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Abstract

The objective of this article is to study (understand and forecast) spot

metal price levels and changes at monthly, quarterly, and annual frequencies.

Data consists of metal-commodity prices at a monthly and quarterly frequen-

cies from 1957 to 2012, extracted from the IFS, and annual data, provided

from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the

(relatively large) list of co-variates used in Welch and Goyal (2008) and in

Hong and Yogo (2009).
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We investigate short- and long-run comovement by applying the techniques

and the tests proposed in the common-feature literature. One of the main

contributions of this paper is to understand the short-run dynamics of metal

prices. We show theoretically that there must be a positive correlation between

metal-price variation and industrial-production variation if metal supply is held

�xed in the short run when demand is optimally chosen taking into account

optimal production for the industrial sector. This is simply a consequence of

the derived-demand model for cost-minimizing �rms. Our empirical evidence

fully supports this theoretical result, with overwhelming evidence that cycles

in metal prices are synchronized with those in industrial production. This

evidence is stronger regarding the global economy but holds as well for the

U.S. economy to a lesser degree.

Regarding out-of-sample forecasts, our main contribution is to show the

bene�ts of forecast-combination techniques, which outperform individual-model

forecasts � including the random-walk model. We use a variety of models

(linear and non-linear, single equation and multivariate) and a variety of co-

variates and functional forms to forecast the returns and prices of metal com-

modities. Using a large number of models (N large) and a large number of

time periods (T large), we apply the techniques put forth by the common-

feature literature on forecast combinations. Empirically, we show that models

incorporating (short-run) common-cycle restrictions perform better than unre-

stricted models, with an important role for industrial production as a predictor

for metal-price variation.

1 Introduction

The purpose of this paper is twofold. The �rst is to improve our understanding of

metal-commodity price variation either in the long run or in the short run by using

standard time-series techniques. We rely on the common-trend and common-cycle

approach put forward by Engle and Kozicki (1993), Vahid and Engle (1993, 1997),

Engle and Issler (1995), Issler and Vahid (2001, 2006), Vahid and Issler (2002), Hecq

et al. (2006), and Athanasopoulos et al. (2011). Here, non-stationary economic series
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are decomposed into an integrated trend component and a stationary and ergodic

cyclical component, where their properties can be jointly investigated in a uni�ed

multivariate setting based on vector autoregressive (VAR) models. Trends and cycles

can be common to a group of series being modelled, and these common features can

be removed by independent linear combination1. Our second objective is to improve

on current forecasts of metal-commodity prices taking into account the recent �nan-

cialization of commodity markets and the role of information in commodity markets;

see Hong and Yogo (2009, 2012) and Gargano and Timmermann (2012). Instead

of relying on a speci�c model to forecast metal-commodity prices, we diversify out

the risk of large forecast errors (and increase the information set used in forecast-

ing) by combining forecasts of di¤erent models. This approach, �rst put forward

by Bates and Granger (1969), has been shown to reduce forecast uncertainty in a

variety of studies; see Hendry and Clements (2004) and Stock and Watson (2006).

Recently, Issler and Lima (2009) have developed an optimal forecast-combination

in a panel-data setting, where forecasts of di¤erent models (or survey results) com-

prise the cross-sectional dimension. In their context, the optimal forecast using a

mean-squared error (MSE) risk function can be consistently estimated employing

the bias-corrected average forecast (BCAF), which is a common feature of all fore-

cast models.

Early modern empirical work on commodity prices focused on the behavior of

trend prices �Cuddington and Urzúa (1989) and Cuddington (1992). Trends are

modelled as martingale processes. As (Deaton, 1999, p. 27) puts it, referring to the

drift term in commodity prices: �what commodity prices lack in trend, they make

up for in variance.�Cashin et al. (2002) summarize the �stylized facts about real

commodity prices: they are often dominated by long periods of doldrums punctuated

by sharp upward spikes (Deaton and Laroque (1992)); they have a tendency to

trend down in the long run (Grilli and Yang (1988)); shocks to commodity prices

tend to persist for several years at a time (Cashin et al. (2000)); and unrelated

commodity prices move together (Pindyck and Rotemberg (1990)).�Compared to

the interest on the trends of commodity prices, little work has been done on cycles,

1Perhaps cointegration is the best-known example of common features.
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the early exceptions being Labys et al. (1999), Cashin et al. (1999), and Pindyck and

Rotemberg (1990).

