backus, Chernov and Martin, 2012) and because there are reliable estimates
of its parameters for the equity market7.

2.3.1 Chosen Parameters

Note that the market is incomplete whenever there is stochastic volatility and/or jumps with
only one underlying and one risk-free asset. A direct consequence is the existence of an in�nity
many risk-neutral measures consistent with the prices of such assets.8 The usual way to deal
with this issue is to parameterize the possible changes of measure and make speci�c assumptions
about the distributions of jumps. In this context, we follow Du¢ e et al. (2000) and Broadie et
al. (2007) by considering the following stochastic di¤erential equations under the risk-neutral
measure:

dSt = St�
Qdt+ St

p
VtdW

s
t (Q) + d

0@Nt(Q)X
n=1

S��n [e
Zsn(Q) � 1]

1A (2.21)

dVt = �
Q
v (�v � Vt) dt+ �v

p
VtdW

v
t (Q) + d

 
NtX
n=1

Zvn(Q)

!
(2.22)

�Q = rt � �t � �Qs �Q (2.23)

E[dW s
t (Q)dW

v
t (Q)] = �t (2.24)

The objective measure�s simulations uses the objective measure parameters from Table 2.1.
The "correct"option prices are calculated with the formula obtained by Du¢ e et al. (2000)
using the risk-neutral parameters from Table 2.2 and SDEs that appear in Equations (2.21) to
(2.24). Those parameters are borrowed from estimations in Eraker et al. (2003) for the objective
measure and from Broadie et al.(2007) for the risk-neutral measure. The risk-free rate r is the
one year average of the 1-year T-Bill during the year 2000 and the initial volatility is

p
V0 = 0:19.

The absolute continuity requirement implies that some parameters (or combination of para-
meters) ashould be the same under both measures. In particular in our case, this is true for �v,
� and the product �v�v. We also consider that the arrival intensity is a constant, that Zsn(Q)
has a normal distribution N(�Qs ; (�

Q
s )2) and that Zvn(Q) has an exponential distribution with

mean �Qv .

7See Eraker et al. (2003), Chernov et al. (2003), Eraker (2004), and Broadie et al. (2007).
8 In fact, the Girsanov theorem imposes very weak conditions for the jump-distribution change of measure. See

for instance the appendix in Pan (2002).
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2.3.2 Exact Simulation

It is well known that approximating a continuous time price process by a discrete time process
may generate bias on the �nal price. In general, this bias decreases as the number of steps
increases. For the Euler scheme, under certain conditions described by Kloeden and Platen
(1992), there is a �rst order convergence rate. Nonetheless, stochastic volatility processes do not
satis�es such conditions. In fact, Broadie and Kaya (2006) �nd that the bias may be very large
in some cases even if a large number of steps are used.

For this reason, we work with exact sampling from the SVCJ by using the method described
by Broadie and Kaya (2006). Notice that for the times between jump arrivals, the process
behaves exactly as the Heston (1993) model. Therefore, after sampling the jump times and sizes
(�n,Zsn and Z

v
n), there is only the additional necessity of simulating a Heston-type model. To

see how this can be done, write the stock price and the variance at t as:

St = Su exp

�
�(t� r)� 1

2

Z t

u
Vsds+ �

Z t

u

p
VsdW

v
s +

p
1� �2

Z t

u

p
VsdW

2
s

�
; (2.25)

Vt = Vu + �v�v(t� u)� �v
Z t

u
Vsds+ �v

Z t

u

p
VsdW

v
s ; (2.26)

where dW v
t and dW

2
t are independent and dW

s
t is decomposed as:

dW s
t = �dW

v
s +

p
1� �2dW 2

s : (2.27)

Cox et al.(1985) show that Vt conditional on Vu has a non-central chi-squared distribution.
Broadie and Kaya (2006) �nd the Laplace transform of the distribution of

R t
u Vsds. The inversion

of the Laplace transform can be performed in a optimized way by using the numerical integ-
ration method described by Abate and Whitt(1992). After sampling those two quantities, it is
possible to obtain

R t
u

p
VsdW

v
s . Note that it is easy to sample St as its distribution is lognormal

conditional on
R t
u

p
VsdW

v
s ,
R t
u Vsds and on Vu. For more details see Broadie and Kaya (2006).

2.4 Results

This section reports results concerning the applicability of the Generalized Entropic Estimators
to option pricing in the Black-Scholes-Merton (B&S) and SVCJ models. The SVCJ model is
analyzed due to its strong ability to �t stylized facts of the US equity market while the B&S
model is adopted because it allows us to obtain analytical properties of the Generalized Entropic
Estimators that are helpful in interpreting results from previous studies.

Each model provides a theoretical option price9 to be benchmarked by our nonparametric
Cressie Read risk-neutral measures. A Monte Carlo study generates di¤erent realizations for
the path of the underlying asset allowing us to approximate the probability distributions of
the option pricing errors. For each DGP process we analyze two statistics based on the error
probability distributions: The mean percentage pricing error (MPE) and the mean absolute
percentage pricing error (MAPE).

Now, consider pricing an European call option on a company X with maturity h, assuming
that a history of the stock prices represent the only available information. In our study, the
time series of prices (or returns) will be simulated from each adopted DGP.

For a given model (or DGP), we draw a time series of returns with �xed length (in our case,
200 monthly returns) from the model-implied return distribution. Using those returns, we use

9The premiums are given as the no-arbitrage price implied by the risk-neutral parameters �xed for each model
(B&S, Heston, or SVCJ model).
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the Cressie Read method with di¤erent values of  indexing the CR(�) function to price the
option. For each of 71 equally spaced �s ranging from �5 to 2 we obtain one option price10.

The procedure above is repeated 5000 times in order to obtain a distribution for the pricing
errors and calculate the MPE and MAPE reported.

2.4.1 Black and Scholes Model

We �rst test the method adopting the B&S enviroment with the same parameters used in
previous works (Stutzer (1996), Gray and Neumann (2005) and Haley and Walker (2010)). The
objective measure drift for the stock price is given by � = 10%, the volatility by � = 20%, and
the risk-free rate by r = 5%. The stochastic di¤erential equation followed by the price is:

dSt
St

= �dt+ �dWt: (2.28)

implying a log-normal distribution for stock prices under the probability measure P .
Figure 1 superimposes 20 graphs of MPE versus  for the entropic method applied to the

B&S model. Each graph corresponds to a call option with di¤erent maturity and/or moneyness.
An apparently striking feature of this picture is that all graphs cross the horizontal line around
 � �0:8. This suggests that in principle the true risk-neutral measure under the speci�c log-
normal DGP might be precisely estimated using our nonparametric family for some  close to
-0.8. We provide theoretical results (see Appendix 2.A) showing that in fact if we �x the Cressie
Read parameter  equal to:

� = � �2

�� r (2.29)

the corresponding Cressie Read risk-neutral measure coincides with the risk-neutral measure
implied by the B&S model. That is, from a theoretical viewpoint, if prices satis�es the B&S
log-normal dynamics the best Generalized Entropic Estimator will be the one with � from
Equation (2.29). Substituting the parameters used in our simulations at Equation (2.29) we
obtain � = �0:8.

Note that both numerical and theoretical results indicate that the most appropriate  under
the B&S DGP is �0:8. This is in accordance to results obtained in previous papers11 which
have found a negative MPE when using  = 0 or  = 1 and a positive very close to zero MPE
when using  = �112.

2.4.2 SVCJ Model

As pointed out in section 2.3 the SVCJ is a fairly parsimonious model that accomodates several
important characteristics of equity prices. It accomodates a realistic process for volatility and
a simultaneous jump in price and volatility. We proceed to simulations using the parameter
estimates in Eraker et al. (2003) and Broadie et al. (2007) and price a set of call options with
di¤erent maturities and moneynesses. The price errors are obtained comparing the prices given
by our Generalized Entropic Estimators and the theoretical prices given in closed form by an
application of the techniques found in Du¢ e et al. (2000).

Unlike the B&S model, the simulations suggest that there is no clear element of the CR
family function for which the MPE is zero. Table 2.4 indicates that the best estimator varies

10There are some di¢ culties to obtain the implied risk-neutral measure for some  > 0. For instance, the
solution for the optimization problem de�ned by Equations (2.6)-(2.9) may not exist with �Qk > 0 for some  > 0.
11See Table 1 on page 994 in Haley and Walker (2010) and Table 1 on page 7 in Gray and Newmann (2005).
12Note that  = �1,  = 0, and  = 1 correspond, respectively, to Empirical Likelihood, Euclidean Divergence

and KLIC.
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with maturity. For instance, the gammas that minimize MPE are close to  � �3:2 and  � �1:1
for maturities equal to 1-month and 12-months respectively13.

On the other hand, table 2.4 indicates that the lowest MAPE is inside a narrower interval
 2 (�2:1;�0:9), apart from the two cheapest options. Again it seems a good strategy to
consider a set of prices given by the method with an interval of �s.

It is also possible to draw more informative graphs of MPE (or MAPE) versus �s for call
options with a given maturity and moneyness. These graphs are shown in appendix 2.B for the
B&S, Heston and SVCJ models14.

The overall pattern is that the MPE has a negative slope and it is �at for short maturities.
For the B&S and SVCJ models, it crosses the horizontal axis (MPE = 0) for a  within the
interval (�3:7;�:07) . On the other hand, for the Heston model it does not cross the horizontal
axis, at least for  2 [�5; 0] but it approaches zero for �s close to zero, which represent the
Canonical Valuation estimator. Since the SVCJ model represents the Heston model with an
extra term for jumps, we concentrate our analysis on only the B&S model (due to the possibility
of obtaining analytical results) and on the SVCJ model due to its generality.

2.5 Robust Price intervals

We test the method for di¤erent models with typical (or estimated) parameters from U.S. stock
market. The performance in terms of MPE is good and relatively similar for the B&S and SVCJ
models. In general, the average pricing error is zero for some discrepancy function within the
Cressie Read family in almost all cases. The only exception is found on the SVCJ model for the
deep out-the-money option with short maturity.

The discrepancy function with best performance in general depends on the DGP, moneyness
and option maturity. We show that the best performance  for the B&S model depends on
the model parameters (but not on maturity). On the other hand, simulations suggest that the
optimal  varies with maturity and moneyness for the SVCJ model.

Now, in the spirit of Cochrane and Saa-Requejo (2000) and Bernardo and Ledoit (2000) we
propose an alternative way to look at this family of discrepancies. Instead of trying to obtain
an optimal dependence of  on pricing errors based on an speci�c option pricing model (like
B&S, Heston or SVCJ), we suggest using this family to provide intervals of prices for options.
These intervals would be obtained by applying the method to an interval of �s. This would
correspond to giving option prices compatible with a set of di¤erent HARA utility functions. In
particular, this method could be useful for pricing options in illiquid markets or over-the-counter
derivatives.

2.5.1 No-Arbitrage Price Interval

The no-arbitrage price interval only requires that there are no-arbitrage opportunities in the
market. The no-arbitrage price interval at time t for a European call option with maturity t+h
and strike B may be de�ned by the relations:

C � St; (2.30)

C � max

(
0; St+h �

B

(1 + rf )
h

)
(2.31)

13For S/B = 1.125 and 1-month maturity MPE is zero for  � �3:7. Nonetheless the graph MPE versus  has
a very small slope and therefore is more prone to statistical error linked to Monte Carlos studies. See Appendix
2.B for more details.
14We also include the Heston model since it isolates the e¤ects of stochastic volatility on our nonparametric

risk-neutral measures. In addition, we include it as a matter of completion since as said before, it has been
previously analyzed by Grey and Newman (2005) and Waley and Walker (2010).
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where C = E [m �max f0; St+h �Bg] is the call premium and m is a Stochastic Discount Factor
(SDF hereafter) that prices the underlying and risk-free assets.

Note that the call option price can not be higher than the current stock price otherwise one
could sell the option, buy the stock to hedge generating an immediate arbitrage. Similarly, if
the price is smaller than St+h� B

(1+rf)
h one could buy the option sell the stock and lend

B

(1+rf)
h

generating again an arbitrage15.
As a matter of convenience we introduce the concept of SDF here, keeping in mind that a

given SDF is equivalent to the following risk-neutral measure16:

mi =
1

(1 + rf )
h

�Qi
�i

(2.32)

where mi is the SDF value at state i.
Note that despite being robust, such price interval isn�t very useful in practice since it is too

wide. For this reason, some authors have tried to de�ne tighter intervals guided by some set of
economic arguments.

2.5.2 Good Deal and Gain-Loss Ratio

Cochrane and Saa-Requejo (2000) de�ne a price interval that rules out too good opportunities.
By too good they mean strategies that achieve very high Sharpe ratios. They de�ne an upper
bound for the Sharpe ratio and �nd a price interval that is consistent with this bound.

In order to implement their idea, they use the well known Hansen and Jagannathan (1991)
bounds to relate the Sharpe ratio of an arbitrary strategy to the variance of an arbitrary ad-
missible SDF:

E
�
R� (1 + rf )

�
� (R)

�
�
� (m)

E [m]

�
(2.33)

where � (�) is the standard deviation �(R) =
r
E
h
(R� E [R])2

i
, R is the return on a strategy

and m is any admissible SDF that prices R.
Suppose we want to price an European call option with maturity t + h and strike B, and

that we only know the underlying asset price at time t and the risk-free rate rf . In this case,
their price interval is de�ned by

�
C;C

�
with:

C = max
m
E [mX]

C = min
m
E [mX] (2.34)

where m sati�es the following conditions for both optimization problems:

m > 0 (2.35)

E [mSt+h] = St (2.36)

E [m] =
1

(1 + rf )h
(2.37)

�(m) � H

(1 + rf )h
: (2.38)

where H is the maximum Sharpe ratio, X = max f0; St+h �Bg is the call payo¤ and �(m) =r
E
h
(m� E [m])2

i
.

15See Hull (2011) for a detailed explanation.
16Assuming for the sake of simplicity that the economy has discrete states of nature.
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Similarly, Bernardo and Ledoit (2000) rule out too good trading opportunities by using a
di¤erent notion for good opportunity. They de�ne the Gain-Loss ratio with respect to a SDF
m� (the benchmark SDF) for an excess payo¤ (a payo¤ whose price is zero). The SDF m� does
not need to price correctly the assets and it is used only as a way to de�ne this attractiveness
measure. For an excess payo¤Xe, the Gain-Loss ratio with respect to m� is

L =
E
�
m� (Xe)+

�
E
�
m� (Xe)�

� (2.39)

where (Xe)+ = max fXe; 0g is the positive part of the payo¤ Xe (the gain) and (Xe)� =
max f�Xe; 0g is the negative part of the payo¤ Xe (the loss). Note that if m� prices correctly
Xe we have that L = 1 because

E [m�Xe] = 0

E
�
m� (Xe)+ �m� (Xe)�

�
= 0

E
�
m� (Xe)+

�
= E

�
m� (Xe)�

�
leading to

L =
E
�
m� (Xe)+

�
E
�
m� (Xe)�

� = 1: (2.40)

In order to implement their method, the authors prove a duality result that implies the
following bound:

E
�
m� (Xe)+

�
E
�
m� (Xe)�

� � supi

�
mi
m�
i

�
infi

�
mi
m�
i

� (2.41)

where m is any admissible SDF, that is, it correctly prices Xe. Note that it de�nes a kind of
variational measure. For instance, if m� is constant the right hand side of the above equation
would be the ratio of the maximum value to the minimum value of the SDF m:

supi (mi)

infi (mi)
for m� constant. (2.42)

In order to price any new asset, they de�ne an upper bound to the Gain-Loss ratio and
implement this idea using the inequality above. For instance, suppose again that we want to
price an European call option with maturity t+h and strike B, and we only know the underlying
asset price at t and the risk-free rate rf . Then we would have:

C = max
m
E [mX] (2.43)

C = min
m
E [mX] (2.44)

where m satis�es the following conditions for both optimization problems:

m > 0 (2.45)

E [mSt+h] = St (2.46)

E [m] =
1

(1 + rf )h
(2.47)

sup
�
mi
m�
i

�
inf
�
mi
m�
i

� � L (2.48)

where L is the maximum Gain-Loss ratio and X = max f0; St+h �Bg is the call payo¤.
Note that the di¤erence between the two methods for the present application appear spe-

ci�cally in Equations (2.38) and (2.48).
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2.5.3 Robust Price Interval for  2 [�4;�0:5]
In this section, based on the good performance of the Cressie Read implied risk-neutral measures
under the SVCJ monte carlo experiment, we suggest intervals of prices for options. Our inter-
vals are di¤erent from Cochrane and Saa-Requejo (2000) or Bernardo and Ledoit (2000).While
they restrict the family of SDFs �xing one criterion like variance of Gain-Loss ratio, we con-
sider several di¤erent discrepancies compatible with dual HARA functions to obtain our price
intervals.

Our intervals are robust in the sense that they do not rely on an speci�c option pricing model
that would give a unique price for any option.

Table 2.6 shows price intervals for option prices with di¤erent maturities and moneynesses
for  2 [�4;�0:5]. The underlying asset price at t is S = 100 for all cells but the strike B and
maturity h change.

We intend to use those intervals to verify if they contain prices of real options written on
the S&P 500 index.

2.6 Conclusion

In this work we study the performance of a non-parametric option pricing method when the
underlying asset follows a realistic jump-di¤usion model. We try to �nd the risk-neutral measure
within a certain class of entropic measures that best proxies, from an option pricing perspective,
a given DGP process for the underlying asset.

We simplify solving a minimization problem in the space of risk-neutral measures by solving a
optimal portfolio problem on the dual space of returns of the underlying process. By simulating
the jump-di¤usion process proposed by Bates (2000) with parameters following recent studies
in the option pricing literature (Eraker et. al (2003), and in Broadie et. al (2007)), we show
that the most appropriate entropic risk-neutral measures are very sensitive to higher moments
of returns in the dual space (�s ranging between -2 and -1).

We conclude by proposing price intervals for option prices that are obtained by focusing
on an interval of �s that parameterize our entropic family. Such intervals are compatible with
giving option prices based on a set of HARA utility functions whose average risk-aversion is
parameterized by the  parameter.

From a pricing perspective, our results might be used to provide robust price intervals for
derivatives in illiquid and over the counter markets.

2.A Nonparametric Pricing Method Applied to B&S Model:
An Exact Estimation

Here we show that nonparametric method de�ned in section 2.3 provides the correct derivatives
prices when applied to the B&S model when using an appropriate discrepancy function. It means
that we obtain the implied risk-neutral distribution implied by B&S model when we solve the
optimization problem (equations (2.6)-(2.9)) applied to the returns sampled from B&S model.
The adequate discrepancy function belongs to the Cressie-Read family and depends upon the
parameter of B&S but doesn�t depend upon the maturity of the derivative. When the family is
de�ned by the function CR(�) de�ned in equation (2.4) the appropriate  is

� = � �2

�� r : (2.49)

More precisely we consider the optimization problem applied to the continuous distribution
of returns in B&S model. In this case we show that the Radon-Nikodym derivative obtained
by the optimization problem is the same as the Radon-Nikodym derivative implied by the B&S
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model. It implies that when the method is applied to a �nite sample with � we obtain an
approximation for the correct Radon-Nikodym derivative.

We begin by writing the Randon-Nikodym derivative in the B&S model as a function of the
returns. Then we write the optimization solution of the method in a suitable way and �nally
we see that the Randon-Nikodym derivative is the solution for method if � is used17.

In the Black-Scholes-Merton model, we have for the objective measure:

ln

�
St
Su

�
=

�
�� 1

2
�2
�
(t� u) + � (Wt �Wu) : (2.50)

where � is the continuous expect rate of return, � is the volatility and Wt is the Wiener process.
This implies that

Wt �Wu =
1

�

�
ln

�
St
Su

�
�
�
�� 1

2
�2
�
(t� u)

�
(2.51)

or, de�ning the gross return between t and u as usual

Ru;t =
St
Su
; (2.52)

we have

Wt �Wu =
1

�

�
ln (Ru;t)�

�
�� 1

2
�2
�
(t� u)

�
: (2.53)

In order to change to risk-neutral measure implied by no-arbitrage conditions one may apply
the Girsanov�s theorem. In this case, the Radon-Nikodym derivative is:

Z(t) = exp

�
��(Wt �W0)�

1

2
�2t

�
; (2.54)

where

� =
�� r
�

; (2.55)

and r is the risk-free rate. We can write the Z(t) as a function of return:

Z(t) = exp

�
�� 1
�

�
ln (R0;t)�

�
�� 1

2
�2
�
t

�
� 1
2
�2t

�
(2.56)

Z(t) = exp

�
ln
�
(R0;t)

� �
�

�
+
�

�

�
�� 1

2
�2
�
t� 1

2
�2t

�
Z(t) = (R0;t)

� �
� exp fAtg : (2.57)

where

A =
��

�
� 1
2
�� � 1

2
�2: (2.58)

Remember that the Radon-Nikodym derivative in the Girsanov �s theorem is a martingale
with Z0 = 1:

E [Zt] = 1:

17For the B&S model, the method using only one pricing equation restriction may be regarded as an Esscher
transform. Option pricing with Esscher transform are studied in Gerber and Shiu (1994) along with several
others authors discussing it. In particular Y. Yao�s response (Gerber and Shiu (1994: page 168-173) shows that
the Esscher transform obtains the risk-neutral measure implied by the Black-Scholes model using tools from
martingale theory. The argument used here are similar to Yao�s.
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This implies

E
h
(R0;t)

� �
�

i
= exp f�Atg (2.59)

where E [:] is the expectation in the objective measure. Moreover, we have by the properties of
Radon-Nikodym derivative and risk-neutral measure

E [R0;tZ(t)] = eE [R0;t] = e�rt: (2.60)

The last two relations will be useful to our purpose.
By the other side, de�ne the option maturity as t and make R = R0;t. In section 2.2 we

have that the solution of the optimization problem implied by the method may be given as the
Radon-Nikodym derivative (see Almeida and Garcia(2012) for more detail):

dQ

dP
=

(1 + � (R�Rf ))
1


E
h
(1 + � (R�Rf ))

1


i :
As we are in the Black and Scholes - Merton model, R is lognormal (see equation (2.50)). We
will consider the method using only one pricing relation, i.e., the optimization problem only has
the restriction

1

Rf
EQ [R] = 1;

or, equivalently,
1

Rf
E

�
dQ

dP
R

�
= 1; (2.61)

along with 1 + � (R�Rf ) > 0 for all states. If there is � such that equation (2.61) holds and
1 + � (R�Rf ) > 0 we have that this is the solution. Moreover this solution it is unique. This
is so because the dual problem is strictly concave (or, equivalently, the primal problem is strictly
convex).