Recently, however, there has been a renewed interest on commodity-price cycles,

see Jerrett and Cuddington (2008) and IMF (2012). Our paper complements this

e¤ort. One of its main contributions is to understand the short-run dynamics of

metal prices. We show, theoretically, that there must be a positive correlation be-

tween metal-price variation and industrial-production variation if metal supply is

held �xed when demand is optimally chosen taking into account optimal produc-

tion for the industrial sector. This is simply a consequence of the derived-demand

model for cost-minimizing �rms. The details of this models are given in Section 2.

Our empirical evidence in Section 5 (monthly and quarterly data) fully supports this

theoretical result, with overwhelming evidence that cycles in metal prices are syn-

chronized with those in industrial production. This evidence is stronger regarding

the global economy but holds as well for the U.S. economy to a lesser degree. As far

as we know, we were the �rst authors to investigate and �nd common cycles in this

way, accounting for theory and empirics, and not just describing a stylized fact2.

Our second contribution is in forecasting metal prices at di¤erent horizons. In

doing so, we try to incorporate the overwhelming evidence found on common cy-

cles between metal prices and industrial production. One of the advantages of the

common-trend and common cycle method is parsimony, with obvious bene�ts for

building e¢ cient forecasting models; see Issler and Vahid (2001), Vahid and Issler

(2002), and Athanasopoulos et al. (2011). As argued by Vahid and Issler (2002),

vector autoregressions (VARs) have been increasingly used in multivariate analysis

and in forecasting economic data. One of their shortcomings is the excessive num-

ber of parameters. For example, a V AR (p) for n series has n2 � p parameters in
the conditional mean. One can easily see the burden on degrees of freedom if the

number of series being modelled (n) is large. Cointegration certainly reduces the

number of parameters, but these reductions are mild. On the other hand, short-run

2Obviuosly, we were not �rsts to investigate the cyclical behavior of metal prices (Jerrett and
Cuddington, 2008). Nor were we the �rsts to emphasize the importance of demand factors (Deaton
and Laroque, 1996).
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restrictions �or common cycles �have a much greater potential to reduce the num-

ber of parameters in the dynamic representation. For example, when dealing with

post-war quarterly data, and a VAR with three variables and eight lags, there are

seventy �ve mean parameters to be estimated from about two hundred data points

on each variable. If the three-variable system has one known cointegrating vector,

the number of free parameters falls from seventy �ve to sixty nine when estimating a

vector error-correction model �VECM. Common-cyclical features show more poten-

tial in reducing the number of conditional-mean parameters. If the three variables

in the VECM share one common cycle, then the number of mean parameters falls

from sixty nine to twenty seven.

Using e¢ cient models in forecasting metal prices is of obvious interest. However,

most models are misspeci�ed, and it has been largely documented that the average

forecast using several models outperforms individual models themselves; see Hendry

and Clements (2004). Hence, we apply forecast-combination methods to forecast

metal prices, showing that they work in practice. We go one step beyond, resorting

to a common-feature technique proposed by Issler and Lima (2009).

As argued by Issler and Lima (2009), Bates and Granger (1969) made the econo-

metrics profession aware of the bene�ts of forecast combination when a limited num-

ber of forecasts is considered. The widespread use of di¤erent combination techniques

has lead to an interesting puzzle from the econometrics point of view �the forecast

combination puzzle: if we consider a �xed number of forecasts (N <1), combining
them using equal weights (1=N) fare better than using �optimal weights�constructed

to outperform any other forecast combination in the mean-squared error (MSE) sense.

Regardless of how one combine forecasts, if the series being forecast is stationary and

ergodic, and there is enough diversi�cation among forecasts, we should expect that a

weak law-of-large-numbers (WLLN) applies to well-behaved forecast combinations.

This argument was considered in Palm and Zellner (1992) who asked the question

�to pool or not to pool�forecasts? Timmermann (2006) used risk diversi�cation �

a principle so keen to �nance �to defend pooling of forecasts. Of course, to obtain

this WLLN result, at least the number of forecasts has to diverge (N !1), which
entails the use of asymptotic panel-data techniques. This is exactly the approach in
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Issler and Lima (2009), with the added twist that now N; T ! 1, with T ! 1
prior than N : the sequential asymptotic approach developed by Phillips and Moon

(1999), denoted by (T;N !1)seq.
Forecast combination works well in practice because of risk diversi�cation: idio-

syncratic forecast errors vanish because of the WLLN works as the number of fore-

casts being combined increases without bounds. However, the forecast combination

puzzle also works against forecast combinations because of the curse of dimension-

ality: as N increases, if one has to estimate �optimal weights�to combine forecasts

with a �xed number of observations, the estimates of these weights are inconsistent.

Issler and Lima solve the curse of dimensionality by imposing equal weights that

need not be estimated (1=N), and perform bias correction to take MSE down to its

minimum, identifying, in the limit, the conditional expectation of the series being

forecast: if yt is the series being forecast, and h is the horizon, then, what is being

identi�ed is the latent variable Et�h(yt), where Et�h(�) is the conditional expectation
operator using all information available (observable or not) up to period t�h. Here,
we are able to expand the information content of every individual model.

The paper is divided as follows: Section 2 presents a theoretical model that

delivers common cycles among metal prices and industrial output. Sections 3 and

4 summarize the econometric techniques employed here, while the empirical results

are reported in detail in Section 5. Section 6 concludes.

2 Understanding the Fluctuations of Metal-Commodity

Prices

From a theoretical point-of-view, commodity-price dynamics have been studied at

least since Newbery and Stiglitz (1981), Deaton and Laroque (1992, 1996) and Cham-

bers and Bailey (1996). Early modern empirical work on commodity prices has fo-

cused on the behavior of trend prices �Cuddington and Urzúa (1989) and Cuddington

(1992) �where trends were modelled as martingale processes.

Despite the proliferation of trend studies, the literature on the cyclical �uctua-
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tions of commodity prices has not been so proli�c. Indeed, Jerrett and Cuddington

(2008) note that �authors have analyzed the movement of metal prices over the busi-

ness cycle as well as comovements among commodity prices (see Labys et al. (1999);

Cashin et al. (1999); and Pindyck and Rotemberg (1990)).�Regarding cycles, Deaton

and Laroque (1996) is an important paper emphasizing the importance of demand

shocks for short-run �uctuations. As they put it, �it is likely that demand shocks

are a more plausible source of price �uctuations than has usually been supposed in

the literature3.�

We also argue here that there is an important role for demand shocks in explaining

the short-run variation of metal-commodity prices. Indeed, the overwhelming em-

pirical evidence below suggests that the short-run �uctuations of metal-commodity

prices are synchronized with those of industrial production in a global scale. To a

lesser degree, they are also synchronized with U.S. industrial production. In trying

to understand how these stylized facts come about, we devise a simple theoretical

model motivated by the fact that metal commodities are inputs in industrial pro-

duction processes, which generates a derived demand for metal commodities.

Consider a representative industrial �rm, which chooses the optimal quantity of

inputs xi, i = 1; 2; � � � ; n, all stacked in a vector x = (x1; x2; � � � ; xn)0, when producing
output y0. The choice of output y0 can be thought as an optimal decision coming

from the �rm�s output market. The corresponding prices for inputs i = 1; 2; � � � ; n,
stacked in a vector w = (w1; w2; � � � ; wn)0, are considered given for the �rm when

choosing x. The �rm�s cost minimization problem in this context is:

min
x

C(w; x) = w � x s:t: f(x) � y0: (1)

From the �rst-order (interior) condition of this problem, using Shepard�s Lemma,

we derive the optimal derived demands for all inputs, labelled x�i (w; y0):

@C(w; x�)

@wi
= x�i (w; y0); i = 1; 2; � � � ; n: (2)

3Recently, there has been a renewed interest on commodity-price cycles, see Jerrett and Cud-
dington (2008) and IMF (2012).
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A critical issue in describing the equilibrium for input markets is how to model

supply. Of course, this depends on the horizon at which markets are supposed to

clear. In modelling short-run �uctuations, it is reasonable to assume that metal-

commodity supply cannot be increased without climbing a very steep cost function.

Thus, we treat supply as �xed (xi) in the short run. This assumption is consistent

with the fact that mining projects are very intensive in capital and take a long time to

mature. Since capital is traditionally held �xed in short-run analysis, this is similar

to �xed short-run supply. Even if one considers the existence of inventories, they also

cannot change in quantity in the short run. Indeed, we can think as the inventories

as part of this �xed supply (xi) for metal commodities.