In order to continue, de�ne (implicitly) b� as
� =

b�
Rf

:

Then we have

dQ

dP
=

�
1 + 

b�
Rf

(R�Rf )
� 1
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(R�Rf )
� 1
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�
Rf (1� b�) + b�R� 1
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��
Rf (1� b�) + b�R� 1



� : (2.62)

The trick is to make the ansatz b� = 1.
dQ

dP
=

R
1


E
h
R

1


i
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and, in order to �nd the correct , compare the above dQ
dP with Z(t). This suggest to choose

1= = ��=� as this makes dQ
dP = Z(t) (where t is the maturity and E

h
R

1


i
= exp f�Atg

by equation (2.59)). In order to show that this is the solution it is necessary to verify that
1 + � (R�Rf ) > 0 and that the equation (2.61) holds. Indeed, 1 + � (R�Rf ) = R=Rf > 0
a.s. because R is lognormal and noting that Rf = e�rt we have

1

Rf
E

�
dQ

dP
R

�
=

1

e�rt
E [Z(t)R] = 1;

as expected.

2.B MPE and MAPE for Di¤erent Models

In this appendix we provide results concerning the Black-Scholes-Merton (B&S) model, Stochastic
Volatility (SV) model (Heston model) and Stochastic Volatility with Correlated Jumps (SVCJ)
model. The SVCJ model is described in section 2.3. Here we extends the results in Stutzer
(1996), Gray and Neumann (2005) and Haley and Walker(2010) for B&S and SV models by
exploring a wider set of discrepancy functions. Ours results are consistent with what they found
in their work. The parameters used in B&S model are the same as in these 3 articles and the
parameters for SV model is the same as in the last 2 articles. The parameters for SVCJ model
are borrowed from Eraker et al. (2003) and Broadie et al. (2007).

Here we show graphs of MPE and MAPE against  and tables reporting for which  these
graphs has zero MPE and the lowest MAPE. The variable  de�nes the Cressie-Read function
through the function CR(�) (equation (2.4)):

CR
�
�Q; �

�
=

nX
k=1

�k

�
�Qk
�k

�+1
� 1

 ( + 1)
:

Values used in Haley and Walker (2010) are:  ! �1 (Empirical Likelihood),  ! 0 (Kullback-
Leibler Information Criterion) and  = 1 (Euclidean estimator).

2.B.1 The Black and Scholes Model

The price follows the Stochastic Di¤erential Equation (SDE):

dSt
St

= �dt+ �dWt

and we choose the parameters � = 10%,� = 20%,r = 5%. These parameter are the same
as in Stuzter (1996), Gray and Neumann (2005) and Haley and Walker (2010). Figure 2.2
and 2.3 shows the MPE and MAPE as a function of  for European call options with di¤erent
combination of maturity and moneyness (price over strike: S=B). We use only one Euler equation
in the restrictions (equation (2.9)) and we do not take into account any derivative price.

Figure 2.2 is used to construct �gure 2.1 in section 2.4. We superimpose all 20 cells in order
to highlight that the MPE is zero for approximatelly the same  for all combinations of maturity
and moneyness considered. It ilustrate the result proved in appendix 2A, i.e., the existence and
the value of  resulting in the risk-neutral measure implied by B&S model. Appendix 2A shows
that this  doesn�t depend upon the maturity but varies with the parameters.

Table 2.5 depicts the values of  in which the MPE is zero (�rst panel) and MAPE is lowest
(second panel). For most entries the MPE is zero for  = �0:9. Actually for most entries the
MPE is a little greater than zero for  = �0:9 and little lower than zero for  = �0:8. It implies
that the MPE is zero for some  in between (-0.9,-0.8) for our simulations.
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The graph of MAPE against  has a region almost �at close to the minimum. For instance,
the MAPE is equal to the �fth decimal place (MAPE = 0.03895) for  2 (�0:6;�0:4) for
at-the-money option with 1 month maturity.

2.B.2 The SV Model

In this model the price follows the SDE:

dSt
St

= �dt+
p
VtdW

S
t

dVt = kv (�v � Vt) + �v
p
VtdW

v
t

E
�
dWS

t dW
v
t

�
= �t

and we make use of the parameters in table 2.3. These are the same parametes used in
Gray and Neumann (2005) and Haley and Walker (2010). They implicitly consider that the
parameters kv; �s; � are the same in the risk neutral and objective measure. They don�t specify
the value of volatility at the begining of the period. We assume that it is the average V0 = �v.

Figures 2.4 and 2.5 shows the MPE and MAPE for the SV model. The simulation suggests
that the MPE is decreasing with  and is positive for  2 (�5; 0). The method has some issues
when dealing with  > 0 because in this case the optimum probability density risk-neutral
measure may be equal to zero for some states. This violates the no-arbitrage constraint.

2.B.3 The SVCJ model

The price follows the SDE

dSt
St

= �dt+
p
VtdW

S
t + dJ

S
t

dVt = kv (�v � Vt) + �v
p
VtdW

v
t + dJ

v
t

E
�
dWS

t dW
v
t

�
= �t

where the JSt and J
v
t jump at the same time (the jump at prices and volatility occurs at the

same time) and the intensity of n-th jump are Zvn and S�n( eZSn � 1) where Zvn has exponential
distribution with mean �v and eZSn has lognormal distribution conditional to Zvn with mean
�S + �SZ

v
n and variance �

2
S and

� = rt � �t + ept � �S�

�S = exp
�
�S +

�S
2
2
�
� 1

where �t is the dividend yield, 
ep
t is the equity premium and � is the jump intensity18.

We use the parameters estimated in Eraker et al.(2003) for the objective measure and the
estimations in Broadie et al. (2007) for the risk-neutral measure as discussed in section 2.3.
Figures 2.6 and 2.7 depict MPE and MAPE as a function of . The simulations suggest that
the MPE  in which the MPE is zero varies with maturity. Moreover the MPE seems to be
decreasing in  and that the MAPE doesn�t varies very much in a suitable interval.

18To be more precise

dJSt = d�Ntn=1 eZSn
= d

�
�Ntn=1S�n�

h
eZ

S
n � 1

i�
;

dJvt = d
�
�Ntn=1Z

v
n

�
:
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Table 2.1: Objective measure parameters for SVCJ model.

� �v �v �v � � �s �s �v �s
0.1386 6.5520 0.0136 0.4 -0.48 1.5120 -0.0263 0.0289 0.0373 -0.6

Table 2.2: Risk-neutral measure parameters for SVCJ model.

r �Qv �Qv �v � �Q �Qs �Qs �v �s
0.0593 6.5520 0.0136 0.4 -0.48 1.5120 -0.0725 0.0289 0.1333 0.0

Table 2.3: Risk-neutral and Objective measure parameters for SV model.

� r kv �v �v �

0.10 0.05 0.03 0.04 0.4 -0.5
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Table 2.4: Optimal Cressie-Read discrepancy function for SVCJ model. This table
contains the Cressie-Read discrepancy function which attains the minimum error for the SVCJ model.
Each cell is associated with an European Option Call with a di¤erent combination of moneyness and
maturity. The �rst panel displays the  in which the method has zero mean percentage error (MPE).
The second panel displays the  in which the method has the lowest mean absolute percentage error
(MAPE). The index  de�nes the Cressie-Read function through the function CR(�) - see equation
(2.4). Appendix 2.B shows the graphs where those values are obtained. Pricing errors are based on
the method applied to 200 returns draws from appropriate distribution and the mean is obtained by an
average of 5000 repetitions. The entries with n/a means that no  in the range �(5; 2) has zero MPE.

 with MPE equal to zero Maturity (year)

1/12 1/4 1/2 1

S/B = 0.90 n/a n/a -2.3 -1.3
S/B = 0.93 -3.1 -2.2 -1.6 -1.2
S/B = 1.00 -3.1 -2.1 -1.5 -1.1
S/B = 1.03 -3.2 -2.0 -1.5 -1.1
S/B = 1.125 -3.7 -2.0 -1.4 -1.0

 with minimum MAPE Maturity (year)

1/12 1/4 1/2 1

S/B = 0.90 n/a n/a -2.1 -1.3
S/B = 0.93 -1.8 -1.6 -1.5 -1.1
S/B = 1.00 -1.7 -1.5 -1.4 -1.1
S/B = 1.03 -1.6 -1.5 -1.3 -1.0
S/B = 1.125 -1.4 -1.4 -1.2 -0.9
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Table 2.5: Optimal Cressie-Read discrepancy function for B&S model. This table
contains the Cressie-Read discrepancy function which attains the minimum error for the B&S model.
The �rst panel displays the  in which the method has zero mean percentage error (MPE). The second
panel displays the  in which the method has the lowest mean absolute percentage error (MAPE). Note
that the MPE is zero for  = �0:9 for most entries. In matter of fact the MPE is almost zero for  = �0:9
and for  = �0:8. For the most entries the MAPE is almost the same for some  close to the lowest one
(sometimes it is equal to the �fth decimal place). Each cell is associated with an European Option Call
with a di¤erent combination of moneyness and maturity. The index  de�nes the Cressie-Read function
through the function CR(�) - see equation (2.4). Pricing errors are based on the method applied to 200
returns draws from appropriate distribution and the mean is obtained by an average of 5000 repetitions.

 with MPE equal to zero Maturity (year)

1/12 1/4 1/2 1

S/B = 0.90 -0.7 -0.8 -0.8 -0.9
S/B = 0.93 -0.9 -0.9 -0.8 -0.9
S/B = 1.00 -0.9 -0.9 -0.8 -0.9
S/B = 1.03 -0.9 -0.9 -0.9 -0.9
S/B = 1.125 -1.0 -0.9 -0.9 -0.9

 with minimum MAPE Maturity (year)

1/12 1/4 1/2 1

S/B = 0.90 . -0.5 -0.7 -0.8
S/B = 0.93 -0.5 -0.8 -0.7 -0.8
S/B = 1.00 -0.7 -0.7 -0.8 -0.8
S/B = 1.03 -0.3 -0.7 -0.8 -0.9
S/B = 1.125 0.5 -0.3 -0.5 -0.7
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Table 2.6: Price Interval for  2 [�4;�:5] for the SVCJ model This table contains the price
interval for a Call Option in the SVCJ model given by the method when applied with  2 [�4;�0:5]. The
underlying asset price at t is S=100.00 for all cells but the strike B and maturity h changes. Each cell is
shows the interval (C=�0:5; C=�4) and the theoretical Option value is depicted bellow. The objective
and risk-neutral parameters are in table 2.1 and 2.2 respectively. The value of C is calculated as the
average Option price for the method applied in 5000 di¤erent realization of the process.

Maturity (year)

1/12 1/4 1/2 1

S/B = 0.90 (0.04; 0.04) (0.64; 0.75) (2.18; 2.67) (5.64; 7.18)
0.05 0.78 2.53 6.31

S/B = 0.97 (1.13; 1.19) (3.06; 3.39) (5.44; 6.25) (9.41; 11.33)
1.18 3.26 5.82 10.07

S/B = 1.00 (2.53; 2.63) (4.71; 5.10) (7.17; 8.08) (11.17; 13.18)
2.61 4.92 7.56 11.80

S/B = 1.03 (4.45; 4.57) (6.58; 7.02) (9.01; 9.99) (12.96; 15.02)
4.54 6.81 9.40 13.57

S/B = 1.125 (11.68; 11.75) (13.12; 13.55) (15.14; 16.13) (18.67; 20.69)
11.74 13.32 15.48 19.18
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Figure 2.1: Graphs of mean percentage errors (MPE) against  in the Black-Scholes-Merton
model. All graphs crosses the horizontal axis close to  � �0:8. Each curve is associated with
one European Call option with a particular combination of maturity and moneyness. Appendix
2B shows the graphs separately. Pricing errors are based on the method applied to 200 returns
draws from appropriate distribution and the mean is obtained by an average of 5000 repetitions.
The parameter  de�nes the discrepancy function through the function CR(�) - (equation (2.4)).
Values of interest are:  ! �1 (Empirical Likelihood),  ! 0 (Kullback-Leibler Information
Criterion),  = 1 (Euclidean estimator).
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Figure 2.2: Graphs of mean percentage errors (MPE) against  in the B&S model. All graphs
crosses the horizontal axis close to  � �0:8. Figure 2.1 is obtained superimposing all those
cells. Each cell corresponds to the pricing error of a European Call option with a particular
combination of maturity and moneyness (S/B). The parameter for B&S model are � = 10%,
� = 20% and r = 5%. Pricing errors are based on the method applied to 200 returns draws
from appropriate distribution and the mean is obtained by an average of 5000 repetitions. The
parameter  de�nes the discrepancy function through the function CR(�) - see equation (2.4).
We use only one Euler equation in the restrictions (equation (2.9)) and don�t take into account
any derivative price.
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Figure 2.3: Graphs of mean absolute percentage errors (MAPE) against  in the Black-Scholes-
Merton model. Each cell corresponds to the pricing error of a European Call option with a
particular combination of maturity and moneyness (S/B). The parameter for B&S model are
� = 10%, � = 20% and r = 5%. Pricing errors are based on the method applied to 200 returns
draws from appropriate distribution and the mean is obtained by an average of 5000 repetitions.
The parameter  de�nes the discrepancy function through the function CR(�) - see equation
(2.4). We use only one Euler equation in the restrictions (equation (2.9)) and don�t take into
account any derivative price.
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Figure 2.4: Graphs of mean percentage errors (MPE) against  in the Stochastic Volatility
(Heston) model. Each cell corresponds to the pricing error of a European Call option with
a particular combination of maturity and moneyness (S/B). Pricing errors are based on the
method applied to 200 returns draws from appropriate distribution and the mean is obtained
by an average of 5000 repetitions. The parameter  de�nes the discrepancy function through
the function CR(�) - see equation (2.4). We use only one Euler equation in the restrictions
(equation (2.9)) and don�t take into account any derivative price.
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Figure 2.5: Graphs of mean absolute percentage errors (MAPE) against  in the Stochastic
Volatility (Heston) model. Each cell corresponds to the pricing error of a European Call option
with a particular combination of maturity and moneyness (S/B). Pricing errors are based on the
method applied to 200 returns draws from appropriate distribution and the mean is obtained
by an average of 5000 repetitions. The parameter  de�nes the discrepancy function through
the function CR(�) - see equation (2.4). We use only one Euler equation in the restrictions
(equation (2.9)) and don�t take into account any derivative price.
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Figure 2.6: Graphs of mean percentage errors (MPE) against  in the SVCJ model. Each cell
corresponds to the pricing error of a European Call option with a particular combination of
maturity and moneyness (S/B). Pricing errors are based on the method applied to 200 returns
draws from appropriate distribution and the mean is obtained by an average of 5000 repetitions.
The parameter  de�nes the discrepancy function through the function CR(�) - see equation
(2.4). We use only one Euler equation in the restrictions (equation (2.9)) and don�t take into
account any derivative price.
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Figure 2.7: Graphs of mean absolute percentage errors (MAPE) against  in the SVCJ model.
Each cell corresponds to the pricing error of a European Call option with a particular combin-
ation of maturity and moneyness (S/B). Pricing errors are based on the method applied to 200
returns draws from appropriate distribution and the mean is obtained by an average of 5000
repetitions. The parameter  de�nes the discrepancy function through the function CR(�) -
see equation (2.4). We use only one Euler equation in the restrictions (equation (2.9)) and don�t
take into account any derivative price.



Chapter 3

Watching the News: Optimal
Stopping Time and Scheduled
Announcement

Chapter Abstract

The present work studies optimal stopping time problems in the presence of a jump at a
�xed time. It characterizes situations in which it is not optimal to stop just before the jump.
The results may be applied to the most diverse situations in economics but the focus of the
present work is on �nance. In this context, a jump in prices at a �xed date is consistent with
the e¤ects of scheduled announcements. We apply the general result to the problem of optimal
exercise for American Options and to the optimal time to sell an asset (such as a house or a
stock) in the presence of �xed cost. In the �rst application we obtain that it is not optimal
to exercise the American Option with convex payo¤ just before the scheduled announcement.
For the second application we obtain that it is not optimal to sell an asset just before the
announcement depending upon the utility function and/or the way the prices jump. We provide
also a numerical solution for the second application in a particular case.

Keywords: Optimal Stopping Time, Scheduled Announcements, Quasi-Variational Inequal-
ity, Jump-Di¤usion Models, Numerical Methods in Economics.

JEL Classi�cation Numbers: C6,G1.

3.1 Introduction

Several announcements are scheduled events at which the government, institutions or �rms
often disclose surprising news. For example, the dates of the Federal Open Market Committee
(FOMC) meetings are known in advance1 and changes in monetary policy are now announced
immediately after it. The Federal Reserve Bank determines interest rate policy at FOMC
meetings and according to the Bloomberg website2 "... [the FOMC meetings] are the single
most in�uential event for the markets.". Other macroeconomic data have their release known in
advance as well, such as the GDP, CPI, PPI and others. Such information is incorporated into
security�s prices very quickly. Most of the price changes can be seen within 5 minutes after the
announcement3. There are similar �ndings for �rms as well. For example, it is common practice

1Those dates can be seen at (link accessed at 103/19/2013): http://www.federalreserve.gov/monetarypolicy/
fomccalendars.htm.

2 It may be read at (link at 03/19/2013): http://bloomberg.econoday.com/byshoweventfull.asp?
�d=455468&cust=bloomberg-us&year=2013&lid=0&prev=/byweek.asp#top.

3See, for instance, Ederington and Lee (1993), Andersen and Bollerslev (1998) or Andersen et. al (2007).
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among listed �rms to release in advance the dates of the earning announcements. Several authors
�nd a quick move in the markets after the information is released with the bulk of price change
in the �rst few minutes (Pattel and Wolfson (1984)).

In situations where action entails a �xed cost, the economic agents may prefer do nothing
most of the time and take some action only occasionally. Empirical studies �nd such behavior
in most diverse �elds of economics4. Those situations are usually modeled using stochastic
control with �xed cost in continuous time. Those problems are called impulse control when the
agent takes several actions choosing the time of each one. When the action is taken just once,
it is called optimal stopping time problem. The later problem naturally arises when pricing
American Options. Oksendal and Sulem (2007) and Stockey (2009) provide a mathematical
theory on those problems presenting some important models from the literature.

Our interest is to analyze optimal stopping time problems in the presence of scheduled
announcements. We characterize situations where an agent prefers to wait for the information
before taking an action. These results may be applied to the most diverse economic situations
as the above paragraph suggests, but our focus here is on �nancial markets. In particular we
show that it is never optimal to exercise a class of American Derivatives just before this type of
announcement. This class includes very common derivatives such as American calls and puts.
Moreover we study the optimal time to sell an asset (such as a house or a stock) in the presence
of �xed costs and scheduled announcement. We show that it is not optimal to sell just before
the announcements for some cases of utility function and/or jumps characteristics. We provide
also a numerical solution for the second application in a particular case.

Several papers model security�s prices as a jump-di¤usion process in continuous time. The
fast price change with news suggests that jumps may be used as a way to incorporate announce-
ments in the price process. It is common to consider the jumps�time as random and unknown
before it occur. Nonetheless scheduled announcements don�t happen at random dates and they
are known in advance. Then we model it as jumps occurring at a �xed and known time5. Other
empirical �ndings on prices�behavior may be incorporated in similar fashion. For example, the
price volatility may be modeled as an extra continuous time process jumping with news.

Note that the jump is the consequence of some information release impacting the environment
or the agent�s beliefs about it. In this respect, waiting for the jump is a way to gather more
information before taking some action. In some cases there is no substantial risk in waiting for
the information so the agent may prefer to act later. In others, waiting is risky as the information
may destroy some opportunities. Such interpretation is particularly consistent with evidence in
�nancial markets as announcements usually increase trading activity6.

Some authors7 study trading volume behavior around announcements considering investor
with exogenous reason for selling an asset. Those investors may have time discretion and may
want to avoid trade before an announcement fearing an adverse transaction with a better in-
formed agent. We may add to this literature highlighting that such behavior may be found even
without the information asymmetry. As an example, we provide the numerical result for the
case in which the price follows a geometric Brownian motion, there is a �xed transaction cost,
and the agent is risk-neutral and wants to sell an asset for exogenous reason.

The rest of the article is organized as follows. Section 3.2 presents the results for optional
exercise of American Option in the presence of scheduled announcements. The characteristics of

4For instance, Bils and Klenow (2004) and Klenow and Kryvtsov (2008) documents the infrequent price changes
in retail establishments and Vissing-Jorgensen (2002) �nds that households rebalance their portfolio infrequently.

5Other authors have a similar modeling strategy. For instance, Dubinsky and Johannes (2006) build an option
pricing model incorporating scheduled announcements as jumps occurring at a known date.

6There are hundreds of papers about it. It has attracted interest of diverse areas such as economics, �nance
and accounting. See the seminal work of Beaver (1968) and a review by Bamber et al. (2011). Recent empirical
�ndings in �nance includes Chae (2005), Hong and Stein (2007) and Sa¢ (2009). Some important theoretical
work are: Admati and P�eiderer (1988), Foster and Viswanathan (1990), George et al. (1994).

7For instance, see Admati and P�eiderer (1988), Foster and Viswanathan (1990) or George et al. (1994).
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the risk neutral measure allow an easy way to prove the result and provide the basics steps for
the more general propositions. Section 3.3 provides the main results in its generality. Section 3.4
provides one application with a numerical result: the optimal time to sell an asset. Section 3.5
presents a discussion and Section 3.6 summarizes the �ndings and points towards future work.
The most technical proofs are in the appendix 3.A and the numerical algorithm�s details is in
Appendix 3.B.

3.2 Optimal Exercise for American Options

The goal of the present section is twofold: to provide a simple demonstration in a particular
case and to give a contribution to the optimal exercise of American Options. We show that it
is never optimal to exercise just before a scheduled announcement in some common situations.
What simpli�es the proof is the existence of the risk-neutral measure. The demonstration here
gives the guidelines for the general case. We have one empirical implication in this section: if
the agents are rational then no exercise is made a little before the announcement for American
Option with convex payo¤ (and absence of arbitrage).

In general, for put options there is a region in which it is better to exercise and the premium
is the same as the payo¤. Do not exercise at time t means a premium greater than the payo¤
at t. A jump in a �xed date increases the uncertainty around it and it seems reasonable that
the issuer raises the premium. This would imply a smaller region of prices where it is optimal
to exercise. In this sense, our results would be intuitive and its interest lays in that the exercise
regions shrink to an empty set. Nonetheless, to the best of our knowledge, this reasoning is not
necessarily true. For instance, Ekstrom (2004) shows that for a class of American Options the
premium increases with volatility but the proposition isn�t applied to American puts.

It is not straightforward to infer what happens in the neighborhood of an announcement
for the exercise of American Options. Pattel and Wolfson (1979), (1981) �nd empirically that
the implied volatility increases close to announcements, i.e., other things constant, there is an
increase in the premium for Europeans calls and puts. On the other hand American calls have
usually the same premium as its European counterparty. It is not the case when there are
dividends payments because it may be advantageous to exercise just before the payment.

The modeling of a scheduled earning announcement as a jump is taken by Dubinsky and Jo-
hannes (2006). They consider a jump-di¤usion model with stochastic volatility, apply it to a set
of equities and try to measure empirically some de�nitions of uncertainty about the news. Simil-
arly Pattel and Wolfson (1979), (1981) try to gauge the uncertainty with a generalization of the
Black-Scholes-Merton model in which the stock volatility varies deterministically over time. In
their generalization the implied volatility increases as the option approaches the announcement
date, and drops to a constant after it .