Thus, the short-run equilibrium condition for inputs (including metal commodi-

ties) is:

x�i (w; y0) = xi: i = 1; 2; � � � ; n: (3)

Ceteris paribus, given the equilibrium condition (3), we investigate how changes

in output potentially change the price of input i, wi, considered here to be a metal

commodity used in production. Totally di¤erentiate (3) considering only changes in

wi and in industrial production, y0, later solving for dwidy0
:

0 =
@x�i (w; y0)

@wi
dwi +

@x�i (w; y0)

@y0
dy0; or,

dwi
dy0

= �
@x�i (w;y0)

@y0
@x�i (w;y0)
@wi

: (4)

It is straightforward to establish unequivocally that dwi
dy0

> 0 since, from the-

ory, we should have @x�i (w;y0)
@y0

> 0 and @x�i (w;y0)
@wi

< 0. This result
�
dwi
dy0
> 0
�
is

completely intuitive: given concavity of the cost function vis-a-vis input prices�
@x�i (w;y0)
@wi

= @2C(w;x�)
@w2i

< 0
�
, if the representative �rm wants to increase industrial

production in the short run, it will put an upward pressure in the metal-commodity

market, stemming from the fact that it should take more inputs to produce more�
@x�i (w;y0)

@y0
> 0
�
, otherwise it is not a cost minimizer.

In this setup, changes in industrial production have a positive correlation with

8



changes in metal-commodity prices. Of course, this does not imply that these �uc-

tuations will be synchronized, but that is the object of the empirical investigation in

Section 5 below. It should also be noted that, as the equilibrium horizon becomes

larger, supply cannot be treated as �xed, which reduces the importance of demand

factors.

3 Cointegration and Common Cycles for Metal

Prices

We discuss here a uni�ed econometric framework that allows investigating the exis-

tence of short- and long-run restrictions for metal-commodity prices. An in-depth

theoretical discussion of these issues can be found in Engle and Granger (1987), Vahid

and Engle (1993), Vahid and Engle (1997), Hecq et al. (2006), and Athanasopoulos

et al. (2011).

Assume that yt is a n-vector of I(1) metal prices4 (or log metal prices), which

can be represented by a vector autoregression (VAR) model in levels:

yt = �1yt�1 + : : :+ �pyt�p + �t: (5)

If elements of yt cointegrate, Engle and Granger (1987) showed that the system

(5) can be written as a Vector Error-Correction model (VECM):

� yt = �
�
1� yt�1 + : : : + ��p�1� yt�p+1 + �

0 yt�1 + �t (6)

where  and � are full rank matrices of order n� r, r is the rank of the cointegrating
space, �

�
I �

pP
i=1

�i

�
= �0, and ��j = �

pP
i=j+1

�i , j = 1; : : : ; p� 1.

For our purposes, testing for cointegration will be used to verify whether metal-

price data share common trends (or have long-run comovement). Testing for common

trends among yt will use the maximum-likelihood approach in Johansen (1991). A

4Other variables of interest may also be jointly modeled with metal-commodity prices, e.g.,
industrial production and other co-variates that could help explaining their behavior.
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key issue to assure that inference is done properly is to estimate the lag length of

the VAR (5) consistently, i.e., to estimate p consistently. Athanasopoulos et al.

discuss how this can be achieved by using a combination of information criteria. An

alternative to way to infer p is to perform diagnostic testing to rule out the risk of

underestimation of p, which leads to inconsistent estimates for the parameters in (6).

Vahid and Engle (1993) show that the dynamic representation for yt (6) may

be restricted if there exist white noise independent linear combinations of the series

� yt, i.e., if the yts share common cycles. These white noise linear combinations of

the series � yt can be expressed using cofeature vectors ~�
0
i, stacked in an s�n matrix

~�0, which eliminate all serial correlation in � yt. Thus, ~�0� yt = ~�0�t. This is what

Hecq, Palm and Urbain (2006) have labelled strong-form serial-correlation common

features:

~�0��1 = ~�0��2 = : : : = ~�
0��p�1 = 0, and (7)

~�0 = 0: (8)

If we only impose restrictions (7), but not (8), we obtain what they have labelled

weak-form serial-correlation common features: ~�0 [� yt � �0 yt�1] = ~�0�t, i.e., we

only inherit an unpredictable linear combination of � yt once we control for the

long-run deviations �0 yt�1 stemming from cointegration.