3.2.1 Example: American Put Option on a Black-Scholes-MertonModel with
Scheduled Announcement

This subsection introduces the notation and presents a concrete example. Suppose we have
an American put on a stock with 60 days maturity of and that the next FOMC meeting will
happen in 30 days and will de�ne a new interest rate. Suppose further that the actual interest
rate is 1% and that the uncertainty about the meeting implies an interest rate of 0.75%, 1.00%
or 1.25% after it. Let TM be the time of maturity (60 days) TA be the time of the scheduled
announcement (the end of the FOMC meeting in 30 days) and St be the price of my equity
at time t. We model the price process as in the Black-Scholes-Merton environment but with a
jump in price at TA and a change in the interest rate at TA, i.e., the price follows geometric
Brownian motion and (in the risk-neutral measure) it reads:

dSt = rtStdt+ �Std eBt +�STA�ft=TAg; (3.1)
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S0 = z0 (3.2)

where z0 is a constant, �ft=TAg is the indicator function

�ft=TAg(t) = 0 if t 6= TA (3.3)

= 1 if t = TA,

rt = rBA if t < TA (Before Announcement), (3.4)

rt = rAA if t � TA (After Announcement), (3.5)

rBA is a constant, rAA is a random variable whose realization is not known before TA, � is the
constant volatility and eBt is the Wiener process in the risk-neutral measure. The risk-free rate
after announcement rAA has a discrete distribution with 3 possible (and equiprobable) outcomes:
0.75%, 1.00% or 1.25%. Moreover, the price process is continuous before and after TA but has
a jump at TA of

�S TA = �S (TA�) (3.6)

where S (TA)� is the left limit of the price process

S (TA)� = lim
t!(TA)�

St; (3.7)

� has a lognormal distribution8 and �S TA is the jump�s size:

�S TA = S TA � lim
t!(TA)�

St: (3.8)

In order to compute the American put�s premium we shall consider the early exercise feature
and that the option holder uses it optimally. As we are in the risk-neutral measure, we compute
the present value expectation using the discounting

e�
R �
0 rsds (3.9)

where � is the exercise time. If � � TA we have the discount as e�rBA� , otherwise we have
e�rBATA�rAA(��TA) . The premium for a given strategy � is

eE he� R �0 rsds (K � S(�))+
i

(3.10)

where K is the strike, eE [�] denotes the expectation in the risk-neutral measure and (x)+ =
max f0; xg. As we seek the maximum, we have

v(z0) = max
��TM

eE he� R �0 rsds (K � S(�))+
i

(3.11)

where � is a stopping time, TM is the maturity and v(z0) is the premium at t = 0 when S(0) = z0.
We lost the Markov property held by the Black-Scholes-Merton model when we introduced

a scheduled announcement. Nonetheless, we still have something similar. For t < TA, all we
know about the distribution after t is contained in the price level. For conditional expectation
this implies that eE [�jFt] = eE [�jSt = z] for t < TA: (3.12)

8To be precise about the information structure, we shall de�ne the probability space
�
�;
; eP� along with the

�ltration (Ft)TM0 . Let the price process be right-continuous and the portfolios be left-continuous. The realization
of � and rAA aren�t known before TA, i.e., these information belong to FTA but not to Ft if t < TA.
Note that we are considering only the risk neutral measure eP , i.e., we only need to know the jump size and

change distributions in this measure.
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On the other hand, after t � TA all information is contained in St = z and rAA = r and we haveeE [�jFt] = eE [�jSt = z; rAA = r] for t � TA: (3.13)

To what follows, we need to de�ne the premium for other dates. For t < TA denote it by9

VBA(t; z) :

VBA(t; z) = max
t���TM

eE he� R �t rsds (K � S(�))+ jS(t) = z
i

(3.14)

and for t � TA

VAA(t; z; r) = max
t���TM

eE he� R �t rsds (K � S(�))+ jS(t) = z; rAA = r
i
: (3.15)

In the present work, we want to study the exercise behavior just before TA and we do it
through the optimal stopping time � . A decision to stop should depend only upon the past
information, i.e., if the agent wants to exercise at t this decision is make using the information
Ft. But the all relevant information is in the value of St (and rAA = r if t � TA). Then, for
each t (and each rAA after TA) we have a set of prices that makes optimal the exercise and in
this case the premium is VBA(t; z) = (K � S(t)). We call this the stopping set10

SBA=
�
(t; z);VBA(t; z) = (K � z)+

	
for t < TA; (3.16)

SAA=
�
(t; z; r);VAA(t; z; r) = (K � z)+

	
for t � TA: (3.17)

On the other hand, we have the price region where it is not optimal to exercise, i.e., the con-
tinuation set where the premium is greater than the payo¤11

CBA=
�
(t; z);VBA(t; z) > (K � z)+

	
for t < TA; (3.18)

CAA=
�
(t; z; r);VAA(t; z; r) > (K � z)+

	
for t � TA: (3.19)

In this model, it is not optimal to stop just before the announcement and we show this below.
In the next subsection we give su¢ cient conditions for not being optimal to exercise (stop)
just before the announcement for a generic model, i.e., for each z there is " > 0 such that
(TA � "; z) 2 CBA.

3.2.2 Generic Problem

Let Zt be a n+m-dimensional de�ned as:

Zt = (St; Xt) (3.20)

9We could do simply:

V (t; z; r) = max
t���TA

eE he� R �
t rids (K � S(�)) jS(t) = z; rs = r

i
considering the interest rate another process that jumps with the announcement. Nonetheless we want to em-
phasize the role of the announcement.
10Actually, the stopping set S shall be de�ned as

S = (SBA � rBA) [ SAA
where � denotes cartesian product.
11Again, the continuation region C shall be de�ned as

C = (CBA � rBA) [CAA:
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where St is a n-dimensional process for assets prices satisfying the stochastic di¤erential equation
(SDE hereafter) in the real world (objective measure):

dSt = St�(St; Xt; �t)dt+ St�(St; Xt; �t)dBt +�STA�ft=TAg (3.21)

Xt is a m-dimensional vector satisfying the SDE:

dXt = �X(St; Xt; �t)dt+ �X(St; Xt; �t)dBt +�XTA�ft=TAg; (3.22)

Bt be a n+m-dimension Wiener process, �; �X ; �; �X satis�es usual regularity conditions (see
Oksendal and Sulem (2007), Theorem 1.19), t � 0 and �t is a set of parameters satisfying

�t = �BA Before the Announcement, (3.23)

�t = �AA After the Announcement, (3.24)

where �AA is a random variable known after the announcement. Note that the process Xt isn�t a
price process. For instance, in the stochastic volatility model (as in Heston (1993) for instance)
the volatility is a process but it is not a price process. It implies that it isn�t (in general)
a martingale under the risk-neutral measure. The process may include jumps as well but we
do not consider it here explicitly in order to simplify the exposition. This broad speci�cation
includes, for instance, the Black and Scholes model, Merton model and the class of A¢ ne Jump-
Di¤usion models as in Du¢ e et al. (2000).

The scheduled announcement is made at TA > 0 and there is a jump in (S TA ; X TA) :

�S TA = S TA � lim
t!(TA)�

St; (3.25)

�X TA = X TA � lim
t!(TA)�

Xt; (3.26)

along with a change in the parameters as

�t = �BA for t < TA; (3.27)

�t = �AA for t � TA (3.28)

with �AA known only for t � TA.
We assume that there is a risk-neutral measure. In the absence of arbitrage this is indeed

true (see, for instance, Du¢ e (2001)). Under this measure, we have that the asset prices satis�es
the SDE:

dSt = rtStdt+ St�(St; Xt; �i)d eBt +�STA�ft=TAg (3.29)

and Xt:

dXt = e�X(St; Xt; �)dt+ �X(St; Xt; �i)d eBt +�XTA�ft=TAg: (3.30)

where r is the instantaneous interest rate assumed constant for simplicity12, Bt be a n+m-
dimension Wiener process in the risk neutral measure and e�X , �X satis�es regularity conditions
((see Oksendal and Sulem (2007), Theorem 1.19)). We assume further that the jump at TA,
�ZTA ;is a random variable that depends only upon Z (TA�) (as in the multiplicative case of
equation (3.6)) and that the future distribution of the economy only depends upon the actual
state of the economy. We express the last assumption with the equation:

eE [�jFt] = eE [�j (S(t); X(t)) = z; �t = �] : (3.31)

12We can model the interest rate process as well as in done the example above. Nonetheless nothing changes
in the proof of the proposition.



52

where z is a n+m dimensional constant and � is a constant set of parameters.
The price of American Option is obtained de�ning an optimal stopping problem in the risk

neutral measure. Let g : Rn ! R denote the option�s payo¤ and let TM > TA be the maturity.
Then we have for the option�s premium:

VBA(t; z) = max
t���TM

eE he� R �t rsdsg (S� ) jZ(t) = zi for t < TA; (3.32)

VAA(t; z; �) = max
t���TM

eE he� R �t rsdsg (S� ) jZ(t) = z; �AA = �i for t � TA; (3.33)

where V is the premium. Note that we make the assumption that g only depends upon St.

3.2.3 Results for Convex American Options

The simpli�cation in the American Option case comes mainly by two simple equalities we stablish
now. The prices and the premium follow a martingale in the risk-neutral measure. In particular,
for t < TA � u we have13

e�rty = eE �e�ruSujZt = (y; x)� for t < TA � u; (3.34)

e�rtVBA(t; z) = eE �e�ruVAA(u; Zu; �u)jZt = z� for t < TA � u: (3.35)

If u = TA we can make the limit:

e�rty = eE �e�ruSujZt = (y; x)�
lim

t!(TA)�
e�rty = lim

t!(TA)�
eE �e�ruSujZt = (y; x)� (3.36)

e�rTAy = eE �e�rTASTA jZ(TA)� = (y; x)�
or14

y = eE �STA jZ(TA)� = (y; x)� (3.37)

and for the same reason

lim
t!(TA)�

VBA(t; z) = eE �VAA(TA; ZTA ; �TA)jZ(TA)� = z� : (3.38)

The above 2 equations is what make the proof easier. We will implicitly impose that VBA(t; z)
is continuous in t close to TA. Although we can avoid this assumption, it simpli�es the proof.

Proposition 1 Consider the model de�ned in the risk-neutral measure by the equations (3.21)-
(3.30) along with the distribution of �AA and the jumps in TA. Consider further an American
Option with maturity TM > TA whose g is a convex function of St. Moreover, assume that it is
not optimal to execise at TA with positive probability in the risk-neutral measure. Then for each
z there is " > 0 such that it is never optimal to exercise the option at time t 2 (TA � "; TA) if
Zt = z. In other words, it is never optimal to exercise just before the announcement.

13 In the general case we should use e�
R t
0 rsds instead of e�rt.

14The step where the limit enters on the expectation needs to be better de�ned. More explictly, make

eE ��j lim
t!(TA)

�
Zt = (y; x)

�
= eE ��j lim

t!(TA)
�
Zt = (St; Xt);St = y;Xt = x

�
= eE ��j lim

t!(TA)
�
Ft;St = y;Xt = x

�
and we shall de�ne limt!(TA)

� Ft as an increasing set limit

lim
t!(TA)

�
Ft = [1n=1

�
FTA� 1

n

�
:
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Proof. What we want to show is that

lim
t!(TA)�

VBA(t; z) > g (y) (3.39)

with z = (y; x) because the above limit means that exists " > 0 such that

VBA(t� "; z) > g (y) (3.40)

and the strict inequality is a su�cient (and a necessary) condition to not exercise,i.e, (t; z) belongs
to the continuation region.

Being not optimal to execise at TA with positive probability implies thateE �VAA(TA; ZTA ; �TA)jZ(TA)� = z� > eE �g(STA)jZ(TA)� = z� (3.41)

because we have the strict inequality VAA(TA; ZTA ; �TA) > g(STA) with positive probability and
the inequality VAA(TA; ZTA ; �TA) � g(STA) with certainty.

Finally, in order to obtain the inequality (3.39), we just need to do15:

VTA� =
eE(TA)� [VTA ] > eE(TA)� [g(STA)] � g � eE(TA)� [STA ]� = g (y) : (3.42)

VTA� > g (y)

where VTA� = limt!(TA)� VBA(t; z) and
eE(TA)� [VTA ] = eE �VAA(TA; ZTA ; �TA)jZ(TA)� = z�.

In the Black-Scholes-Merton model without dividend payment but with this kind of news,
we have that the exercise feature for American call is worthless and premium is equal to the
European one with the same characteristics. Moreover, for options where the exercise feature
has some value, this proposition means that the premium will increase at least in some set of
prices.

A crucial assumption is the possibility of no exercise after the announcement. If you know
that you will exercise anyway after the news release, why bother to wait for it? Actually it is
reasonable to have at least a small chance to not exercise after the announcement. For instance,
one may think that the jump has a lognormal distribution. In this case any (open) interval of
S has a positive probability to occur.

On the other hand, there is a greater chance to exercise after the announcement. This is a
consequence of the jump and the change in the price process at the announcement. In the next
sections we analyze this more deeply. For instance, the modeling approach we use for timing
the selling of an asset is quite similar to the above problem.

15Or, in a more complete notation, we have with z = (y; x) :

lim
t!(TA)

�
VBA(t; z) = eE �VAA(TA; ZTA ; �TA)jZ(TA)� = z�

> eE �g(STA)jZ(TA)� = z�
� g

� eE �STA jZ(TA)� = z��
= g (y) :
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3.3 Optimal Strategies Close to Announcement

We established in the previous section some results for American Options when the payo¤ is
convex and there is a risk-neutral measure. In this section we relax those assumptions charac-
terizing general models that use optimal stopping time with a random change at a known and
�xed time. We simplify some de�nitions here using a notation similar to Shreve (2000) in order
to have a more readable text but in Appendix 3A we give a full account.

Let TA be the time of announcement, Zt = (Yt; Xt) be a n+m-dimensional16 process where
Yt is n-dimensional that doesn�t jump at TA a.s., and XTA is a m-dimensional process that jumps
with a positive probability at TA:

Zt = (Yt; Xt); (3.44)

dZt = �(Zt)dt+ �(Zt)dBt +�ZTA�ft=TAg; (3.45)

Z(0) = z0 (3.46)

X(TA) = X(TA�) + �X(TA) (3.47)

Y (TA) = Y (TA�) a.s.

where � and � are function satisfying some regularity conditions ensuring the existence of strong
solution (see Oksendal and Sulem (2007), Theorem 1.19), Bt is a n+m-dimensional Wiener
Process and �X(TA) has a probability distribution depending upon the information FTA�.
Assume that the process has the properties:

E [�jFt] = E [�jZt = z] ; (3.48)

i.e., all the information relevant for the distributions after t is summed up in the value of state
variables at t: (t; Zt = z).

Let f : Rn+m ! R and g : Rn+m ! R be continuous functions satisfying regularity conditions
(see Oksendal and Sulem (2007), Chapter 2) and suppose f � 0 and g � 0. The optimal stopping
problem at time 0 is to �nd the supremum:

v(z) = sup
�2�

Ey
�Z �

0
f((Z(t))dt+ g(Z(�))�f�<1g

�
(3.49)

where �f�<1g is the indicator function and at time t:

V (t; z) = sup
��t

E

�Z �

t
f((Z(t))dt+ g(Z(�))�f�<1gjZt = z

�
: (3.50)

Note that the change in parameters here are inside the process Xt implicitly. For instance,
the risk-free rate of the example in section 3.2 may be regarded as one of the dimensions in Xt.

We make the assumption that the random variable �X(TA) depends only upon Z(TA�),
i.e., given Z(TA�) the jump �X(TA) is independent of Z(TA � s) for any s > 0. Section 3.2
provides an example in which

X(TA) = X(TA�)� (3.51)

16All the proofs consider a probability space (
;F ; P ) and the �ltration Ft and there is no change when Z(t)
is a jump di¤usion in Rn+m given by

dZ(t) = b(Z(t); �(t))dt+ d(Z(t); �(t))dB(t) +

Z
RK
(Z(t�); z; �(t�)) eN(dt; dz); (3.43)

where the jump is explicitly now. We should de�ne also the solvency region. It is an open set S � Rn+m. In
order to simplify the exposition we consider S = Rn+m (all space) and omit it in the main text.
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where � is independent and follows a lognormal. Another assumption (satis�ed by the example
in section 3.3) relates to a continuity property for the jump:

lim
s!TA

Zs;z (TA) = z +�Z(TA) a.s.. (3.52)

We want to characterize the continuation region just before TA and in particular we want to
give su¢ cient conditions for the case when it is never optimal to stop just before the announce-
ment. In the present context we need something similar to the Equation (3.38):

VTA� =
eE(TA)� [VTA ] :

Indeed we have the following:

Lemma 2 (L1) Consider the model described in the present section. Assume further that con-
dition C2 is true (see appendix 3A), that the value function V exists and that V (TA; z) is lower
semi continuous in z. Then:

lim inf
t!TA�

V (t; z) � E [V (TA; ZTA) jZTA� = z] . (3.53)

The proof is technical and is left for the appendix 3A. The condition C2 guarantees that
certain stopping times exists. This condition may hold quite generally but we were not able to
prove it. The lower semi-continuity (l.s.c.) property isn�t very restrictive. Indeed, as there are
no jump after TA, a su¢ cient condition is that g should be l.s.c. (see Oksendal (2003) Chapt.
10). The continuity property on the jump at TA is quite general also.

3.3.1 Main Results

Here we characterize situations in which it is not optimal to stop just before the scheduled
announcement. This is true if

lim inf
t!TA

V (t; z) > g(z) (3.54)

because in this case there is " > 0 such that

V (t; z) > g(z) for t 2 (TA � "; TA): (3.55)

It is useful to de�ne three regions. The �rst one is the set Dp where it is not optimal to
stop at TA with positive probability. In other word, z belongs to this set if the value function
V (TA; ZTA) is greater than g (TA; ZTA) with positive probability.

De�nition 1 De�ne the set Dp as

Dp =
�
z 2 <n+mjP [V (TA; ZTA) > g (TA; ZTA) jZTA� = z] > 0

	
: (3.56)

The other two sets relate only to the function g and the jump. For the elements in the set
D> it is better to stop just after the announcement than just before (when comparing only those
two options), i.e., for z 2 D> we have that E [g (TA; ZTA) jZTA� = z] > g(z). Similarly, for the
element in D�, the agent prefer to stop just after than just before or may be indi¤erent, i.e.,
for z 2 D� we have that E [g (TA; ZTA) jZTA� = z] � g(z). Those sets may be de�ned using
the concept of certainty equivalence as well (note that the certainty equivalent state c (z) is not
unique in some cases).
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De�nition 2 The certainty equivalent c(z) is de�ned implicilty by the equation

g(c(z)) = E [g (TA; ZTA) jZTA� = z] . (3.57)

De�nition 3 De�ne the set D> as

D> =
�
z 2 <n+mjE [g (TA; ZTA) jZTA� = z] > g(z)

	
(3.58)

or, equivalently
D> =

�
z 2 <n+mjg (c(z)) > g(z)

	
(3.59)

De�nition 4 De�ne the set D� as

D� =
�
z 2 <n+mjE [g (TA; ZTA) jZTA� = z] � g(z)

	
: (3.60)

or, equivalently
D� =

�
z 2 <n+mjg (c(z)) � g(z)

	
: (3.61)

With those de�nition we can now enunciate the main proposition. It basically states that
it is not optimal to stop just before the scheduled announcement in two situation: if the state
variable z belongs to D> or if z 2 D� \Dp:

Proposition 3 Consider the model de�ned in the present section and assume as true the hypo-
thesis of lemma L1. Then, it is not optimal to stop just before the announcement if z = Z(TA�)
belongs to D>, i.e.:

lim inf
t!TA

V (t; z) > g (z) for z 2 D>: (3.62)

Moreover if Z(TA�) = z 2 D� \Dp then it is not optimal to stop just before TA, i.e.,

lim inf
t!TA

V (t; z) > g (z) for z 2 D� \Dp: (3.63)

Proof. It generalizes the same steps we did in the previous section:

lim inf
t!TA

V (t; z) � E [V (TA; ZTA) jZTA� = z] (3.64)

� E [g (ZTA) jZTA� = z] (3.65)

� g (c(z)) (3.66)

� g (z) : (3.67)

Then, for z 2 D> the inequality in the last line is strict. Moreover, for z 2 Dp the inequality is

strict in the second line. Finally, for both cases (i.e., for z 2 D> and for z 2 D� \Dp):

lim inf
t!TA

V (t; z) > g (z) . (3.68)

Recall that in order to de�ne Dp we need to know the value function at TA. However we can
�nd a subset of Dp using only the model primitives and use this set instead of Dp in the above
proposition.

Note that if z 2 Dp then P [ZTA 2 CjZTA� = z] > 0 whereC = f(t; z) 2 < � <n+mjV (t; z) > g (z)g
is the continuation region. The Proposition 2.3 in Oksendal and Sulem (2007) de�nes a subset
of the continuation region using only the primitives of the model. Using this subset instead of
C allows us to �nd a smaller set Up � Dp not using the value function at TA.
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De�nition 5 De�ne the set Up as

Up =
�
z 2 <n+mjP [ZTA 2 U jZTA� = z] > 0

	
: (3.69)

where
U =

�
z 2 <n+mjAg + f > 0

	
and A is the generator function associated to process Zt.

In several situations the generator A may be replaced by the di¤erential operator

Af(z) =
X
i

�i(z)
@f

@zi
(z) +

X�
��T

�
ij

@2f

@zi@zj
(z)

where �T is the transpose of �. The next section provides an example. For details about the
operator A we refer to Oksendal and Sulem (2007). With the set U we may establish the
corollary:

Corollary 4 Suppose the hypotheses of proposition above are satis�ed. If Z(TA�) = z 2 D�\Up
then it is not optimal to stop just before TA, i.e.,

lim inf
t!TA

V (t; z) > g (z) for z 2 D� \ Up: (3.70)

In several cases, Dp or D> is all space (or both). It is true, for instance, if g is convex, the
jump size expectation is zero (E [ZTA jZTA� = z] = z) and it isn�t optimal to exercise at TA with
positive probability. This is the case for American Options with convex payo¤ in the risk-neutral
measure. Moreover, if g(z) = g(y), i.e. if the payo¤ doesn�t depends upon variables that jumps
at TA, then D� is all space.

Another interesting case is when g is CRRA (Constant Relative Risk Aversion):

g(x0) =

�
x0
�


. (3.71)

where x0 is a homogeneous scalar function of degree 1 in Zt,  2 (0; 1) (remember that g(x0) � 0)
and the jump at TA is

x0 (ZTA) = x
0(ZTA�)� (3.72)

where � is independent of ZTA�. In this case, the certainty equivalent has a nice property. If

E

"�
x0
�


jZTA� = z
#
=
c


(3.73)

then

E

"�
x0
�


jZTA� = 2z
#
=
(2c)


: (3.74)

We sum up those observations in the following corollary:

Corollary 5 Suppose the hypotheses of proposition above are satis�ed. Then we have:
(i) if g is increasing, convex and E [ZTA ] � ZTA� then it is not optimal to stop for ZTA� =

z 2 Dp;
(ii) If the payo¤ doesn�t depends upon the variable that jumps, i.e., if g(z) = g(x; y) = g(y)

then it is not optimal to stop for ZTA� = z 2 Dp;
(iii) If the payo¤ is a CRRA function, i.e., g(z) = (x0(z))

 = where x0(z) is homogeneous
scalar function of degree 1 in z, if the jump has the property that x0 (ZTA) = x

0(ZTA�)� and if
c(1) > 1 then it is never optimal to stop just before TA.
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3.4 Another Application in Finance

The objective of the present section is twofold. First, it is an example of the above results.
It applies the corollaries and de�nes the generator operator for one particular case. Second, it
discusses a possible modeling for an agent who wants to sell an asset highlighting the incentives
when there is a scheduled announcement. For the most part we explore the case in which the
price doesn�t jump with the announcements. It highlights some incentives and makes the results
more clear. However in the last subsection we make comments on more general cases.

3.4.1 The Optimal Time to Sell with Transaction Cost

We will consider a problem of one agent (or investor) that wants to sell its portfolio and there
is an information being released at a known date TA. We are interested in his behavior around
the date TA. To be more clear, we want to show that selling just before TA is less likely in
some sense and may never be optimal in some circumstances. To simplify, we will consider that
the portfolio has only one asset, the utility is linear and is obtained when the investor sells the
portfolio at time � :

J� (x) = Es;x
�
e��� (X(�)� a)

�
(3.75)

where X(t) is the price of the asset at time t, � is the discount factor, a is the �xed cost to sell
the asset, Es;x[:] is the expectation operator conditional to information Fs obtained at s when
X(s) = x, and � is a stopping time.

The asset follows a Geometric Brownian Motion :

dX(t) = X(t�) [�(t)dt+ �dB(t)] X(s) = x > 0 (3.76)

where B(t) is the Wiener process, � and  are constants, the function �(t) is constant before
and after T . The impact of information on market is a random change on the coe¢ cient �(t)
at TA. It is described as:

�(t) = �0 if t < TA (3.77)

�(t) = � if t � TA (3.78)

where � is a random variable with uniform distribution in the interval [�; �) with 0 < � < � � �,
and �0 < �.

Note that for � = � we have the same problem as pricing American calls.

3.4.2 Solution Without Information Release

The problem without information release is the same as the example 2.5 of Oksendal and Sulem
(2007). The only di¤erence is that �(t) = �0 for all t. We�ll give the solution here because we
will need it later.

Notice that it is never optimal to sell if � < � even if the cost a is zero (in this case
J�=1 = 1) and obviously it is never optimal to sell the asset if its price X is less than the
cost a for any time (eventually the price will be more than a). We will call the continuation
region DnoNews � <2 as the set of time and prices that is not optimal to sell the asset (i.e. the
continuation region). Oksendal and Sulem (2007) shows that:

CnoNews = f(s; x) : x < x�g (3.79)

where x� is de�ned below and doesn�t depend upon time. This is consistent with the assertive
that the problem faced by the agent at time s1 with X(s1) = x is the same at time s2 with
X(s2) = X(s1) = x. The solution for J� = sup� J

� is:

J�(s; x) = e��sCx�1 if 0 < x < x� (3.80)

J�(s; x) = e��s(x� a) if x� � x (3.81)
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where �1 is the solution of

0 = ��+ ��1 +
1

2
��1(�1 � 1) (3.82)

and

x� =
�1a

�1 � 1
; (3.83)

C =
1

�1
(x�)1��1 : (3.84)

Finally, if � = �, it is never optimal to sell the asset and J�(s; x) = J�=1 = xe��s.

3.4.3 When It Is Not Optimal to Sell Close to T

When �(t) changes randomly at T , the continuation region is no longer constant over time.
Nonetheless for s > TA the optimization problem is the same as in the previous section and is
never optimal to sell in the region:

f(s; x; �) : x < x�(�); s > TAg : (3.85)

Notice that we add � to the notation. The solution is the same above:

J�(s; x; �) = e��sC(�)x�1(�) if 0 < x < x�(�) and s > TA (3.86)

J�(s; x; �) = e��s(x� a) if x�(�) � x and s > TA (3.87)

where �1(�) is the solution of

0 = ��+ ��(�) + 1
2
��(�)(�(�)� 1) (3.88)

and

x�(�) =
�(�)a

�(�)� 1 ; (3.89)

C(�) =
1

�(�)
(x�)1��(�): (3.90)

Note that the payo¤ depends on the prices that does�t jump. Then we have the case in
the item (ii) of the corollary 5 and it is only necessary to characterize Dz. But this is easy, if
x�(�) > x = XTA� with positive probablity, then x 2 Dz. This is true if

x < sup
�<���

fx�(�)g = x�(�): (3.91)

We con�rm this result below solving it numerically.

And If the Solution After TA Isn�t Known?

In general the solution after TA isn�t known. On those cases it is possible to characterize subset
of the inaction region (see Oksendal and Sulem (2007) for details). For this purpose, de�ne the
generator operator A as

Ag(s; x) =
@g

@s
+ �(s)x

@g

@x
+
1

2
�x2

@2g

@x2
; (3.92)

where g = e��� (X(�)� a) and de�ne the set U as:

U =
�
(x; s; �) 2 R+ � R+ � R+jAg + f > 0

	
(3.93)
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where f = 0 in our problem. The proposition 2.3 in Oksendal and Sulem (2007) tell us that
U � C, i.e., it is never optimal to stop when (x; s; �) 2 U . We �nd that:

Ag + f = e��s ((�� �)x+ �a) (3.94)

and U is:

U� =

�
(x; s; �)jx < �a

�� �

�
: (3.95)

Realize that if �(s) = �, the continuation region after T is:

f(s; x) : x <1; s > TAg : (3.96)

3.4.4 Numerical Solution

Algorithm Overview

Oksendal and Sulem (2007) provide a su¢ cient conditions for a function to be a solution of the
above problem. Those conditions are called integrovariational inequalities for optimal stopping
time and are characterized by the formulas

max (A�; g � �) = 0 (3.97)

C =
�
(s; x) 2 R+ �R+j�(s; x) > g(s; x)

	
(3.98)

along with regularity conditions, where A is de�ned as above. Realize that the problem isn�t
only to �nd �, but to �nd the region C as well, i.e., �nding the right boundary conditions is
part of the problem .

We want to solve it numerically using some kind of �nite di¤erence approximation for the
operator A. Nonetheless, the usual methods cannot be applied directly because the boundary
conditions aren�t de�ned from the outset. In pricing American Options, it is common to over-
come this di¢ cult using the so called Projected Successive Over Relaxation, a generalization
of the Gauss�Seidel method. Nonetheless, we will use a policy iteration algorithm provided by
Chancelier et al. (2007). We detail the method in appendix 3B but we give an overview here.

In our case this is done by considering a rectangular grid. The equation above is rewritten as
max (Ah�h; gh � �h) = 0 and Ch = f(s; x) belongs to gridj�h(s; x) > gh(s; x)g 17.This problem
is equivalent to a better behaved one, de�ned as:

�h = max

��
Ih +

�Ah
1 + ��

�
�h; gh

�
(3.99)

where 0 < � � min 1
j(Ah)ii+�j

, and I� is the identity operator (Ihvh = vh). The solution is

found iteratively: in the �rst iteration, de�ne D1h and solve
�Ah
1+���

1
h = 0 for (s; x) 2 C1h de�ning

�1h = gh(s; x) for (s; x) 62 C1h . In the second iteration, de�ne D2h as the points in the grid
that

�
Ih +

�Ah
1+��

�
�1h > gh(s; x), then solve

�Ah
1+���

2
h = 0 for (s; x) 2 C2h de�ning �

2
h = gh(s; x)

for (s; x) 62 C2h. Keep iterating until it converges. Chancelier et. al. (2007) shows that this
procedure converges to the right solution.

For s < TA we assume that

lim
s!TA�

�h(s; x) = E [�h(TA; x)] : (3.100)

17The subscript � denotes the approximation of functions or operators de�ned on the grid.
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Table 3.1: Two Parameters Con�gurations.

Parameter Case 1 Case 2
� 0.1 0.1
� 0.4 0.4
� 0.12 0.12
a 10 10
T 10 10
� 0 0.095
� 0.11 0.11

We don�t prove this statement but lemma L1 implies that lims!TA� �h(s; x) � E [�h(TA; x)].
Then we are assuming a lower bound if the equality in equation (3.100) does not hold. In this
case the numerical solution would have a downward bias when compared to the true solution.
This bias lead to a smaller continuation before the announcement. As some of ours analysis are
based on how big is C before the announcement our results are conservative.

Numerical Results

Solution is found for two con�gurations of parameters (see table table 3.1). Notice that the only
di¤erences in the two cases are the parameters �.

The �gure 3.1 shows the region C1. It is interesting to compare C1 with the continuation
region CnoNews for the problem without information release and the same parameters. To this
end a dashed horizontal line at price x�(� = 0:1) = 104.24 represents the upper boundary of
CnoNews. We can separate three interesting regions in the time. When the information is far
(in our case, for t = 0) C1 is similar to CnoNews, but lays a little below. Then, C1 make an U
shape and �nally increases getting close to price x�(� = :11) = 204:1211 at the time TA. The
�gure 3.2 shows the di¤erence between the value functions for parameter in case 1 (table 3.1)
and for the model without information release with contour curves18 for z = V1 � VnoNews. For
z > 0 it means that V1 > VnoNews and it happen only at a small region close to TA. For the
most part z = 0 or z < 0.

For the most part of time the agent isn�t better o¤ when compared to the case without
announcement: This is explained by the choice of the parameter � as zero. In this case, it is
much more likely that the parameter �T will be less than � by a good amount19, making the
agent worse o¤. This e¤ect is damped when the announcement is far because it is more likely
to sell the asset before T . When the time is close to the announcement the agent will probably
sell the asset in an adverse environment because �T will probably be lower. Nonetheless, when
the price is "high"(i.e. the price is close to the boundary of Dsim1) for a time close to the news,
others incentives enter into play. In this case, the agent would sell the asset for this "high"price
but can wait a little to see if the realization of �T makes him better o¤. In a good realization, the
agent probably will "make some money"taking more time to sell the asset. In a bad realization
the investor sells it right away, and the "loss"taken to wait a little is probably small. In other
words, on those situation, it is worth to wait a little for more information.

The �gures 3.3 and 3.4 are of the same type as �gures 3.1 and 3.2, respectively. The odds
now are in favour to make �T higher than � in a good amount. The agent now is always better
o¤ when compared with the case without information release. Realize that CnoNews � C1 and
18A contour line (also isoline) of a function of two variables is a curve along which the function has a constant

value.
19A good amount, when compared to the possibles �T higher than �.
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Figure 3.1: The �gure shows the continuation regions for the parameters in table 3.1, case 1. The
solid line and the dashed line represents the upper boundary of C1 and CnoNews respectively.
The inside graph shows a more detailed simulation close to the announcement.
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Figure 3.2: Contour line (or isoline) for z = V1 � VnoNews. Realize that z is greater than zero
only in a small region.
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Figure 3.3: Continuation regions for the numerical solution for parameters in case 2, table 3.1.
The solid line and the dashed line represents the upper boundary ofC2 andCnoNews respectively.
The inside graph shows a more detailed simulation close to the announcement.

Figure 3.4: Contour line (or isoline) for z = V2 � VnoNews. Realize that z � 0 in all region.
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that the boundary increases monotonically with time until TA. When the news is far from being
released, C1 is similar to CnoNews and value function is just a little bit higher. For "high "prices
it may be worth to wait a little more as the incentive to sell is weakened. As the announcement
gets closer, the possibility of sell at even higher prices if �T > � makes the continuation region
get wider at a faster pace.

In both cases, the boundary of continuation region increases and gets close to x�(� = :11) =
204:1211 as the time gets close to TA.

3.4.5 Interpretations

This behavior illustrates the incentive an agent face when trying to sell an asset given that
he/she knows the price won�t jump but the process will change somehow. That simpli�cation
has the purpose of intepret some incentives avoiding the analysis of the e¤ect of jumps. In this
case, the main bene�t is to wait a little more and sell for a better price. If the news a¤ects
negatively the trend of the price, usually it is better to sells immediately after the news. If we
can summarize the result in one statement, it would be that the agent prefers to sell with more
information as long as waiting for such thing has low a risk.

We considered a special case where price doesn�t jump and the agent is risk-neutral. More
generally the results applies if the agent has a CRRA utility function and the price jumps with
positive average (big enough to account for risk aversion). It is interesting to mention that
Bamber et al. (1998) �nds that only at one quarter of time the prices had a sudden impact.
Then it is probable the investors are in a situation between the no jump and the case with a
positive average jump.

3.5 Discussion

Under mild conditions, optimal stopping time problems entail a time and state dependent rule:
it is optimal to stop whenever the process goes out the continuation region. It implies a higher
chance to stop at jumps regardless it happens at �xed or random times. On the other hand, it is
harder going out the continuation region when it is bigger (in general) and the main message of
the present work is that it is indeed bigger just before a �xed jump for some common situations.
In other words, it is less probable to stop before a �xed (and known) jump time when compared
to �normal� times for some common cases. Moreover, it is possible to predict this behavior
without solving the problem in some cases by applying the generator operator to the reward
function.

Such time state dependent rules may arise in several economic situations. For instance it
is true in resetting price models with menu cost or optimal portfolio problems with �xed cost.
Although those problems may be considered as a sequence of optimal stopping time, we are
analyzing here the simplest case of single stopping. This might be a good way to model agents
who wants to sell an asset (such as a house or a stock) specially in the presence of �xed cost.

Based on empirical evidence, it is reasonable to assume that prices jump (with positive
probability) when relevant information hits the markets. It is true for corporate or market
events containing relevant information whether it is a scheduled one or not. Then any investor
with state dependent strategy has a higher chance to trade at those times or a little after. This
might be an important piece in the explanation of higher volume after announcements. Note that
there is no need to incorporate information asymmetries or di¤erence in opinion to obtain the
time and state dependent rules. Those considerations are also valid for the decrease in volume
before the scheduled announcements, especially in the presence of the type of investor analyzed
here. They may prefer to trade only after the announcement even if there is no asymmetry or
no chance to engage in an adverse transaction before the event with a more informed investor.
Another possible incentive is the average positive price change as is documented in the earning
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announcement premium (see, for instance, Frazzini and Lamont (2007) or Barber et al. (2013)).
We focus on the price as the important state because its role and behavior are clearly

observed. Nonetheless other state variable may be considered as well. Some investor may focus
their strategies on some fundamental signal such as book-to-value or price-to-earnings. It is
even possible to consider some qualitative state such as belonging to an index or the existence of
some legal issue. Then, even without change in prices, announcements might spur trades after
and decrease volume before it.

3.6 Conclusion

In the present work we investigate the optimal stopping time in continuous time models when
there is a jump at a �xed and known date. We characterize the continuation region a little
before the jump showing that it is better not to stop just before the news in several situations
of interest. Moreover in order to verify such characteristic in a model one needs only to apply
the generator operator to the reward function without solving the problem.

These results are used to analyze some �nancial situations as empirical �ndings suggest
that the price jump with positive probability at scheduled announcement. American Options
are modeled as an optimal stopping time problem and we show that if the payo¤ is convex
then it is never optimal to exercise just before the announcement. Moreover, we want to add
some theoretical observations about the behavior of the volume around the announcements.
Several authors stress out the role of agents with exogenous reasons for sell an asset and we
model these investors as facing an optimal stopping time problem. Using the general results we
argue that such investors may prefer to transact after the announcements. It happens because
the agent "wants"to know the changes caused by the announcement and because the agent
"wants"to gather the positive premium usually associated with announcements (such as the
earnings announcements premium). Moreover we give the numerical solution for the case of a
risk neutral investor facing a �xed costs and use a relatively recent numerical method.

Much of the intuition comes from the time and state dependent strategy implied by the op-
timal stopping times solution. Such strategies are pervasive in economic especially in situations
where some sort of cost (e.g., �xed cost) exist. For instance, a portfolio problem similar to
Merton (1969) but with �xed cost imply an optimal impulse problem combined with optimal
stochastic problem. To analyze those type of problems when there are a jump at �xed and
known date are subject of future research.

3.A Precise De�nitions and Proofs

The objective of the present appendix is to de�ne precisely the elements of section 3.3 and
extend it to the jump-di¤usion case. The de�nitions are quite general but we make clear what
assumption is being used. In particular we make precise the general condition the jump at the
announcement (time TA) should satisfy.

The �rst step towards proving lemma L1 is to show an inequality on V (t; Zt) where V (t; z) is
the Value Function. This inequality is similar to the property of supermartingales. Note that Zt
is the solution of a stochastic di¤erential equation (SDE) and a more complete notation would
be Zs;zt where the superscript s; z means that Zs;zt is the value of the process at t with the initial
condition Z(s) = z.

Finally we make the assumption that V (t; z) is lower semi-continuous (l.s.c.) in z for t = TA
and that the jump at TA has some continuity properties. Npte that the lower semi-continuity
property isn�t very restrictive. For instance, if g is l.s.c. and the process Zt has no jump after
TA then V (t; z) is l.s.c. for t � TA (see Oksendal (2003) Chapt. 10). The continuity property
on the jump at TA is quite general also.
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3.A.1 De�nitions

Consider the probability space (
;F ; P ) and the �ltration Ft. Fix an open set S � Rn+m (the
solvency region) and let Z(t) be a jump di¤usion cadlag process in Rn+m given by

dZ(t) = �(Z(t))dt+ �(Z(t))dB(t) +

Z
Rn+m

(Z(t�); z0) eN(dt; dz0); (3.101)

Z(s) = z 2 Rn+m; (3.102)

where b(:), �(:) and (:) are functions such that a unique solution to Z(t) exists (see
Oksendal and Sulem (2007), Theorem 1.19), B(t) is the n+m dimensional Wiener process andeN is the compensated Poisson random measure.

The integral incorporates jumps into the process. In order to de�ne the compensated Poisson
random measure completely, we de�ne the Poisson random measure N(t; U) as the number of
jumps of size �Z 2 U (where U is a borel set whose closure doesn�t contain the origin) which
occur before or at time t. We need the Levy measure also:

� (U) = E [N(1; U)] (3.103)

where U is a borel set whose closure does not contain the origin. There is R 2 [0;1] whereeN(dt; dz) = N(dt; dz)� � (dz) dt if jzj < R (3.104)

= N(dt; dz) if jzj � R (3.105)

and z is inside the integrand. For more details we refer to Protter (2003) and Oksendal and
Sulem (2007).

The process Zt (recall that Zt = Z(t)) is divided in two process: Xt 2 <m that jump with
positive probability at TA; and Yt 2 <n that doesn�t jump at TA almost surelly

Z(t) = (Y (t); X(t)) ; (3.106)

Y (TA) = Y (TA�) a.s. (3.107)

X(TA) = X(TA�) + �X(TA); (3.108)

where �X(TA) 6= 0 with positive probability and �X(TA) is FTA�measurable random variable.
A more complete notation is Zs;z(t) indicating that it is a solution of the SDE in equation
(3.101) with the initial condition Z(s) = z, i.e.,

Zs;y(t) = z +

Z t

s
�(Z(t))du+

Z t

s
�(Z(u))dB(u) +

Z t

s

Z
Rn+m

(Z(u�); z0) eN(du; dz0): (3.109)

The expecation operator Es;z [h (Zt)] is de�ned as20

Es;z [h (Zt)] = E [h (Z
s;z
t )] : (3.110)

We make the assumption that the random variable �X(TA) depends only upon Z(TA�),
i.e., given Z(TA�) the jump �X(TA) is independent of Z(TA � s) for any s > 0. Section 3.2
provides an example in which

X(TA) = X(TA�)� (3.111)

where � is independent from X(t) for t < s and that the conditional distribution is lognormal.
Another assumption (satis�ed by the example in section 3.3) relates to a continuity property:

lim
s!TA

Zs;z (TA) = z +�Z(TA) a.s.. (3.112)

20We will write Ey;s[h(Y (t))] and E[h(Y s;y(t))] interchangeably.
I�m following the notation used in Shreve (2004), Stochastic Calculus for Finance II. This expectation is de�ned

on chapter 6, page 266.
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Let
�Ss;z = inf ft > sjZs;y(t) 62 Sg : (3.113)

For notation sake, �S will be used instead of �Ss;z whenever it is clear which (s; z) is the right
one. For instance Es;z [h (�S)] = Es;z

�
h
�
�Ss;z
��
unless state otherwise explicitly.

Let f : Rn+n ! R and g : Rn+m ! R be continuous functions satisfying the conditions:

Es;z
�Z �S

s
f(Y (t�))dt

�
<1 for all z 2 Rn+m and s � 0 (3.114)

and assume that the family
n
g(Z(��))�f�<1g

o
is uniformly integrable for all z 2 Rn+m, where

�f:g is the indicator function and f(Y (t�)) = lims!t� f((Y (s)). We assume further that f � 0
and g � 0.

Let �s;z be the set of of all optimal time s � � � �Ss;z and de�ne the utility (or performance)
function as

J� (s; z) = Es;z
��Z �

s
f((Z(t))dt+ g(Z(�))�f�<1g

�
�f��sg

�
: (3.115)

The general optimal stopping problem is to �nd the supremum:

V (s; x) = sup
�2�s;ys

J� (s; z); z 2 Rn+m: (3.116)

Note that for s � TA we have the same situation as in Oksendal and Sulem (2007), chapter 2,
and if there is no jump, it is the same as in Oksendal (2003), chapter 10, and all results therein
applies.

3.A.2 Proof of Lemma L1

It is important to emphasize the assumption about the limiting behavior:

Condition 6 (C1) The jump at TA has the limiting behavior

lim
s!TA

Zs;z (TA) = z +�Z(TA) a.s.. (3.117)

We need another condition relating the utility function at two di¤erent times. For instance,
we want to compare J�1 at s and something like J�2 at t for s < t. However there are some
details in how to compare �1 and �2 as each one belongs to di¤erent sets: �s;z1 and �t;z2

respectively. Another di¢ culty in the de�nitions lies on how to relate z1 and z2. We solve it
by considering z1 = z and z2 = Zs;zt and, in turn, the sets �s;z and �t;Z

s;z
t . In this case the

stopping time �2 may depend upon Z
s;z
t . In order to obtain our results we conjecture that the

following is true:

Condition 7 (C2) Let �2(Z
s;z
t ) 2 �t;Z

s;z
t . For s < t, there is �1 2 �s;z such that:

Es;z
�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
� Es;z

h
�f�Ss;z�tg

�
J�2(Z

s;z
t )(t; Zs;zt )

�i
:

(3.118)
where a ^ b = min(a; b),

Given the condition C2 (and that f � 0) we obtain an inequality for �f�Ss;z�sgV (t; Z
s;z
t ) that

is important to what follows:

Lemma 8 Consider the model de�ned in the �rst section of this appendix. If condition C2 holds
then we have for s < t

V (s; z) � Es;z
h
�f�Ss;z�tgV (t; Z

s;z
t )
i

(3.119)



68

Proof. There are two cases: V (t; Zs;zt (!)) < 1 a.s. and V (t; Zs;zt ) = 1 with positive
probability (where ! 2 
).