We continue the discussion of common cycles in the case of strong-form serial-

correlation common features ((7) and (8)), given that the weak-form case can be

immediately inferred from it5. Since cofeature vectors are identi�ed only up to an

invertible transformation, without loss of generality, we can consider ~� to be of the

form:

~� =

"
Is

~��(n�s)�s

#
Completing the system by adding the unconstrained VECM equations for the re-

5The Appendix contains a more complete discussion.
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maining n� s elements of � yt; we obtain a quasi-structural model,

24 Is ~��0

0
(n�s)�s

In�s

35� yt =
24 0

s�(np+r)

���1 : : : ���p�1 
�

35
266664

� yt�1
...

� yt�p+1

�0yt�1

377775+ vt: (9)

Since

24 Is ~��0

0
(n�s)�s

In�s

35 is always invertible, we can recover (6) from (9). How-

ever, that the latter has s � (np+ r) � s � (n� s) fewer parameters, thus, being
over-identi�ed.

The literature on common cycles proposes estimation of the system in (9) in two

di¤erent ways. The �rst is to employ full-information maximum likelihood (FIML),

constructing the likelihood function exploiting the correlation among the errors vt.

The other is to employ the generalized method of moments (GMM), exploiting the

fact that the errors vt are orthogonal to the regressors in (9). Notice that this

includes the �rst s errors in vt, which come from the white-noise combinations using

~�. Analogously, testing for the existence of s cofeature vectors �vectors leading to s

linearly independent white noise combinations of the elements in � yt �can be done

by canonical-correlation analysis (likelihood based) or by over-identifying-restriction

tests (GMM based).

In testing for the existence of s serial-correlation common features (SCCF), by

means of canonical-correlation analysis, the null hypothesis is that the �rst smallest

s canonical correlations are jointly zero and the test statistic is �T
sP
i=1

log (1� �i),

where �i, i = 1; � � � ; n, are the sample squared canonical correlations between f� ytg
and f�0yt�1;� yt�1;� yt�2; � � � ;� yt�p+1g. The limiting distribution of this test sta-
tistic is �2 with s (np+ r)� s (n� s) degrees of freedom.
One possible drawback of the canonical-correlation approach is that it assumes ho-

moskedastic data, and that may not hold for metal-price (and other macroeconomic

and �nancial data) collected at high frequency. In this case, a GMM approach is more
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robust, since inference can be conducted with Heteroskedastic and Auto-Correlation

(HAC) robust estimates of the variance-covariance matrices of parameter estimates.

The vector of instruments comprise the series in �0yt�1; � yt�1; � yt�2; � � � ; � yt�p+1,
collected in a vector Zt�1. GMM estimation and testing exploits the following mo-

ment restriction:

0 = E [vt 
 Zt�1] = (10)

= E

266664
0BBBB@
24 Is ~��0

0
(n�s)�s

In�s

35� yt �
24 0

s�(np+r)

���1 : : : ���p�1 
�

35
266664

� yt�1
...

� yt�p+1

�0yt�1

377775
1CCCCA
 Zt�1

377775 ;

i.e., the orthogonality between all the elements in vt and all the elements in Zt�1. The

test for common cycles is an over-identifying restriction test �the J test proposed

in Hansen (1982) �which has an asymptotic �2 distribution with degrees of freedom

equal to the number of over-identifying restrictions. The over-identifying restrictions

test checks whether the errors of the system are orthogonal to all the instruments in

Zt�1.

4 A Forecast-Combination Approach forMetal Prices

Here, we discuss the techniques used for optimal forecasting of metal-commodity

prices. An in-depth theoretical discussion of these issues can be found in Bates and

Granger (1969), Palm and Zellner (1992), Stock and Watson (2006), Timmermann

(2006), and more recently in Issler and Lima (2009). The latter is our preferred

approach, partly reproduced here with improved notation for completeness. It is

appropriate for forecasting a weakly stationary and ergodic univariate process fytg
using a large number of forecasts that will be combined to yield an optimal forecast

in the mean-squared error (MSE) sense. These forecasts are the result of several

econometric models that need to be estimated prior to forecasting. We label forecasts

of yt, computed using conditioning sets lagged h periods, by fhi;t, i = 1; 2; : : : ; N .