- Case 1: V (t; Zs;zt (!)) <1 a.s.:
As V (t; Zs;zt (!)) <1 a.s., for each " > 0 there is �2 (Z

s;z
t (!)) 2 �t;Z

s;z
t (!) with the property

J�2(t; Zs;zt (!)) > V (t; Zs;zt (!))� ": (3.120)

and

Es;z
h
�f�Ss;z�tgJ

�2(t; Zs;zt )
i
> Es;z

h
�f�Ss;z�tgV (t; Z

s;z
t )
i
� "Es;z

h
�f�Ss;z�tg

i
(3.121)

Condition C2 guarantees that for each �2 = �2(Z
s;z
t ) 2 �t;Z

s;z
t there is �1 2 �s;z such that:

Es;z
�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
� Es;z

h
�f�Ss;z�tgJ

�2(Z
s;z
t )(t; Zs;zt )

i
;

(3.122)
this implies:
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�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
> Es;z

h
�f�Ss;z�tgV (t; Z

s;z
t )
i
�"Es;z

h
�f�Ss;z�tg

i
then

sup
�12�s;z

Es;z
�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
(3.123)

> Es;z
h
�f�Ss;z�tgV (t; Z

s;z
t )
i
� "Es;z

h
�f�Ss;z�tg

i
:

As this is true for all " > 0 we have that

sup
�12�s;z

Es;z
�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
� Es;z

h
�f�Ss;z�tgV (t; Z

s;z
t )
i
:

(3.124)
Now we need to show that V (s; z) is greater than or equal to the l.h.s. in the above equation.

Note that for any �1 2 �s;z we have

V (s; z) � Es;z
�Z �1

s
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

�
� Es;z

�
�f�Ss;z�tg

�Z �1

s
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
� Es;z

�
�f�Ss;z�tg

�Z t^�1

s
f(Zt;z(t))dt+

Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
� Es;z

�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
where the last inequality is true because

R t^�1
s f(Zt;z(t))dt � 0 a.s.. As it is valid for any

�1 2 �s;z, it is valid also for the supremum:

V (s; z) � sup
�12�s;z

Es;z
�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
and comparing with inequality 3.124 we have �nally

V (s; z) � Es;z
h
�f�Ss;z�tgV (t; Z

s;z
t )
i
:
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- Case 2: V (t; Zs;zt ) =1 with positive probability
For ! in which V (t; Zs;zt (!)) = 1 we have that for k > 0 there is �2(Z

s;z
t ) 2 �t;Z

s;z
t such

that
J�2(!)(t; Zs;zt (!)) > k: (3.125)

and for ! in which V (t; Zs;zt (!)) <1 we have �2(!) 2 �t;Z
s;z
t such that

J�2(!)(t; Zs;zt (!)) > V (t; Zs;zt (!))� ": (3.126)

By condition C2 we can make

Es;z
�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
� Es;z

h
�f�Ss;z�tg

�
J�2(Z

s;z
t )(t; Zs;zt )

�i
;

and

Es;z
�
�f�Ss;z�tg

�Z �1

t^�1
f(Zt;z(t))dt+ g(Zt;z(�1))�f�1<1g

��
> kEs;z

h
�f�Ss;z�tg�fV (t;Zs;zt )=1g

i
:

This is possible to make for all k > 0. If Es;z
h
�f�Ss;z�tg�fV (t;Zs;zt )=1g

i
> 0 then we have

V (t; z) =1. (3.127)

On the other hand, if Es;z
h
�f�Ss;z�tg�fV (t;Zs;zt )=1g

i
= 0,
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��
� Es;z

h
�f�Ss;z�tgV (t; Z

s;z
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i
�"Es;z

h
�f�Ss;z�tg

i
and the arguments of the case 1 applies.

Now we generalize the lemma L1 to the the jump-di¤usion case. First we prove a statement
using a sequence of time converging to TA.

Lemma 9 Assume as true the conditions in the previous proposition and that V (TA; z) is
measurable in z. Then for any sequence fuig1i=1 such that ui < T and limui = T :

lim inf
i!1

V (ui; z) � E
�
lim inf

i!1
V (TA; Z

ui;z(TA))�f�Sui;z�TAg

�
. (3.128)

Proof. Using the lemma above:

V (u; z) � Eu;z
h
V (TA; ZTA)�f�S�TAg

i
: (3.129)

Remember that

Eu;z
h
V (TA; ZTA)�f�S>TAg

i
= E

h
V
�
TA; Z

u;z
TA

�
�f�S�TAg

i
: (3.130)

As the inequality (3.129) is valid for all 0 � u < TA, we have that:

lim inf
i!1

V (ui; z) � lim inf
i!1

E
h
V
�
TA; Z

ui;z
TA

�
�f�S�TAg

i
(3.131)

We want to use Fatou�s lemma in the next step. Then we need to verify that V
�
TA; Z

ui;z
TA

�
�f�S�TAg �

0 a.s. and that it is measurable. As f � 0 and g � 0; we have that V
�
TA; Z

ui;z
TA

�
�f�>Tg � 0.

Moreover, V
�
TA; Z

ui;z
TA

�
�f�S>Tg is FTA�measurable random variable as it is a compositions of
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a measurable function V (TA; �) with a FTA�measurable random variable Zui;zTA
. Then, for any

sequence fuig1i=1 such that ui < TA and limui = TA we have that:

lim inf
i!1

V (ui; z) � E
�
lim inf

i!1
V (TA; Z

ui;z(TA))�f�S�TAg

�
: (3.132)

The next two lemmas are similar to the lemma L1 in section 3.3. The statement explicitly
mentions the solvency region. In the �rst version of the lemma the solvency region is all the
space as is implicitly assumed in section 3.3. In the second version the solvency region may be
any open set constant through time.

Lemma 10 (L1�) Consider the model de�ned in �rst section of this appendix and assume the
conditions C1 and C2 as valid. Moreover assume that V (TA; z)�f�S�TAg is FTA�measurable
and lower semi-continuous in z and that the solvency region S is all space. Then:

lim inf
s!TA�

V (s; z) � E [V (TA; z +�Z(TA; z))] (3.133)

Proof. By condition C1 we have

lim
s!TA

Zs;z (TA) (!) = z +�Z(TA)(!) a.s.. (3.134)

Then, by properties of l.s.c. function (and noting that �f�S�TAg = 1 because the solvency region
is all space) , we have

lim inf
i!1

V (TA; Z
ui;z(TA)(!))�f�S�TAg � V

�
TA; lim inf

i!1
Zui;z(TA)(!)

�
� 1 (3.135)

� V (TA; z +�Z(TA)(!))

or
lim inf

i!1
V (TA; Z

ui;z(TA)) � V (TA; z +�Z(TA)) a.s. (3.136)

Then, the previous lemma implies that

lim inf
i!1

V (ui; z) � E

�
lim inf

i!1
V (TA; Z

ui;z(TA))�f�S�TAg

�
(3.137)

� E

�
lim inf

i!1
V (TA; Z

ui;z(TA))

�
� E [V (TA; z +�Z(TA))]

as this inequality is valid for all sequence fuig converging to the announcement time limi ui =
TA,then it is also valid for the time limit lim s = TA.

lim inf
s!TA�

V (s; z) � E [V (TA; z +�Z(TA))] : (3.138)

Lemma 11 (L1�) Consider the model de�ned in �rst section of this appendix and assume the
conditions C1 and C2 as valid. Assume that V (TA; z)�f�S�TAg is FTA�measurable and lower
semi-continuous in z. Moreover, assume that the solvency region S doesn�t depend upon time.
Then for z 2 S or z 62 S (where S is the closure of S) we have

lim inf
s!TA�

V (s; z) � E
h
V (TA; z +�Z(TA; z))�fz2Sg

i
(3.139)
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Proof. If z 2 S (recall that S is an open set), then for all ! such that

lim
s!TA

Zs;z (TA) (!) = z +�Z(TA)(!) (3.140)

there is s� such that
Zs

�;z (t) 2 S for s� � t < TA: (3.141)

In this case

lim inf
i!1

V (TA; Z
ui;z(TA)) (!)�f�S�TAg(!) = lim inf

i!1
V (TA; Z

ui;z(TA)) (!) (3.142)

� V (TA; z +�Z(TA)(!))

= V (TA; z +�Z(TA)) (!)�fz2Sg(!):

By other side, if z 62 S, it is trivially true that

lim inf
i!1

V (TA; Z
ui;z(TA)) (!)�f�S�TAg(!) � 0 (3.143)

= V (TA; z +�Z(TA)) (!)�fz2Sg(!):

because the value function is greater than zero.
Finally, applying the same steps as in the proof of Lemma L1�we have

lim inf
s!TA�

V (s; z) � E
h
V (TA; z +�Z(TA; z))�fz2Sg

i
: (3.144)

3.B Numerical Algorithm

In this appendix we describe the numerical algorithm in details for the case studied in section
3.4. The algorithm�s properties are developed in Chancelier et al. (2007) and are described
in Oksendal and Sulem (2007, Chapter 9) as well. First we describe the time invariant case
(consistent with t � TA) and then we incorporate the time variation.

3.B.1 Discrete De�nitions

For t � TA we have the analytical solution but we provide the algorithm for this case and then
discuss the di¤erence for t < TA. We shall solve the quasivariational inequality

max fA�; g � �g = 0 (3.145)

where the generator21 A is

A� =
@�

@s
+ �x

@�

@x
+
1

2
�x2

@2�

@x2
; (3.146)

and de�ne the continuation region

C =
�
(s; x; �) 2 R+ �R+ �R+j�(s; x) > g(s; x)

	
: (3.147)

Later we will de�ne a grid but for now consider a "small"h > 0 and ht > 0 and de�ne a discrete
version of A as

Ahv = @
ht
t v + �x@

h
xv +

1

2
�2x2@2;hxx v; (3.148)

21Strictly speaking, the generator isn�t a di¤erential operator. Nonetheless it coincides in the set of twice
di¤erentiable functions with compact support. See theorem 1.22 in Oksendal and Sulem (2007).
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where

@htt v(s; x) =
v(s+ ht; x)� v(s; x)

ht
; (3.149)

@hxv(s; x) =
v(s; x+ h)� v(s; x)

h
; (3.150)

@2;hxx v(x; y) =
v(s; x+ h)� 2v(s; x) + v(s; x� h)

h2
: (3.151)

Let Th(s; �) be the discrete version of a temporal slice of C

Th(s; �) =
�
ihje��s (Ah�� ��) > e��sbg(x)� e��s�	 :

where e��sbg(x) = g(s; x) and �(s; x) = e��s�(x).
Re�nements for t � TA
In our case, it is possible to make a transformation after TA

�(s; x) = e��s�(x) (3.152)

and

A�(s; x) =
@ [e��s�(x)]

@s
+ e��s�x

@�(x)

@x
+ e��s

1

2
�x2

@2�(x)

@x2
(3.153)

A�(s; x) = ��e��s�(x) + e��s@ [�(x)]
@s

+ e��s�x
@�(x)

@x
+ e��s

1

2
�x2

@2�(x)

@x2
:

A�(s; x) = e��sA�� �e��s�(x) (3.154)

Now we have an ordinary di¤erential equation in x. In the region where A�(s; x) = 0 we may
rewrite

A�(s; x) = 0 (3.155)

if, and only if
A�� ��(x) = 0: (3.156)

and in the discrete verstion

Ah�� ��(x) = 0 (3.157)

�x@hx�(x) +
1

2
�2x2@2;hxx �(x)� ��(x) = 0: (3.158)

The computer can�t handle an in�nite number of elements. Then we will truncate the
problem. De�ne the grid as Dh = (ih) where i 2 f0; :::; Ng and N are large enough to not
compromise the results or to entail a small error. It is necessary to de�ne a boundary condition
at x = Nh. At the boundary of Dh we will consider the Neumann boundary condition

@�

@x
(Nh) = 0: (3.159)

Fortunately this boundary condition is innocuous for the numerical results in section 3.4 because
the continuation region is smaller then Dh. Remember that the region U is a sub-set of the
continuation region and is de�ned as

U =
�
(x; s; �) 2 R+ � R+ � R+jAg + f > 0

	
(3.160)

and we can de�ne a discrete version (in our case f = 0) at time s

Uh(s; �) = fihjAhg(ih)� �g(ih) > 0g : (3.161)
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Note that for t � TA the set Uh above doesn�t change with time. If possibe Dh shall be greater
than Uh (this is indeed the case for the section 4).

Then the integrovariational inequality

max
�
e��s (Ah�� ��) ; g � e��s�

	
= 0 (3.162)

may be written as

Ah� (ih)� �� (ih) = 0 for ih 2 Th; (3.163)

e��s� = g for ih =2 Th: (3.164)

and the slice of the continuation region is de�ned by

Th(s; �) =
�
ihje��s (Ah�� ��) > e��sbg(x)� e��s�	 (3.165)

where g(s; x) = e��sbg(x). Note that Th doesn�t depend upon time after TA.
3.B.2 The Algorithm

After de�ning the elements, the de�nition of the algorithm are now in order. Given the solution �
it is possible to �nd the continuation region Th(s; �). On the other hand, given the continuation
region, it is possible to �nd the solution �. It seems a �xed point problem and one can guess
if there is an iteration procedure leading to �. Indeed Chancelier et al. (2007) shows that a
slight di¤erent but equivalent problem has this feature. Instead of using the integrovariational
inequality (3.162) one can use a better behaved and equivalent problem

�h(x) = max

��
Ih +

�(Ah � �)
1 + ��

�
�; bg� (3.166)

where 0 < � � min 1
j(Ah)ii+�j

, and I� is the identity operator (Ihvh = vh).
Again, this implies

Ah� (ih)� �� (ih) = 0 for ih 2 Th; (3.167)

e��s� = g for ih =2 Th: (3.168)

but the slice of the continuation region is now de�ned as

Th(s; �) =

�
ihj
�
Ih +

�(Ah � �)
1 + ��

�
�(ih) > bg� : (3.169)

This di¤erence allows us to de�ne an iteration procedure converging to the right solution:
- (step n, sub-step 1) Given vn �nd Tn+1h such that

Tn+1h (s; �) =

�
ihj
�
Ih +

�(Ah � �)
1 + ��

�
�(ih) > bg� : (3.170)

- (step n, sub-step 2) Compute vn+1 as the solution of

Ahv
n+1 (ih)� �vn+1 (ih) = 0 for ih 2 Tn+1h ; (3.171)

e��svn+1 = g for ih =2 Tn+1h : (3.172)

- Repeat the procedure until max
�
abs(vn+1 � vn)

	
less then a prede�ned error.

The only piece missing is to de�ne v0 or T 0h . In this case, it is easier to de�ne T
0
h = Dh and

begin the procedure from sub-step 2. It is shown that limn!1 vn ! �:

Remark 1 We omit several technical conditions in the above presentation. They hold for the
problem we are dealing with and we refer to Oksendal and Sulem (2007) and Chancelier et al.
(2007) in order to account for them.
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3.B.3 Modi�cation in the Algorithm for t < TA

We will discretize the time and apply the above algorithm at each slice of time using a implicit
scheme. Note that it is necessary to de�ne a boundary condition at t = TA. Remember that we
have the analytical solution after TA. We have for t = TA the boundary conditione�(TA; x) = E [� (TA; x; �)] ; (3.173)

e�(TA; x) = E
h
e��sC(�)x�1(�)�f0<x<x�(�)g + e

��s(x� a)�fx�(�)�xg
i

(3.174)

e�(TA; x) =

Z �

�

�
e��sC(�)x�1(�)�f0<x<x�(�)g + e

��s(x� a)�fx�(�)�xg
�
d� (3.175)

where C(�), �1(�) and x�(�) are de�ned in section 4.
Note that � depends upon � and it changes after TA. Nonetheless, before it doesn�t change.

Fot t < TA we omit � in the notation

� (TA � nht; ih) = � (TA � nht; ih; � (TA � nht)) (3.176)

= �(TA � nht; ih; � (0)) :

The grid in the dimension x will be the same for all s and the discretization in time will be
given by TA�nht. Now the continuation region varies over time, Th(s) = Th(TA�nht), and we
have

Ah� (TA � nht; ih) = 0 for ih 2 Th(TA � nht); (3.177)

� (TA � nht; ih) = g (TA � nht; ih) for ih =2 Th (TA � nht) ; (3.178)

with Neumann boundary condition at x = Nh

@hxv(s;Nh) = 0 (3.179)

and the �nal condition
� (TA; ih) = e�(TA; x). (3.180)

Note that we de�ned the discrete time di¤erential as

@htt v(s; x) =
v(s+ ht; x)� v(s; x)

ht
: (3.181)

This entails a implicit scheme when solving the numerical partial di¤erential equation de�ned
in equations (3.177) and (3.178). For instance, given T 0h (TA � ht);we have for s = TA � ht

Ah�(TA � ht; ih) = @htt �+ �@
h
x�+

1

2
�2x2@2;hxx �

=
e�(TA; ih)� �(TA � ht; ih)

ht
+ �x@hx�(TA � ht; ih) +

1

2
�2x2@2;hxx �(TA � ht; ih)

and

Ah�(TA � ht; ih) = 0 for ih 2 Th(TA � nht): (3.182)

� (TA � nht; ih) = g (TA � nht; ih) for ih =2 Th (TA � nht) ;

with the Neumann boundary conditions. Now it is only necessary to use the algorithm de�ned
above in this slice of time.

The problem may be solved sequentially as �(TA � nht; ih) depends upon e� only through
�(TA � (n� 1)ht; ih). Moreover,�(TA � (n� 1)ht; ih) doesn�t depend upon �(TA � nht; ih).



Chapter 4

Dynamic Portfolio Selection with
Transactions Costs and Scheduled
Announcement

Chapter Abstract1

The present work provides a numerical solution to an optimal portfolio problem with �xed
cost and scheduled announcement. The scheduled announcements are modeled as a jump occur-
ring at known date. This setting leads to an optimal impulse problem along with a stochastic
control problem and the numerical solution uses a recently developed method. This modeling
is consistent with the asset price behavior observed in �nancial markets and the optimal policy
agrees with studies reporting the trading volume around announcements. This suggests that
the �xed costs are important to understand these �ndings.

Keywords: Scheduled Announcements, Volume Behavior, Optimal Portfolio, Fixed Cost,
Impulse Control, Quasi-Variational Inequality, Numerical Methods in Economics.

JEL Classi�cation Numbers: C6,G11,G12.

4.1 Introduction

Infrequent action taking has been a pervasive empirical �nding in economics. It seems common
to observe economic agents doing nothing most of the time and taking a substantial action once a
while instead of doing several small interventions. Examples include retail establishment choos-
ing the timing and size of price changes, job creation and destruction by �rms and infrequent
portfolio rebalancing for households. Such behavior is obtained in several models where action
entails some sort of cost. This is true in particular for some optimal portfolio problems2.

The optimal portfolio allocation has been a long-standing subject in the literature and also
has a far reaching interest for practitioners. In the context of di¤usion processes it has been of
interest at least since the seminal works of Merton (1969,1971) and Samuelson (1969) and one
important generalization is to incorporate �xed and/or proportional transaction cost. The latter
cost is faced by most (if not all) market participants and some investors face the former type

1Joint work with Marco Bonomo.
2Stockey (2009) and Oksendal and Sulem (2005) presents the mathematical theory and analyzes several im-

portant models.
A short list of empirical work are: Bils and Klenow (2004), Klenow and Kryvtsov (2008) for infrequent prices

changes; Vissing-Jorgensen (2002) and the references therein for household portfolio behavior.
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of cost as well3. Moreover several models account for microstructure frictions (such as bid-ask
spread) by using �xed costs4. Another possible generalization is to incorporate announcements
in the price process.

There is voluminous evidence that announcements spur trading, make prices jump and have
a long term e¤ect on the price process (see the review by Bamber et al. (2011) and references
therein). In the present work we are interested in the announcement with release date known in
advance. In this case, empirical studies �nd an increase in trading volume in the day before the
scheduled announcement that persists abnormally high for several days after it. However trading
volume may be lower than average for the period between 10 to 3 days before the scheduled
announcement depending upon the sample considered. For instance, Chae (2005) reports the
abnormal low volume for this period while Hong and Stein (2007) report no change in the same
period. From a theoretical point of view, several models tried to explain to the rise or fall in
the volume before a known in advance information release. Nonetheless, to the best of our
knowledge, none was able to address the dynamics that Chae (2005) reported.

We characterize in this work the incentives an investor faces close to a scheduled announce-
ment in the presence of �xed cost in continuous time models. We consider an economic agent
that can invest in a risky and risk-less asset and consumes continuously. The consumption is
withdrawn from the bank account (risk-less asset) and the rate is chosen continuously. When
buying or selling the risky asset the agent has to pay a fee that doesn�t depend upon the transac-
tion size. It implies an infrequent action taking and a state dependent rule. We solve the model
numerically using a novel method introduced in Chancelier et al. (2007). In some arguably
common cases, the simulations suggest that the chance of transacting the risky asset has the
dynamic discussed in previous paragraph.

Our model builds into the work of Merton (1969), Oksendal and Sulem (2007) and others.
The risky asset follows a geometric Brownian motion. One way to incorporate the scheduled
announcements is to add a jump (a discontinuity in price path with random size) at a �xed date
known by the investor. Another way is to change randomly some parameter of the model such
as the risk-free rate at a �xed and known time. We report the numerical results incorporating
the news in both ways as they are consistent with empirical observations5.

We report simulations results incorporating the news with and without jumps. The basic
insight when the prices don�t jump builds into a menu cost model developed in Bonomo et al.
(2013). If the agent is close to the time of information arrival, if there is a �xed cost to exercise
the control (the menu cost in their model and the �xed fee in ours) and the prices don�t jump,
then it is usually better to wait for the information. In this case, there is a very low risk in
waiting for the information and the gain with a better informed is high. The consequence for
volume in this case would be a fall before the announcement and an increase after it. However
we believe that such cases are better interpreted as private information arrival changing the
beliefs of one market participant and, as such, may not have the in�uence over market trading
volume.

On the other hand, information arriving at same time for all investor is likely to change the
price and its process. There is, at least, some chance of a jump in prices as reported by Bamber
and Cheon (1995). In this case, a better informed investor (or one with strong opinion) may be
modeled with a belief putting low variance in the jump.

3Transaction fees for NYSE can be found at (it was accessed at 4/18/2013):
https://usequities.nyx.com/markets/nyse-equities/trading-fees.

4For portfolio problems with proportional cost only, see: Magill an d Constantinides (1976), Constantinides
(1986), Davis and Norman (1990), Dumas and Luciano (1991), Shreve and Soner (1994), Akian et al.(1996),
Sulem (1997); Tourin and Zariphopoulou (1997), Leland (2000); Atkinson and Mokkhavesa (2003).
With �xed cost only, see: Eastham and Hastings (1992), Hastings (1992), Schroder (1995), Korn (1998).
For both types of costs, see: Chancelier et al. (2000), Oksendal and Sulem (2002); Zakamouline (2002),

Chellaturai and Draviam (2007).
5See the introduction in Azevedo (2013). Note that this paper is incorporated in the present volume as chapter

3.



77

In the presence of a jump at the announcement, the investor has incentives to prepare the
portfolio for it. Usually the best asset position just prior to the scheduled news is di¤erent
from the best one after it. If the costs are su¢ cient low, two transactions may occur: one just
before and another just after the announcement. The key result is that the investor tends to
transact just before the announcement but not a little before. In this case, the chance of trading
diminishes until just before the announcement, then there is a high chance to trade just before
and again just after the news. This behavior is consistent with trading volume behavior reported
by Chae (2005).

Those observations suggest that transaction costs are important to explain the higher volume
after the announcement and the mixed behavior before the announcement. The state dependent
strategies by themselves can explain the larger volume after the news as the prices and some
fundamental quantities change abruptly with positive probability.

The rest of the paper is organized as follows. The next two sections present the optimal
portfolio problem and the numerical method overview. The fourth and �fth sections present the
results and the discussion and the sixth section concludes. There are two appendices. The �rst
one describes the numerical method in details and second one describes some image �lter we
used.

4.2 The Portfolio Problem

The present portfolio problem builds into the work of Merton (1969), Oksendal and Sulem (2007)
and others. Merton (1969) studies the investor problem with two assets and no transaction costs.
In his case it is possible to transact continuously and the optimal portfolio consist of the risky
and risk-free assets carried with a �xed proportion regardless of wealth (the Merton line). Davis
and Norman (1990) and Shreve and Soner (1994) consider the case with proportional transaction
cost only. In this case a no-transaction region arises and depends only on the proportion of assets
(not on wealth). The optimal strategy consists of "in�nitesimal�trades whenever the proportion
hits an upper or lower bound and this behavior prevents the portfolio from going outside the
no-transaction region. Oksendal and Sulem (2007) and Chancelier et al. (2002) investigate
the �xed cost along with proportional cost. As in the previous case the no-transaction region
arises but it depends upon the wealth and upon the proportion of asset. More importantly, the
trades occur in �nite amounts whenever the portfolio hit the no-transaction region boundaries.
If the proportional cost is zero the rebalanced portfolio is a function of wealth and nothing else.
Otherwise there are two possible rebalanced portfolios for a given wealth. The choice depends
upon which part of inaction region�s boundary the portfolio hits.

The present paper adds to this literature by considering that a jump or a random change in
parameters occurs at a �xed date. We study the optimal portfolio problem in the presence of
�xed cost and the present focus is on the behavior around the scheduled announcement. After the
jump the problem is the same as in Oksendal and Sulem (2007) with �xed cost only. Although
proportional cost could be added, the numerical results are cleaner without it. Chancelier et al.
(2002) provides a numerical simulation for the case without jump by solving optimal stopping
times iteratively. Nonetheless the present work uses the method developed in Chancelier et al.
(2007) that is based in a �xed point problem as it is more e¢ cient. The algorithm along with
some implementation details are described in appendix 4A.

This modeling choice is consistent with the price process observed in practice and several
authors provide empirical evidence. Early works such as Beaver (1968) document noticeable
price movements at earning announcements and Pattel and Wolfson (1984) �nd a quick move
with the bulk of price change in the �rst few minutes after the release. Moreover a change
in drift may occur as is witnessed by the post-announcement drift that can last up to several
months (see, for instance, Bernard and Thomas (1989, 1990)). Similar �ndings are documented
in others markets as well (see Bamber et al. (2011) and reference therein). Note that the
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practice of scheduled announcements is pervasive in �nancial market. For instance the dates of
the Federal Open Market Committee (FOMC) meeting are known in advance and several listed
�rms release earning information at a scheduled date.

4.2.1 De�nition of The Problem

There are two assets and a scheduled announcement at TA. Xt denotes the amount of money
invested in a risk-free money bank account with the constant interest rate of r and St denotes
the amount invested in the risky asset (stock). Without any type of control (consumption or
transaction), these variables evolves as:

dXt = rtXtdt; with X(u) = x and t � u (4.1)

and the stock follows

dSt = �tStdt+ �tStdWt +�STA�ft=TAg; with S(u) = y and t � u (4.2)

where rt, �t and �t are constants before and after the announcement. For some simulation
the jump at TA does not occur, i.e., in some simulations we have that �STA�ft=TAg = 0 with
certainty. The values for the risk-free, drift and volatility (rt; �t; �t) before TA is known since
the beginning. In some simulation it remains the same after the announcement but in others
theirs value change randomly at TA. This may be written as

(rt;�t; �t) = (rBA;�BA; �BA) if t < TA (Before Announcement), (4.3)

(rt;�t; �t) = (rAA; �AA; �AA) if t � TA (After Announcement). (4.4)

where (rAA; �AA; �AA) may be equal to (rBA; �BA; �BA) with certainty or may change randomly.
The conditional distribution of (rAA; �AA; �AA) does not change with t. The change on these
parameter are interpreted as the long term impact of the announcement (e.g. change in risk,
post-earning announcement phenomena, etc.) or some change in the macro-economic policy
(changes in the risk-free rate). The immediate impact is felt as ajump in price STA :

STA = S (TA�) � (4.5)

where � has a lognormal distribution realized6 at TA and S (AT�) = limu!TA� S(u) is the left
limit. Note that St and S(t) have the same meaning. The investor knows the jump�s conditional
distribution, the distribution of (rAA; �AA; �AA) and the time TA since from beginning.

The investor chooses a consumption rate c(t) � 0 which is drawn from the bank account
without any cost. At any time the investor can decide to transfer money between bank account
and the stock incurring into a transaction �xed cost k > 0 (drawn from the bank account).
In this context the investor will only change his portfolio �nitely many times in any �nite time
interval. The consumption rate c(t) is a regular stochastic control and the trade decision implies
an impulse control v = (�1; �2; :::; �1; �2; :::) where 0 � �1 < �2 < ::: are stopping times giving
(the times in which the investor decides to change his portfolio) and f�j 2 R; j = 1; 2; :::g give
the sizes of the transactions at these times.

When the control w = (c; v) is applied the former stochastic di¤erential equations turns into

dXw
t = (rXt � c(t)) dt for � i � t < � i+1 (4.6)

dSwt = �Stdt+ �StdWt +�STA�ft=TAg for � i � t < � i+1 (4.7)

6Moreover assume for u < TA and all bounded and measurable function h the following equality holds:

Eu [h(�; �AA; �AA)] = E [h(�; �AA; �AA)] :
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between the times in which no transaction happens and

X(� i+1) = X(� i+1�)� k � �i+1; (4.8)

Y (� i+1) = Y (� i+1�) + �i+1; (4.9)

when a transaction occurs with the convention that a positive �i+1 is money being taken from
the bank account to buy stocks and (� i+1�) is the left limit.

The investor seeks to maximize the expected utility over all admissible7 controls w = (c; v),
where v = (�1; �2; :::; �1; �2; :::). It is not possible to borrow money or short the stock

Xw
t � 0; (4.10)

Swt � 0: (4.11)

The utility has a constant risk aversion8  2 (�1; 0) and discounts time with rate � . For a
given w we have the utility

Jw(u; x; y) = Eu

�Z 1

u
e��t

c1�

1�  dt
�

(4.12)

where Es is the expectation conditional to the information available in s. This gives the value
function

V (u; x; y) = sup
w2W

Jw(u; x; y): (4.13)

Note that Jw(u; x; y) and V (u; x; y) depends upon the realization of (rAA; �AA; �AA) for u � TA.
A more complete (and correct) notation would be Jw(u; x; y; r; �; �) considering (r; �; �) as three
additional dimension in the process but it is omitted for the sake of brevity.

4.2.2 Solution�s Characterization After TA

The agent is forward looking and the price processes�distribution depends only upon the actual
prices. Past prices have no impact on future outcomes�distribution. It implies that we can look
for the solution after TA without worrying about the solution before it. We discuss the solution
after TA in this subsection. Recall that the problem after the announcement is the same as in
Chancelier et al. (2002) and Oksendal and Sulem (2007) and we follow here their work.

In order obtain su¢ cient conditions for the solution Brekke and Oksendal (1997) make use
of some concepts such as the process�s generator, the intervention operator and the continuation
region. The generator Ac (the superscript c emphasizes the control�s role) of the process

Zw = (u;Xw(u); Sw(u)) (4.14)

is de�ned as (when there are no transactions)

(Acf) (u; x; y) =
@f

@u
+ (rx� c) @f

@x
+ �

@f

@y
+
1

2
�2y2

@2f

@y2
; (4.15)

7A stochastic control is admissible if the Stochastic Di¤erential Equation for Zt = (Xt; St) has a unique and

strong solution for all given initial condition and Eu
hR1
u
max(�e��(u+t) c1�

1� ; 0)
i
<1 and the explosion time ��

is in�nite:
�� = lim

R!1
(inf ft > ujjZtj � Rg) =1 a.s.

and
lim
j!1

� j = �S

where �S is
�S = inf ft > 0jZ(t) 2 Sg

and the solvency region S = <2+.
8This range guarantees that Jw � 0.
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where small y is used instead of small s to express a speci�c value of the stock. The su¢ ciency
condition for the value function using the generator is better expressed through the de�nition
of the operator �

�h(u; x; y) = sup
c�0

�
Ach(u; x; y) + e��u

c1�

1� 

�
: (4.16)

The Intervention Operator M is de�ned as

Mh(u; x; y) = sup
�2W�

fh(u; x� k � �; y + �); � belongs to an admissible controlg ; (4.17)

where h is a locally bounded and the continuation region is de�ned as

C = f(u; x; y);V > MV g : (4.18)

The value function V shall satis�es the quasi-variational Hamilton-Jacobi-Bellman inequality
(QVHJBI):

max f�V;MV � V g = 0; (4.19)

i.e., the value function satis�es �V = 0 in the continuation region C and MV = V outside the
continuation region. Moreover �V � 0 outside the continuation region. The optimal controls
w� = (c�; v�) are

c�(u; x; y) =

�
@V

@x

�� 1


for x > 0, (4.20)

c�(u; x; y) = 0 otherwise, (4.21)

and the times of the trade are de�ned inductively as:

��j+1 = inf
n
t > ��j ;

�
X(w�)(t); Y (w

�)(t)
�
62 C

o
(4.22)

with the convention that ��0 = 0 (note that �
�
0 does not belong to the control v

� = (��1; �
�
2; :::; �

�
1; �

�
2; :::)

and there is no ��0) and the size of transaction at such dates are the argument that maximizes
equation (4.17):

��j = arg max
�2W�

n
V (u;X(w�)(� j�)� � � k; Y (w

�)(� j�) + �); � belongs to an admissible control
o
:

(4.23)
Brekke and Oksendal (1997) show that the equations (4.19)-(4.23) are su¢ cient condition for
the value function (along with some technical conditions).

Unfortunately the solution may not be smooth enough to satisfy it. In order to overcome
this di¢ culty Oksendal and Sulem (2007) show that the value function is the unique viscosity
solution of the equation (4.19). Moreover Chancelier et al. (2007) develop a numerical algorithm
converging to this viscosity solution and we describe it in the next section.

4.2.3 Solution�s Characterization Before TA

After solving V (t; x; y) for t � TA we proceed to discuss the solution before the announcement.
We are considering that the processes are right continuous implying that V (TA; x; y) is the value
function after the jump. But we don�t know if V is continuous in t. Even if continuous, we don�t
know if V is su¢ cient smooth in order to apply the di¤erential operator Ac in QVHJBI at TA
(equation (4.19)).

In order to overcome this di¢ culty, we will consider a di¤erent, but hopefully equivalent,
problem. This new problem implies a new boundary condition at TA. We were not able to prove
it but we rely on the following conjecture:
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Conjecture 12 For u � TA, consider the alternative problem:

bV (u; x; y) = sup
w2W

bJw(u; x; y) (4.24)

where bJw(u; x; y) = Eu �Z TA

u
e��t

c1�

1�  dt+ g (XTA ; STA)
�

(4.25)

and
g (x; y) = E [V (TA; x; y)] : (4.26)

In this case we have that bV (u; x; y) = V (u; x; y) for u < TA (4.27)

If the above conjecture is true the same reasoning and results used in the previous sub-section
is valid here. More precisely, if we know V (TA; x; y), we can �nd the value function for t < TA
using the QVHJBI and the a new boundary condition:

bV (TA; x; y) = E [V (TA; x; y)] (4.28)

where the QVHJBI is

max
n
�bV ;M bV � bV o = 0: (4.29)

4.3 Numerical Method

This section presents the algorithm�s overview along with some assumptions about the solution
around the scheduled announcement and a brief discussion about numerical error. See Appendix
4A for a detailed description on the algorithm implementation.

The QVHJBI is a partial di¤erential equation along with a free boundary problem, i.e., the
boundary condition is part of the problem. The main idea of Chancelier et al. (2007) is to
de�ne an equivalent �xed point problem: given the value function V it is possible to obtain
the no-transaction region C, consumption rate function c�(u; x; y) and optimal transaction ��;
by other side, given the C, c�(u; x; y) and �� the value function V is obtained. More precisely,
the algorithm break the non-linear Partial Di¤erential Equation �V = 0 into a optimization
problem

c� = argmax

�
AcV + e��u

c1�

1� 

�
; (4.30)

obtaining the Partial Di¤erential Equation

A(c
�)V + e��u

(c�)1�

1�  = 0; (4.31)

and then it considers the continuation region as

C = f(u; x; y);V (u; x; y) > MV (u; x; yg : (4.32)

where
MV (u; x; ) = V (u; x� �� � k; y + ��): (4.33)

It is possible to de�ne a iterative procedure converging to the true solution beginning by
an (almost) arbitrary initial function. The method begins by: (1) de�ning a grid for (u; x; y);
(2) discretizing the linear operator Ac in this grid, (3) discretizing the non-linear intervention
operator M forcing (x � k � �; y + �) to belong the grid; and (4) de�ning an initial tentative
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value function V0 in the grid. Then one should proceed iteratively. The step n depends upon
the function Vn�1 and are divided in two sub-steps:

sub-step 1: Given Vn�1 obtain �n, cn, Cn (4.34)

sub-step 2: �nd Vn using �n, cn, Cn. (4.35)

Given some conditions (satis�ed by the above problem) Vn gets closer to V as n increases.
The above problem is de�ned for a grid in (x; y) 2 <2+ but it is an in�nite set. Some

localization procedure is necessary because the computer´s memory is �nite. This work follows
the suggestion of Oksendal and Sulem (2007) and Chancelier et al. (2002) and de�ne a box of
size L: DL = [0; L] � [0; L] con�ning (x; y) to that box and de�ning the Neumann boundary
conditions:

@V

@x
(L; y) =

@V

@y
(x; L) = 0 for x; y 2 [0; L): (4.36)

The time dimension is also in�nite but the solution for t � TA has the format:

V (t; x; y) = e��t' (x; y) (4.37)

and then it is possible to focus on ' (x; y). After obtaining ' (x; y), it is possible to �nd the
boundary condition implied by the conjecture above and apply the method for t < TA with
t 2 [0; TA).
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Figure 4.1: Inaction region after the announcement. It remains the same for all time after the
news. The parameters are in table 4.1 (case 3). Each point inside the �gure represents a possible
portfolio where the x�axis is the amount of money invested in risk-free asset (bank account)
and y�axis is the amount in risky asset. The white region is the inaction region and whenever
the portfolio is in the dashed area (Rebalancing Region) it is optimal to pay the �xed cost and
rebalance. Note that the line with the same wealth (iso-wealth line) is a diagonal one with 45o.
When rebalancing, the investor can choose any portfolio in the iso-wealth line associated with
his/her wealth minus the �xed cost. The dashed line is the optimal portfolio after rebalancing.
After rebalancing the best the investor can do is to choose the portfolio where the iso-wealth line
crosses the dashed line. The simulation are performed in a square box of side size L = 100 with
Neumann boundary condition at the upper and rightmost side. This is the only �gure displaying
the whole box. Others �gures only display the smaller square box of side size L=2 = 50. Note
the distortion in the inaction region for y > 50. A similar �gure is reported by Chancelier et al.
(2002) using another method.
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Table 4.1: Simulation parameters

Parameter Case 1 Case 2 Case 3 Case 4
� 0.12 - - -
� 0.4 - - -
� 0.06 - - -
r 0.05 0.06 0.07 0.08
 0.4 - - -
F 0.4 - - -
L 100 - - -
�x = �y 0.2 - - -
Tolerance 10�9 c_max 10000

4.4 Numerical Results

4.4.1 After Announcement

Figure 4.1 represents one possible inaction region9 after the announcement and it is similar to
one depicted in Chancelier et al. (2002) using a di¤erent method. It is obtained from the case 3
of table 4.1. Each point inside the �gure represents a possible portfolio where the x�axis is the
amount of money invested in risk-free asset (bank account) and y�axis is the amount in risky
asset. The white region is the inaction region and whenever the portfolio is in the shadowed area
(Rebalancing Region) it is optimal to pay the �xed cost and rebalance. Note that the line with
the same wealth (iso-wealth line) is a diagonal one with 45o. When rebalancing, the investor
can choose any portfolio in the iso-wealth line associated with his/her wealth minus the �xed
cost. The dashed line is the optimal portfolio after rebalancing and the best the investor can do
when trading is to choose the portfolio where the iso-wealth line crosses the dashed line.

This picture display all the area used for simulation, i.e., the square box of side size L.
Note the inaction region�s weird shape when close to (L;L). This distortion is a consequence
of Neumann Boundary condition (equation (4.36)) but is attenuated for the region close to the
origin. For this reason, almost all other �gures in this work only display the internal square box
of size L=2.

The inaction region remains the same after TA and this �gures enables us to analyze the
portfolio evolution when the investor is rational. For instance, suppose the investor begin with
the portfolio (XTA = 15; YTA = 10) at time T A. Note that this portfolio is inside the inaction
region. The investor will withdraw the money from the bank account in order to consume at
a rate c� and let the portfolio evolve. When it hits the boundary of the inaction region (with
Xt+Yt = 40:40 for instance) the investor should pay the �xed cost (0.40 in the numerical result
of �gure 4.1) in order to rebalance ending with the portfolio that crosses dashed line with the
iso-wealth line.

Figure 4.2 depicts the value function, the consumption rate (in the box with side size L = 100)
and the consumption rate (in the internal box with side size L=2 = 50). The parameters are the
same as used in �gure 4.1. Note the consumption rate peaks for the greatest possible wealth.
This is again consequence of the Neumann boundary condition.

Figure 4.3 shows the no-transaction region for the same parameter but the risk-free rate. It
varies from r = 0:05 to r = 0:08 and parameters used are in table 4.1. Note that the optimal
portfolio line becomes less inclined for higher risk-free rate.

9We applied one image �lter in order to have a better image. However the change is minor and it has no e¤ect
on interpretations. See appendix 4B for details.
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Table 4.2: Announcement e¤ect: Jump in the risky price and/or change in the risk-free rate r

Parameter Jump Type 1 Jump Type 2 Jump Type 3
�� 0.10 0 -0.02
�� 0.01 0 0.2
E[�] 1.105 1 1
� Std. Dev. 0.011 0 0.202
Change in r No Yes No
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Figure 4.2: From left to right: value function (without the time discount, see equation (4.37)),
consumption rate c and zoom in the consumption rate c. These are quantities for t � TA. These
quantities remain the same through time. The parameters are in table 4.1, case 3. The axis
spanning from the origin to the left is the amount invested in the risky asset (S) and the axis
spanning from the origin to the right is the amount invested in risk-free asset (X). Note that
the consumption is zero for X = 0.
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Figure 4.3: Inaction region after the announcement for four di¤erent risk-free rate. The paramter
are in table 4.1. The inaction region remains the same for all t � TA.

4.4.2 Numerical Results Before the Announcement

Jump with Low Variance and No Change in Parameters

Figure 4.4 shows the optimal no-transaction region evolution. It applies to a investor who
believes that the scheduled announcement has a surprising positive content. It displays the
optimal inaction region for four di¤erent times: long before, little before, just before and after
the scheduled announcement. Each point represents a possible portfolio where the x-axis is the
amount of money invested in the risk-free asset and the y-axis is the amount in risky asset. The
no-transaction region is in white and whenever the portfolio hits the shadowed area the investor
should pay the �xed cost and rebalance it. The dashed lines are the optimal portfolios after the
investor pay the �xed cost. For each level of wealth (amount invested in risk-free asset plus the
amount in risky asset) there is only one optimal portfolio. The parameters of this simulation
are in table 4.1 (case 3) and in table 4.2 (jump parameters 1). We follow the convention to
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show the region inside the box [0; L=2]� [0; L=2] where L = 100 and to apply some image �lters
explained in appendix 4B.

Recall that there is only one news. In this case, the inaction region remains �xed after the
announcement. By other side, the inaction region changes with time before it. Simulations
suggest that the inaction region far before the announcement is similar to the no-transaction
region after it (compare the top-left sub�gure with bottom-right one). As the time gets closer to
the event, the inaction region gets bigger. The top-right sub�gure suggests it can tend to almost
all space. Finally it changes abruptly just before the announcement (the bottom left sub�gure)
and change again after the disclosure of the information (the bottom-right sub�gure).

To be more precise, we obtain the no-transaction region for TA� �t; TA�2�t; :::, where TA is
the announcement time and �t is the minimum time distance we use (it is set for �nite di¤erence
approximation). The inaction region between TA � n�t and TA � (n � 1)�t for n � 3 is very
similar indicating a smooth transition. This is not the case for the transition between TA � 2�t
and TA � �t. The region at time TA � 2�t is similar to the top-right sub�gure while the region
at TA � �t is reported in the bottom-left sub�gure. We verify this behavior for di¤erent values
of �t.

The optimal inaction region just before the news has others interesting features because this
is a preparation for the jump. The jump has a positive average (10.5%) with very small standard
deviations (1.1%). This is an extreme case but we use it to make the incentives clear. A closer
look to the bottom-left �gure suggests that it is optimal to invest all the money in the risky asset
if the investor has su¢ cient wealth. Moreover, if the portfolio is in the shadowed area just before
the announcement, the investor will probably pay the cost twice. This is because he/she will
rebalance just before and (probably) do it again just after the jump. By the other side, putting
all the money in the risky asset isn�t optimal if the expected gain is less than the �xed cost.
This will be the case if the wealth isn�t high enough or if the amount in risk-free asset is less
than a certain threshold ($4.40 in the present case). The investor still wants to take advantage
of the positive jump in this case but he/she has to worry about the portfolio composition after
it10.

The most striking feature is that the investor prefers to prepare the portfolio for the jump
just before it but not earlier. This is so because preparing the portfolio before (but not just
before) the announcement has two adverse e¤ects: (1) the portfolio will not be the optimal one
at the announcement (almost surely) and (2) the investor may need to rebalance it just before
the jump paying the �xed cost again.

Random Change in Risk-Free Rate and No Jump in Prices

Figure 4.5 presents the results when there is a change in risk-free rate at the scheduled an-
nouncement but no jump in prices. We assume that the investor knows all details of the model.
The risk-free rate before the news is 7% and after the news may be 6%,7% or 8% with the same
probability, i.e.,

Prob [rAA = 0:06] = Prob [rAA = 0:07] = Prob [rAA = 0:08] = 1=3: (4.38)

The other parameters are the same as in case 3 of table 4.1 and doesn�t change with time. After
the news the inaction region doesn�t change and it may be the same as in the upper-right or in
10 In this simulation we found that we may interpret the jump being 10% with certainty. Note that the �xed

cost is $ 0.40. Analyzing the bottom-left sub�gure carefully we found that if the investor has more than $ 4.40
invested in risk-free asset and more than $ 4.00 in risk asset, he/she will rebalance the portfolio putting all the
money in the risky asset. The portfolio ($4.40; $4.00) is a nice threshold. Suppose the total wealth before the
announcement is $ 8.40. After rebalancing the �rst time, the total wealth becomes $8.00. The jump makes it
$8.80 (approximately). Then the investor rebalances it ending with $ 8.40 after pay again the cost. In the end,
the investor has the same wealth but the portfolio is optimally rebalanced. Moreover, note that it is never optimal
to rebalance the portfolio if there is less than $ 4.40 in the riskless asset. This is because the gain to put this
money in the risky asset doesn�t compensate paying the �xed cost twice.
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the bottom two sub�gures of �gure 4.3 depending upon the realized risk-free rate. Note that the
optimal portfolio after rebalancing is di¤erent after information release for each risk-free rate.
On the other hand, the �gure 4.5 depicts the inaction region long before, little before and just
before the scheduled announcement.

The inaction region and the optimal rebalancing portfolio long before are similar to the
inaction region and rebalancing portfolio after the jump with the same parameters, i.e., the
sub�gure in the top left are similar to �gure inner square of �gure 4.1 (or, equivalently, to the
bottom-left sub�gure in �gure 4.3). The inaction region gets bigger as the time approaches to
the announcement. In the present case, the simulations suggest that the inaction region evolves
continuously until it encompasses all the space we considered.

This is the interesting result for this case: the investor avoids transacting just before (or
a little before) the announcement if there is a �xed cost, there is no jump in prices and the
optimal portfolio depends upon the information. If there is no jump in prices, the di¤erence in
(XTA�dt; STA�dt) and (XTA ; STA) is in�nitesimal. Then there is a small risk (if any) in waiting
the time interval dt. By other side, at TA the investor can choose the portfolio better informed
than choosing in TA� dt. Note that the information (the value of risk-free rate) matters for the
choice of optimal rebalancing portfolio. Finally, it is better to rebalance just once than rebalance
twice because of �xed cost.

Jump with Appreciable Variance and No Change in Parameters

Figure 4.6 presents the inaction region�s evolution when there is no change in parameters but
there is a jump in the risky asset price with zero mean and variance approximately 20%. The
parameters are in table 4.1 (case 3) and table 4.2 (column 3). The organization of �gure 4.6 is
similar to �gure 4.4.

Again, the top-left sub�gure (representing a time long before the news) is similar to the
bottom-right �gure (the inaction region after TA). Note that the bottom-right sub�gure in �gure
4.6 is the same as in �gure 4.4. The di¤erence is in the top-right and bottom-left sub�gures. The
transition from inaction region long before to the one little before is smooth as the �rst case.
What changes in the present case is that the transition between the top-right to the bottom-
left sub�gure seems to be smooth also. At least for our numerical accuracy and in the region
depict in those �gures. Nonetheless for x > L=2 (not in depicted in �gure 4.6) the simulations
suggest a sudden although small change in the inaction region. We think it might be due to the
localization procedure as for this region the estimate of the jump e¤ect is more biased.

It is ambiguous whether the transaction chance is higher or less than usual for the time a
little before or just before the announcement. It is because the rebalancing region for y > x gets
bigger but the rebalancing region for y < x disappear. Nonetheless there is still a higher chance
to transact after the news because the risky price jumps and the inaction region changes.

The investor behavior may be explained by his/her small risk-aversion. As the jump mean
is zero, a risk-averse agent would prefer to have less on risky asset. This explain the vanish-
ing rebalancing region for y < x and the bigger region for y > x. On the other hand the
rebalancing region isn�t so big for y > x and the optimal portfolio after rebalancing isn�t so
di¤erent when comparing to optimal portfolio without the announcement. This is explained by
the small risk-aversion as the agent is not willing to pay the �xed cost in order to have a more
"protected"portfolio against the jump.
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Figure 4.4: No-transaction region�s evolution in the presence of scheduled announcement. The
white area is the non-transaction region. The dashed line is the optimal portfolio for a given
wealth, i.e., it is the optimal portfolio when the investor pays the �xed cost and rebalances it.
The �gure displays the no-transaction region for four di¤erent times: long before, little before,
just before and after the scheduled announcement. The numeric results suggests a sudden
change from little before to the just before inaction region. It implies that there is a low chance
to rebalance the portfolio a little before but a high chance of it just before and just after the
announcement consistent with the empirical volume trading behavior reported by Chae (2005).
The parameter of this simulation are in table 4.1 (case 3) and in table 4.2 (column 1). The
localization is the square box of side L = 100 but the present �gure is displaying the smaller
square box of size L=2 as discussed in �gure 4.1.
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Figure 4.5: Inaction region�s time evolution. There is no jump at prices but there is a change
in the risk-free rate at announcement. Before the announcement the parameters are in table 1
(case 3). After the announcement the parameters may be as in table 4.1 cases 2,3 or 4 with same
probability. There is no bottom-right sub�gure because it has 3 possibilities. These possibilites
are depicts in �gure 4.3 (sub�gure in the top right and the two in the bottom) . The chance
to rebalance decreases a little before and just before the announcement. This chance is greater
than normal after the news because the rebalancing region is bigger after the announcement.
The shadowed area is the rebalancing region and the dashed line is the optimal portfolio after
rebalancing for a given wealth. The localization is the square box of side L = 100 but the present
�gure is displaying the smaller square box of size L=2 as discussed in �gure 4.1.
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Figure 4.6: Inaction region�s time evolution. There is a jump in the risky price with zero mean
and variance appoximately 20%. The numerical results suggest that the transition between
a little before to just before inaction region is smooth. It is not clear whether the chance of
rebalancing increases or decreases a little before and just before the announcement. After the
news there is a higher chance to rebalance because of the jump and because of a di¤erent inaction
region. The parameters are in table 4.1 (case 3) and table 4.2 (column 3). The localization is
the square box of side L = 100 but the present �gure is displaying the smaller square box of size
L=2 as discussed in �gure 4.1.
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4.5 Discussion

There are several theoretical results about the volume behavior around announcements. Non-
etheless, to the best of our knowledge, the predictions are that or it raises or it falls before the
news but does not have the interesting pattern found in Chae (2005). We want to argue here
that transaction cost may be an important piece in explaining such behavior.

When there is no announcement the trades happens because the investor aims to a more
balanced portfolio and because he needs to transfer from risky asset to the bank account in
order to consume. In the presence of news, modeled as a jump in prices (or a random change
in parameters) at a �xed date, the investor wants to prepare the portfolio for this event also.
Usually, the optimal portfolio prior the news is di¤erent from the portfolio without news. The
interesting analysis is how to prepare the portfolio for the announcement and when there is
enough incentive to pay the �xed cost.

In some cases, the best thing to do is just to wait for the announcement. When close to
announcement those investors do nothing until the announcement. This is usually true when
the process parameters change randomly but there is no jump in prices.

In other cases it is worth to pay the �xed cost in order to prepare for the news. If the
investor pays this cost a little before the news he/she may end without the best portfolio at
the time of announcement. Then it is optimal to pay it and change the portfolio just before
the announcement. This is true when the investor believes that a jump in price with a de�nite
direction may take place.

The incentive to halt trading a little before and to transact just before may explain the
volume behavior before the news and this happens because of the �xed cost. In both cases the
volume increases after the announcement. Indeed, for any state dependent model, a jump in
variables increases the chance of some action to be taken because the state variables may have
a positive probability to fall outside the inaction region.

4.6 Conclusion

We analyze here an optimal portfolio problem in the presence of �xed cost and a scheduled
announcement through a numerical method developed in Chancelier et al. (2007). We model
the prices around announcements according to empirical �ndings. The results suggest that
transaction cost may be an important feature in order to explain the volume behavior around
scheduled announcement. In particular, it may be important to explain the fall in volume
between 10 to 3 days before the news, followed by a rise in volume beginning 2 or 1 day before
the news as is found in Chae (2005).

It would be interesting to analyze di¤erent types of cost for the same price process. For
instance, what happens if the cost is proportional? And if there is no cost at all? On the other
hand, note that the present work takes as given the price process and derives the optimal policies.
It is an optimal portfolio analysis and it would be interesting to study a general equilibrium.
Lo et al. (2004) introduces a general equilibrium model in continuous time modeling �nancial
markets when there is a �xed cost. A promising research venue would be incorporating jump
innovations at a �xed time to the this model.

4.A Numerical Method

In this appendix we describe the numerical algorithm in details. The algorithm�s properties are
developed in Chancelier et al. (2007) and are described in Oksendal and Sulem (2005, Chapter
9) as well. We give also some details for the operator�s matrix implementation well suited to a
Matlab implementation. First we describe the time invariant case (consistent with t � TA) and
then we incorporate the time variation.
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The reader interested in the algorithm as a whole but not in implementation details may
want to skip the subsection "Operators as Matrices". In this subsection we describe exactly
the di¤erential operator approximated by a di¤erence operator and construct it in a suitable
way using matrices. This procedure transforms the method into a sequence of system of linear
equations. Moreover our discretization guarantees that this sequence converges to the solution.

4.A.1 Algorithm Overview

Assume that the value function after TA may be written as

V (t; x; y) = e��t'(x; y) for t � TA; (4.39)

which implies

(AcV ) (u; x; y) = Ace��t'(x; y) = e��t (Ac'(x; y)� �'(x; y)) : (4.40)

Chancelier et al. (2002) shows that it is indeed the case (our problem is the same as their after
t � TA). QVHJBI reads now

max f�V;MV � V g = 0 (4.41)

max

�
sup
c�0

�
Ac'� �'+ c1�

1� 

�
;M'� '

�
= 0 for t � TA, (4.42)

where
M' = sup

�2W�(x;y)
f'(x� k � �; y + �)g (4.43)

and W�(x; y) is the set of admissible � given the state (x; y).
In some cases the value function aren�t su¢ ciently smooth and the di¤erential operator may

not make sense in some regions. In order to overcome this di¢ cult it is possible to invoke
the concept of viscosity solution of the QVHJBI. There is no need to discuss such type of
solution here. It is only necessary to know that the value function is a viscosity solution of the
QVHJBI and that the viscosity solution is unique for the case considered here. Moreover, the
numerical method described in the present appendix converges to the viscosity solution of the
above problem as the grid becomes more re�ned. In other words, the solution to the appropriate
discrete version of the above problem converges to the value function even if it is not continuous.

We want to discretize appropriately the QVHJBI. First, note that the positive octant is
contained in the de�nition of the problem. The computer can�t represent it fully and some
strategy is necessary to overcome this di¢ culty. We accomplish this by truncating the problem
considering a box D = [0; L]� [0; L], i.e.:

D =
�
(x; y) 2 <2j0 � x � L; 0 � y � L

	
and assuming zero Newmann condition at boundaries

@V

@x
(L; y) =

@V

@y
(x; L) = 0 for x; y 2 [0; L): (4.44)

This introduces an error but it should be small for (x; y) far from the upper or rightmost
boundary .

We approximate the function as belonging to the �nite di¤erence grid Dh = (ih; jh) where
i 2 f0; :::; Ng and j 2 f0; :::; Ng assuming that N = L=h is an integer. A limited consumption
rate 0 � c � cmax is also necessary condition for the algorithm but cmax shall be big enough.
The discrete version of QVHJBI is written as

max

�
sup

0�c�cmax

�
Ach'h � �'h +

c1�

1� 

�
;Mh'h � 'h

�
= 0 (4.45)
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where Ach and Mh are the discrete version of generator and of the intervention operator. Note
that the solution depends upon the grid and to stress this fact we write 'h as depending h. We
can de�ne a more appropriate and equivalent problem11:

'h(x; y) = max

(
sup

0�c�cmax

(
(�Ach + Ih)'h(x; y) + �

c1�

1�
1 + ��

)
; sup
z
Bz'h(x; y)

)
; (4.46)

where x = ih, y = ih and (ih; jh) 2 Dh, Ih is the identity operator, � is any constant satisfying

0 < � � min
i

1

j
�
Ach � �Ih

�
ii
+ �j

(4.47)

where (Ach � �Ih)ii is the diagonal elements of the matrix (de�ne later) representing the operator
Ach � �Ih and supz Bz substitutes the discrete version of the intervention operator:

sup
z
Bz'h(x; y) =Mh'h(x; y): (4.48)

The constant � plays an important role in order to obtain the convergence of the method.
The operator Bz is just a suitable way to de�ne the discrete version of Mh. More precisely, the
operator Bz evaluates a function after paying the �xed cost k = khh and transferring zh from
the bank account to the risky asset:

Bz'h(ih; jh) = 'h (ih� khh� zh; jh+ zh) if (ih� khh� zh; jh+ zh) 2 Dh: (4.49)

Nonetheless, if the transference zh forces (x; y) outside Dh then Bz'h assumes the minimum
value of 'h at the origin (that is zero in our case):

Bz'h(ih; jh) = 'h(0; 0) = 0 if (ih� khh� zh; jh+ zh) =2 Dh: (4.50)

Note that Bz depends upon h and khh but we omit it for notational simplicity. It will be useful
to de�ne z(i; j) as the policy function where the optimal one is de�ned as

z�(i; j) = argmax
z
Bz'h(ih; jh) if exist z such that (ih� khh� zh; jh+ zh) 2 Dh(4.51)

z�(i; j) = �(N + 1)2 otherwise.

If there is no possible transference then we put the policy as �(N + 1)2 to indicate that no
answer is possible and that Bz

�
'h(ih; jh) = 'h(0; 0).

The Fixed Point Problem

We want to be able to compute the solution in the equation (4.46). Two features make this
problem intricate: the de�nition of the rebalancing region (or its complement, the continuation
region) and the optimization problems. Given the optimal rebalancing region T � � Dh, the

11Note that

sup
0�c�cmax

�
Ach'h � �'h +

c1�

1� 

�
� 0

if, and only if,

sup
0�c�cmax

�
Ach'h � �'h +

c1�

1� 

�
�

1 + ��
+ 'h � 'h;

for � > 0. Then we can exchange the above relations inside the maximization operator obtaining the suitable
problem.
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optimal policy function z�(i; j) and the optimal consumption rate c�(i; j) we can write equation
(4.46) as

'h(ih; jh) =

�
�Ac

�
h + Ih

�
'h(ih; jh) + �

c�(i;j)1�

1�
1 + ��

for (ih; jh) 62 T � (4.52)

'h(ih; jh) = Bz
�(i;j)'h(ih; jh) for (ih; jh) 2 T �:

Note that the operator OT;c;z, the set T �, the function z�(i; j) and c�(i; j) should depend on h
but we omit it for notational sake. We sum up the above equation with

'h(ih; jh) = OT �;c�;z� ['h(ih; jh)] (4.53)

where

OT;c;z [v(ih; jh)] =
(�Ach + Ih) v(ih; jh) + �

c(i;j)1�

1�
1 + ��

for (ih; jh) 62 T (4.54)

OT;c;z [v(ih; jh)] = Bz(i;j)v(ih; jh) for (ih; jh) 2 T:

It is possible to write the function v(ih; jh) as a vector and OT �;c�;z� as a matrix and now the
equation (4.53) is solvable using standard methods in linear algebra. Unfortunately, we don�t
know the optimal rebalancing region T � and optimal policies c�; z�.

On the other hand, once we know the value function V (�) = e��t'h we may recover T �; c�; z�
by

(T �; c�; z�) = arg max
T�Dh;0�c�cmax;z

OT;c;z ['h(ih; jh)] ; (4.55)

or more explicitly

c�(ih; jh) = arg max
0�c�cmax

8<:(�A
c
h + Ih)'h(ih; jh) + �

c(i;j)1�

1�
1 + ��

9=; ; (4.56)

z�(ih; jh) = argmax
z
Bz'h(ih; jh) if exist z such that (ih� khh� zh; jh+ zh) 2 Dh;(4.57)

z�(ih; jh) = �(N + 1)2 otherwise.

T � =

8<:(ih; jh) 2 Dh;Bz�(i;j)'h(ih; jh) > (�Ach + Ih)'h(ih; jh) + �
c�(i;j)1�

1�
1 + ��

9=; : (4.58)

Chancelier et al. (2007) shows a equivalence between the QVHJBI (equation (4.46)) and the
�xed point problem

'h(ih; jh) = OT �;c�;z� ['h(ih; jh)] (4.59)

and de�nes the following policy iteration algorithm (or Howard algorithm) to �nd 'h: Let v
0

be a given function in Dh and for n � 0 do the iterations
- (step n, sub-step 1) Given vn �nd (Tn+1; cn+1; zn+1) such that

(Tn+1; cn+1; zn+1) 2 argmax max
T�Dh;0�c�cmax;z

OT;c;z [v
n(ih; jh)] : (4.60)

- (step n, sub-step 2) Compute vn+1 as the solution of

vn+1 = OTn+1;cn+1;zn+1
�
vn+1

�
: (4.61)

Under some technical conditions, the sequence fvng and f(Tn+1; cn+1; zn+1)g converges to
'h and (T

�; c�; z�) respectively.
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Remark 2 We omit several technical conditions in the above presentation. They hold for the
problem we are dealing with and we refer to Oksendal and Sulem (2007) and Chancelier et al.
(2002) in order to account for them.

4.A.2 Operators Approximation on the Grid

The present section details the sub-step 1 and 2 described above. We use the upwind scheme
for the discretization of Ac in the grid. In this case, the operator Ach is written as a matrix
where the o¤-diagonal elements are positive. Such scheme implies that the solution of the
di¤erence equation converges to the viscosity solution of the di¤erential partial equation as h!
0. Moreover, this scheme along with the condition for the constant � implies the convergence
to the solution of the combined stochastic control and impulse control.

The approximation of Ac on the grid Dh (for t � TA) is

Achv = rx@
h+
x v + �y@h+y v +

1

2
�2y2@2;hyy v � c@h�x v; (4.62)

where

@h�x v(x; y) = �v(x� h; y)� v(x; y)
h

; (4.63)

@h�y v(x; y) = �v(x; y � h)� v(x; y)
h

; (4.64)

@2;hyy v(x; y) =
v(x; y + h)� 2v(x; y) + v(x; y � h)

h2
; (4.65)

Note that we omit the time derivative. In the present context it isn�t necessary as 'h doesn�t
depend upon time.

One way to incorporate the Neumann boundary condition (equation (4.44)) is to de�ne the
points outside the grid (L;Nh+ h) and (Nh+ h; L) as

v (L;Nh+ h) = v (L;Nh� h) (4.66)

and
v (Nh+ h; L) = v (Nh� h; L) : (4.67)

and then for the derivatives at the uppermost and rightmost grid boundaries we have

@h+x v(Nh; jh) =
v(Nh+ h; jh)� v(Nh; jh)

h
=
v(Nh� h; jh)� v(Nh; jh)

h
; (4.68)

@h+y v(ih;Nh) =
v(ih;Nh+ h)� v(ih;Nh)

h
=
v(ih;Nh� h)� v(ih;Nh)

h
(4.69)

and

@2;hyy v(ih;Nh) =
v(ih;Nh+ h)� 2v(ih;Nh) + v(ih;Nh� h)

h2
=
�2v(ih;Nh) + 2v(ih;Nh� h)

h2
:

(4.70)
For the points belonging to the horizontal and vertical axis ( (0; y) and (x; 0) where x; y � 0),

Ach simpli�es to

(0; jh)j2[1;N ] : c = 0 (the only admissible c) and Achv = �y@
h+
y v +

1

2
�2y2@2;hyy v (4.71)

(ih; 0)i2[1;N ] : The expression simpli�es to Achv = rx@
h+
x v � c@h�x v; (4.72)

(0; 0) : The expression simpli�es to Achv = 0 and we have V = 0. (4.73)
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Operators as Matrix

The functions will be written as vectors and the convention is that the vectors are written as
a column matrix. We change the points labels in the grid using only one integer instead two.
Then instead of using two integer to de�ne a point (as in the (i; j)) we will use one integer
through the transform de�ned below.

We begin by de�ning the di¤erences operators in one dimension. Then we transform it in
two-dimensional operator by using the Kronecker multiplication in a suitable way.

Di¤erence Operators in 1 Dimension Let D1d be a one-dimensional grid with N + 1
points with x = hi for i = 0; :::; N . The positive �rst di¤erence operator �+N+1v(ih) =
(v(ih+ h)� (ih)) =h where N + 1 is the number of points may be written as a matrix. For
instance for N + 1 = 4 we have

�+4 =
1

h

0BB@
�1 1 0 0
0 �1 1 0
0 0 �1 1
0 0 0 �1

1CCA : (4.74)

By the same token, the second di¤erence operatorKN+1v(ih) = [v(ih+ h)� 2v(ih) + v(ih� h)] =h2
has a matrix representation and for N + 1 = 4 it is

K4 =
1

h2

0BB@
�2 1 0 0
1 �2 1 0
0 1 �2 1
0 0 1 �2

1CCA : (4.75)

Note that the �rst or last (or both) row is di¤erent from the others. It is because we are not
considering any boundary condition yet. We will incorporate the boundary condition later by
summing another matrix.

A simple way to construct those matrixes is a sum of identity and shifted identity matrix
IN+1 and IsN+1. The superscript s is the number of rows shift to the right if s > 0 or left if
s < 0. For instance

I0N+1 = IN+1;

I14 =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA (4.76)

and

I�24 =

0BB@
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

1CCA : (4.77)

Now we can construct the positive, negative and centered �rst di¤erence, as

�+N+1 =
1

h

�
I1N+1 � IN+1

�
; (4.78)

��N+1 =
1

h

�
IN+1 � I�1N+1

�
; (4.79)

�N+1 =
1

2h

�
I1N+1 � I�1N+1

�
; (4.80)
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and the second di¤erence operator as

KN+1 =
1

h2
�
I1N+1 � 2IN+1 + I�1N+1

�
: (4.81)

We shall account for the Neumann boundary condition, equations (4.68) and (4.69), adding
a suitable matrix. Again equations (4.68) and (4.69) reads

@h+x v(ih;Nh) =
�2v(ih;Nh) + 2v(ih;Nh� h)

h2
; (4.82)

@h+x v(Nh; jh) =
v(Nh� h; jh)� v(Nh; jh)

h
: (4.83)

In the matrixes �+N+1 and KN+1 we don�t have the term v(ih;Nh+ h) as it doesn�t belong to
D1d. To incorporate the Neumann boundary condition de�ne �+C;N+1 and KC;N+1 as�

�+C;N+1

�
N+1;N

= (KC;N+1)N+1;N = 1; (4.84)

�
�+C;N+1

�
i;j
= (KC;N+1)i;j = 0 if i 6= N + 1 or j 6= N : (4.85)

And �nally we have the operators accounting for Neumann boundary as

�+N+1 +�
+
C;N+1; (4.86)

KN+1 +KC;N+1: (4.87)

For instance

�+C;4 =
1

h

0BB@
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

1CCA ; (4.88)

KC;4 =
1

h2

0BB@
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

1CCA

�+4 +�
+
C;4 =

1

h

0BB@
�1 1 0 0
0 �1 1 0
0 0 �1 1
0 0 1 �1

1CCA ; (4.89)

K4 +KC;4 =
1

h2

0BB@
�2 1 0 0
0 �2 1 0
0 1 �2 1
0 0 2 �2

1CCA : (4.90)

Di¤erence Operators in 2 Dimensions We are concerned with two-dimensional operators.

This is achieved by a simple Kronecker product if we de�ne properly the grid labeling. As in
the main text, let the bidimentional grid be de�ned as Dh = (ih; jh) where i 2 f0; :::; Ng and
j 2 f0; :::; Ng assuming that N = L=h is an integer. Instead of using the two integer (i; j) we
de�ne p = 1+ i+ (N + 1)j and the point labeled with p refers to the point (ih; jh). The �gure
below shows this convention for p with N = 3. For instance, when i = 2 and j = 1 we have
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Figure 4.7: Appropriate point labeling in two dimension.

p = 7 and 'h(2h; h) = ('h)p=7. A function in such grid is represented as a (N+1)
2�dimensional

vector and the operator as square matrix.
In such grid the �rst and second di¤erence operator fox x�axis are

�2Dx;�N+1 = IN+1 
�
�
N+1; (4.91)

K2DxN+1 = IN+1 
KN+1 (4.92)

and for the y�axis
�2Dy;�N+1 = �

�
N+1 
 IN+1; (4.93)

K2DyN+1 = KN+1 
 IN+1; (4.94)

Where A 
 B is the Kronecker multiplication of two matrixes. Finally, in order to account
for the Neumann boundary condition we simply add the correction term in the unidimensional
matrix:

�2Dx;+N+1 + correction = IN+1 
 (�
+
N+1 +�

+
C;N+1); (4.95)

K2DxN+1 + correction = I 
 (KN+1 +KC;N+1); (4.96)

�2Dy;�N+1 + correction = (�
+
N+1 +�

+
C;N+1)
 IN+1; (4.97)

K2DyN+1 + correction = (KN+1 +KC;N+1)
 IN+1: (4.98)

Matrix Representation for the Generator We need the operator x@h+x and not just the

derivative @h+x . Again, we �rst construct the unidimensional operator and then apply the Kro-
necker in a convenient way. Let diag(v) put the values of the vector on a diagonal matrix. Then
if Hv = diag(v) we have

(Hv)ii = vi (4.99)

(Hv)ij = 0 for i 6= j. (4.100)

For instance, let nh;N = (0; h; 2h; 3h; :::; Nh)0, then

diag(nh;N ) =

0BBB@
0 0 ::: 0
0 h 0
...

. . .
...

0 0 : : : Nh

1CCCA : (4.101)
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Let n2h;N = (0; h
2; 4h2; 9h2; :::; N2h2) and denote by (x@)N+1 and

�
x2@2

�
N+1

the matrix repres-
enting the unidimensional �rst derivative multiplied by x. We have�

x@�
�
N+1

= diag(nh;N+1) ���N+1; (4.102)�
x2@2

�
N+1

= diag(n2h;N+1) �KN+1; (4.103)

where " � " denotes the usual matrix multiplication. As example consider N + 1 = 4. Then

(x@)h4 =
1

2h

0BB@
0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

1CCA
0BB@
0 1 0 0
�1 0 1 0
0 �1 0 1
0 0 �1 0

1CCA =
1

2h

0BB@
0 0 0 0
�1 0 1 0
0 �2 0 2
0 0 �3 0

1CCA ; (4.104)

�
x2@2

�h
4
=
1

h2

0BB@
0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9

1CCA
0BB@
�2 1 0 0
1 �2 1 0
0 1 �2 1
0 0 1 �2

1CCA =
1

h2

0BB@
0 0 0 0
1 �2 1 0
0 4 �8 4
0 0 9 �18

1CCA : (4.105)

The bidimensional operator composing Ach are�
x@h+x

�h
N+1

= IN+1 

�
x@+

�
N+1

; (4.106)

�
y@h+y

�h
N+1

=
�
x@+

�
N+1


 IN+1; (4.107)�
y2@2;h+yy

�h
N+1

=
�
x2@2

�
N+1


 IN+1; (4.108)�
c@h�x

�h
N+1

= diag(cN+1) ��2Dx;�N+1; (4.109)

and �nally

(Ach)N+1 = r
�
x@h+x

�h
N+1

+�
�
y@h+y

�h
N+1

+
�2

2

�
y2@2;h+yy

�h
N+1

�
�
c@h�x

�h
N+1

+ Neumann corrections,

(4.110)
where cN+1 is a representation of consumption rate c(ih; jh) such that the p-th element of cN+1
is

(cN+1)p = c(ih; jh); (4.111)

where (as before)
p = 1 + i+ (N + 1)j; (4.112)

(Ach)N+1 is the matrix representation of the generator A
c
h and the "corrections"accounts for the

Neumann boundary condition. Note that the equations (4.71)-(4.73) automatically hold in the
above construction of (Ach)N+1 once one sets

12 c(0; jh) = 0.

12This prevents the borrowing of money by the investor, i.e., it prevents the portfolio goes outside D with
negative x.
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De�ning the Optimal cn+1; zn+1; Tn+1

The value for cn+1(x; y) is

cn+1(x; y) =

�
@vn

@x

� 1


(4.113)

or

cn+1(ih; jh) = min

(
cmax;

�
vn(ih; jh)� vn(ih� h; jh)

h

� 1


)
; (4.114)

= min

(
cmax;

��
�2Dx;�N+1v

n
�
p

� 1


)
: (4.115)

Note that we used the negative �rst di¤erence. This is necessary in order to have all o¤ diagonal
elements positive in Ach.

After obtaining the consumption rate it is possible to obtain the optimal rebalancing policy
zn+1(ih; jh) :

zn+1(ih; jh) = argmax
z
Bzvn(ih; jh) (4.116)

= argmax
z
vn (ih� khh� zh; jh+ zh) (4.117)

if there is an integer z such that (ih� khh� zh; jh+ zh) 2 Dh, otherwise zn+1(ih; jh) is not
de�ned and Bzvn(ih; jh) = vn(0; 0) = 0.

The region Tn+1 may be stored in computer in convenient way as a vector �lled with 0 or 1
such that if (Tn+1)p = 1 we have the point labeled by p belongs to Tn+1 and if (Tn+1)p = 0 we
have the opposite: p =2 Tn+1. Then

(Tn+1)p = 1 if (Bzn+1vn)p >

�
(�Ach + Ih) vn +�

(cn+1)
1�

1�

�
p

1 + ��
;

(Tn+1)p = 0 otherwise. (4.118)

The Linear Operator bOTn+1;cn+1;zn+1
The operator OTn+1;cn+1;zn+1 is:

�
OTn+1;cn+1;zn+1 [v]

�
p
=

�
(�Ach + Ih) v +�

(cn+1)
1�

1�

�
p

1 + ��
for p 62 Tn+1; (4.119)�

OTn+1;cn+1;zn+1 [v]
�
p
= (Bzn+1v)p for p 2 Tn+1:

and this is equivalent to

OTn+1;cn+1;zn+1 [v] = diag(Tn+1) � (Bzn+1v) + (Ih � diag(Tn+1)) �

�
(�Ach + Ih) v +�

(cn+1)
1�

1�

�
1 + ��

:

(4.120)
In order to write the system of linear equation it is convenient to write the above operator

separating the linear operator part from (cn+1)
1�

1� :

OTn+1;cn+1;zn+1 [v] =
bOTn+1;cn+1;zn+1 [v] + dcn+1 (4.121)
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where bOTn+1;cn+1;zn+1 is the matrix
bOTn+1;cn+1;zn+1 = diag(Tn+1) �Bzn+1 + (Ih � diag(Tn+1)) � (�Ach + Ih)1 + ��

(4.122)

and dcn+1 is the vector
dcn+1 = (Ih � diag(Tn+1)) � �

1 + ��

(cn+1)
1�

1�  : (4.123)

Sub-step 2

The sub-step 2 is the computation of vn+1 as the solution of the system of linear equation

vn+1 = bOTn+1;cn+1;zn+1 �vn+1�+ dcn+1 (4.124)

equivalent to � bOTn+1;cn+1;zn+1 � Ih� vn+1 = �dcn+1: (4.125)

This is a vectorial equation and as long as
� bOTn+1;cn+1;zn+1 � Ih� isn�t singular we have a unique

solution for vn+1.
This is a vectorial equation of the type Ax = y and the Matlab�s backslash command

(Any = x) solves this equation.

4.A.3 Modi�cation in the Algorithm for t < TA

Possible Time Discretization Schemes and Our Choice

The main di¤erence for the numerical method before TA is that we have to include the time
derivative explicitly in the generator operator. Recall that we wrote:

V (t; x; y) = e��t'(x; y) for t � TA; (4.126)

(AcV ) (u; x; y) = Ace��t'(x; y) = e��t (Ac'(x; y)� �'(x; y)) : (4.127)

and the discrete version of Ac as

Achv = rx@
h+
x v + �y@h+y v +

1

2
�2y2@2;hyy v � c@h�x v:

We omitted the time derivative in Ach because it had no e¤ect in '(x; y)

@t'(x; y) = 0:

Nonetheless we need to include it explicitly in the present context.
De�ne the time grid as fTA � �tkjk = 0; 1; 2; :::; Ntg. It is convenient to use a similar notation

for t < TA
V (t; x; y) = e��t�(t; x; y) for t < TA; (4.128)

(AcV ) (t; x; y) = Ace��t�(t; x; y) = e��t (Ac�(t; x; y)� ��(t; x; y)) : (4.129)

but now we include the time derivative in the discrete version of the generator explicitly:

A3d;ch v = @�tt v + rx@
h+
x v + �y@h+y v +

1

2
�2y2@2;hyy v � c@h�x v (4.130)

A3d;ch v = @�tt v +A
c
hv:
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We keep considering Achv as the discrete version of generator without the time derivative for
notational convenience. We add a superscript 3d to highlight tridimensional nature of the
problem.

There are at least three possible schemes for time derivative: explicit, Crank-Nicholson and
implicit. We choose the implicit scheme because it is usually well behaved:

@�tt v =
v(t+ �t; x; y)� v(t; x; y)

�t
(4.131)

@�tt v =
v(TA � (k � 1)�t; ih; jh)� v(TA � k�t; ih; jh)

�t
:

The second main di¤erence is that we have a new boundary condition implied by the con-
jecture 12:

�(TA; x; y) = E
�
e��t'(x+ dXTA ; y + dSTA)

�
(4.132)

In the main text we have dXTA ! 0 but dSTA = y(� � 1) where � is lognormal. Moreover, V is
function of the �xed cost k and the parameters in the process r; �; � that may change at TA.

Transforming a 3D Problem into a Sequence of 2D Ones

In the �rst part of this appendix we transformed the three dimensional problem into a two
dimensional one by assuming that V (t; x; y) = e��t'(x; y). This procedure isn�t adequate for
t < TA and all matrix operators should, in principle, be transformed to accommodate the time.
Nonetheless, the structure of time derivative allows for a di¤erent procedure. Instead solving a
large linear equation system for a the three dimensional partial di¤erential equation it is possible
to solve a sequence of smaller linear equation system for a sequence of two dimensional partial
di¤erential equation.

The above transformation is possible because in order to solve for �(TA � k�t; x; y) it is
necessary only to know �(TA � (k � 1)�t; x; y) and nothing else. Then, given the boundary
condition at TA :

�(TA; x; y) = E
�
e��t'(x+ dXTA ; y + dSTA)

�
(4.133)

the algorithm solves for �(TA � �t; x; y). Then it solves for �(TA � 2�t; x; y) using only the
function �(TA� �t; x; y). And then it solves for �(TA�3�t; x; y) using �(TA�2�t; x; y) and keep
iterating until the desired time.

In order to keep using two dimensional matrix operators, we will use the notation

�TA�k�(x; y) = �(TA � k�t; x; y) (4.134)

considering �TA�k� as a two dimensional function: �TA�k� : <
2 ! <.

We solve for each k an equation similar to equation (4.125). Nonetheless we shall add the
time derivative:

@�tt v =
v(TA � (k � 1)�t; ih; jh)� v(TA � k�t; ih; jh)

�t
: (4.135)

Note that the time derivative is an operator that transforms a function v : <3 ! < to a function
@�tt v : <3 ! <. But we want to use the two dimensional function �TA�k�t : <

2 ! <. To this
end we use the forward operator Lk :

Lk
�
�TA�k�t

�
= �TA�(k�1)�t ; (4.136)

and use only functions whose domain is <2:

@�tt
�
�TA�k�t

�
(ih; jh) =

�TA�(k�1)�t(ih; jh)

�t
�
�TA�k�t(ih; jh)

�t
(4.137)
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@�tt
�
�TA�k�t

�
=

1

�t
Lk
�
�TA�k�t

�
� Ih

�
�TA�k�t

�
(4.138)

@�tt
�
�TA�k�t

�
=

1

�t
(Lk � Ih)

�
�TA�k�t

�
:

Remember that the equation (4.125) is a linear equation system:� bOTn+1;cn+1;zn+1 � Ih� vn+1 = �dcn+1: (4.139)

where bOTn+1;cn+1;zn+1 = diag(T ) �Bzn+1 + (I � diag(T )) � (�Ach + Ih)1 + ��
; (4.140)

dcn+1 = (I � diag(T )) � �

1 + ��

(cn+1)
1�

1�  : (4.141)

We keep the two-dimensional structure and the main change is replacing the operator Ach with
A3d;ch in a consistent way. We have that�dO3dTn+1;cn+1;zn+1 � Ih� vn+1 = �dcn+1 (4.142)

the left hand side is:

dO3dTn+1;cn+1;zn+1 = diag(T ) �Bzn+1 + (I � diag(T )) �

�
�
�
Ach + @

�t
t

�
+ Ih

�
1 + ��

(4.143)

= diag(T ) �Bzn+1 + (I � diag(T )) �

�
�
�
Ach +

1
�t
(Lk � Ih)

�
+ Ih

�
1 + ��

dO3dTn+1;cn+1;zn+1 = bOTn+1;cn+1;zn+1 + � �

1 + ��

�
1

�t
(Lk � Ih) : (4.144)

Then we have

bOTn+1;cn+1;zn+1vn+1 + � �

1 + ��

�
1

�t
(Lk � Ih) vn+1 = �dcn+1: (4.145)

Note that Lkvn+1 = �TA�(k�1)�t is given. We put it at the right hand side:

bOTn+1;cn+1;zn+1vn+1 + � �

1 + ��

�
�Ih
�t
vn+1 = �dcn+1 � � �

1 + ��

�
Lk
�t

(4.146)

� bOTn+1;cn+1;zn+1 � � �

1 + ��

�
Ih
�t

�
vn+1 = �dcn+1 � � �

1 + ��

�
1

�t
�TA�(k�1)�t : (4.147)

The above equation is a linear equation system with the same dimensionality as (4.125) .
Note that we shall do the procedure for each k beginning with k = 1.

Detailing the Procedure Used to Obtain the Boundary Condition

In the section 4.4 we consider the case where the price doesn�t jump at TA but the risk-free rate
change randomly between three possible rates with the same probability. In this case we do

�(TA; x; y) = E
�
e��TA'(x+ dXTA ; y + dSTA)

�
(4.148)

�(TA; ih; jh) =
1

3
e��TA

�
'r1(x; y) + 'r2(x; y) + 'r3(x; y)

�
:
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We consider also the case with a jump in the risky asset but without changes on parameters.

�(TA; x; y) = E
�
e��TA'(x+ dXTA ; y + dSTA)

�
(4.149)

�(TA; ih; jh) �
1X
l=1

e��TA'(ih; lh) [Fjh(lh)� Fjh([l � 1]h)]

where Fy is the cumulative distribution function (CDF) of STA given STA� = y:

Fy(a) = Prob [STA � a] (4.150)

and
[Fjh(lh)� Fy([l � 1]h)] = Prob [(l � 1)h � STA � lh] : (4.151)

Note that Fy is de�ned by the distribution of the jump. Note that the sum runs from 0 to1 but
we don�t know the value of '(x; y) for y > L = Nh. Truncating the sum in l = N would give a
biased expectation estimate. A better approach is to approximate '(x; L+ a) with '(x+ a; L).
When (x; L+a) =2 C and (x+a; L) =2 C we have indeed that '(x; L+a) = '(x+a; L). Otherwise,
it is a way to have some estimate of '(x; L+ a). Then, we do:

�(TA; ih; jh) =
NX
l=1

e��t'(ih; lh) [Fjh(lh)� Fjh([l � 1]h)]+
NX

l=i+1

e��t'(lh;Nh) [Fjh(lh)� Fjh([l � 1]h)] :

(4.152)

4.B Image Filters

We use 2 image �lters. First we zoom in and consider only the square [0; L=2]� [0; L=2]. Then
we �ll the diagonal lines inside the grey area in the top left sub�gure of �gure 4.8 and then �nd
the boundaries. In the �nal �gure we �ll the rebalancing region with a shadowed pattern and
add the optimal portfolio after rebalancing as a dashed line.

Each image has n� n pixels13 where each pixel represent a point in the grid. We associate
the white in the �gure 4.8 with the inaction region and with the number 0. The grey is the
rebalancing region and is associated with number 1. This representation is consistent with the
representation code used for set T in the appendix 4A. We consider the neighbor of a point (i; j)
in the grid as the points (i + 1; j); (i � 1; j); (i; j + 1) and (i; j � 1). We call walls the points
belonging to the boundaries of the square box [0; L]� [0; L]. This is the set f(0; y)jy 2 [0; L]g [
f(x; 0)jx 2 [0; L]g [ f(L; y)jy 2 [0; L]g [ f(x; L)jx 2 [0; L]g.

First note that all grey pixels have at least 3 grey neighbors except some points in the
boundaries. Moreover, note that all white pixels have less than 3 grey neighbors except the
diagonal blue lines inside the grey region (and very few points in the boundaries). The �rst
image �lter transformed the white pixels into grey ones whenever 3 or 4 neighbors are grey.
This make the white diagonal lines disappear. However a few points are added at the boundary,
but it has a minor e¤ect.

After this �rst �lter, we want only to show the boundary. It is easier to de�ne a point inside
the transaction region but not in the boundary: it is the grey ones with all neighbors grey. Then
we consider the boundary as the grey points not inside the transaction region, i.e., all the grey
points with at least one white neighbor.

Finally we add the dashed line representing the optimal portfolio after rebalancing.

13 In computer graphics, pixel is the smallest element represented in the image.
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Figure 4.8: Filters being applied to the inaction region raw data after the announcement for
parameters in table 4.1, case 3. The white region is the inaction region and the grey one is the
rebalancing region. Note the diagonal white lines in the rebalancing region in the top left �gure.
The �rst image �lter eliminates these lines. Then the boundary is determined as in the bottom
left �gure and we apply the shadow pattern to the rebalancing region.



Chapter 5

Conclusion

Each article in the present thesis investigates a di¤erent topic. The �rst one has the title
"Nonparametric Option Pricing with Generalized Entropic Estimators"and studies a pricing
method in incomplete markets. This method is linked to members in the Cressie-Read family
function where each member provides one risk-neutral measure. The results are encouraging
and suggest a new way to de�ne robust intervals for derivative prices.

The second article is titled "Watching the News: Optimal Stopping Time and Scheduled
Announcements"and studies optimal stopping times problems in the presence of a jump at a
�xed time. It investigates the general case theoretically and provides a numerical solution for
optimal time to sell an asset. The results characterize situations in which it is not optimal to
stop just before the news. The results are naturally applied to �nancial instruments with a
structure similar to American options.

The third article is a numerical study on an optimal portfolio problem with �xed cost and
scheduled announcement. Again, the scheduled announcement is modeled as a jump at a �xed
time. It is called "Dynamic Portfolio Selection with Transactions Costs and Scheduled An-
nouncement". The goal is to investigate the impact of costs on investor�s trading activity given
the price process. The most interesting result is that the chance to transact may be consistent
with the trading volume behavior found by Chae (2005) and barber et al. (2013). In the simu-
lations, it happens when the investor has a strong belief on the jump direction (i.e., if the jump
has a high or low average with low variance).

There are several interesting venues for future work. In relation to the �rst article, the
method may be generalized to deal with multiples maturities. This is the case of interest
rate derivatives such as caps and �oors. It means that the stochastic discount factor (SDF)
is a process and new relations may arise. This is so because there might be dependencies on
outcomes of di¤erent maturities. Some question naturally emerges in this setting. For instance,
can the dual problem be interpreted as a dynamic portfolio problem? Or, is this approach
better for pricing interest rate derivatives than a simpler one investigated by Chowdhury and
Stutzer (1999)? Another promising investigation is to better understand the relationship with
information theory. This may provide a more solid foundation for the choice of Cressie-Read
family. Finally, it is interesting to assess the empirical performance at �rm level.

The second article may provide insights on how investors, households or �rms behave at
scheduled announcements when facing an optimal stopping time problem. The question is to
know if it is optimal to take some action before the news or if it is better to delay such decision.
The obvious application is on American option type securities. The results suggest that the
exercises are less frequent just before the scheduled announcement and more frequent just after it
for some cases. Future empirical work may con�rm this prediction on di¤erent types of securities
ranging from equities options to callable bonds. Other applications may involve search problems,
stopping time games or optimal default time. For instance, how default time decisions made by
households or �rms are related to macro-announcements? Does the number of defaults diminish
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before some announcement?
Several future works may complement or build on the third article. From the theoretical

point of view, the model may incorporate periodical scheduled announcement. This is an ap-
proximation for quarterly and/or annual earnings announcements. Another possible venue is to
study a general equilibrium model with �xed cost and scheduled announcements. Possibly, it
may build on the work of Lo et al. (2004). It is also interesting to �nd and compare the results
with di¤erent types of costs or with no cost at all. From the empirical point of view, the third
article suggests tests on the relationship between �xed cost and trading volume. Chae (2005)
and Barber et al. (2013) found that the trading volume is lower between 2 to 10 days before
the news. It is an average of a large sample. If the sample is organized in quintiles of �xed
cost, would this result change across the quintiles? Do higher �xed costs imply lower abnormal
trading volume before the news? Finally, there is room for technical contribution related to
the localization procedure. For instance, a singular control may con�ne the process to a �nite
region. These controls imply a boundary condition involving derivatives in some cases. Possibly,
these conditions may be rewritten as a Neumann boundary condition. This would provide an
interpretation on the localization procedure used.
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