12



Therefore, fhi;t are h-step-ahead forecasts and N is the number of models estimated

to forecast fhi;t.

Issler and Lima (2009) consider 3 consecutive distinct time sub-periods. The �rst

sub-period E is labeled the �estimation sample�, where models are usually �tted

to forecast yt subsequently. The number of observations in it is E = T1 = �1 � T ,
comprising (t = 1; 2; : : : ; T1). The sub-period R (for regression) is labeled the post-

model-estimation or �training sample�, where realizations of yt are usually confronted

with forecasts produced in the estimation sample, and weights and bias-correction

terms are estimated. It has R = T2 � T1 = �2 � T observations in it, comprising

(t = T1 + 1; : : : ; T2). The �nal sub-period is P (for prediction), where genuine out-

of-sample forecast is entertained. It has P = T � T2 = �3 � T observations in it,

comprising (t = T2 + 1; : : : ; T ).

Forecasts fhi;t�s are approximations to the optimal forecast (Et�h(yt)) as follows:

fhi;t = Et�h(yt) + khi + "hi;t; (11)

where khi is the individual model time-invariant bias for h-step-ahead prediction and

"hi;t is the individual model error term in approximating Et�h(yt), where E("hi;t) = 0
for all i, t, and h. Here, the optimal forecast is a common feature of all individual

forecasts and khi and "
h
i;t arise because of forecast misspeci�cation.

We can always decompose the series yt into Et�h(yt) and an unforecastable com-
ponent �ht , such that Et�h(�

h
t ) = 0 in:

yt = Et�h(yt) + �ht : (12)

Combining (11) and (12) yields the well known two-way decomposition, or error-

component decomposition, of the forecast error fhi;t � yt:

fhi;t = yt + �
h
i;t; i = 1; 2; :::; N , and T > T1; (13)

�hi;t = khi + �
h
t + "

h
i;t, where � �ht = �ht

From the perspective of combining forecasts, the components khi , "
h
i;t and �

h
t play
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very di¤erent roles. If we regard the problem of forecast combination as one aimed at

diversifying risk, i.e., a �nance approach, then, on the one hand, the risk associated

with "hi;t can be diversi�ed, while that associated with �
h
t cannot. On the other

hand, in principle, diversifying the risk associated with khi can only be achieved if a

bias-correction term is introduced in the forecast combination, which reinforces its

usefulness.

Issler and Lima propose the following non-parameteric consistent estimates for the

components khi , B
h, �ht , and "

h
i;t: bkhi = 1

R

PT2
t=T1+2

fhi;t� 1
R

PT2
t=T1+2

yt, cBh = 1
N

PN
i=1
bkhi ,b�ht = 1

N

PN
i=1 f

h
i;t � cBh � yt, b"hi;t = fhi;t � yt � bkhi � b�ht. They show that, under a set

of conditions, the feasible bias-corrected average forecast (BCAF) 1
N

PN
i=1 f

h
i;t � cBh

obeys:

plim
(T;N!1)seq

 
1

N

NX
i=1

fhi;t � cBh
!
= yt + �

h
t = Et�h(yt);

where plim(T;N!1)seq is the probability limit using the sequential asymptotic frame-

work of Phillips and Moon (1999). Thus, the feasible BCAF is an optimal forecasting

device.

They also show that there is an in�nite number of optimal forecast combina-

tions using deterministic weights f!igNi=1,such that !i 6= 0, !i = O(N�1) uni-

formly, with
PN

i=1 !i = 1 and limN!1
PN

i=1 !i = 1. This allows the discussion

of the well-known forecast combination puzzle: if we consider a �xed number of fore-

casts (N <1), combining them using equal weights (1=N) fare better than using

�optimal weights�constructed to outperform all other forecast combination in the

mean-squared error (MSE) sense. Optimal population weights, constructed from the

variance-covariance structure of models with stationary data, are optimal. Thus,

the forecast-combination puzzle must be a consequence of the lack of consistency in

estimating them, and can arise when N , the number of models being combined, is

high relative to the number of observations used in estimating them by OLS �R.

Finally, there is one interesting case in which we can dispense with estimation in

combining forecasts: when the mean bias is zero, i.e., Bh = 0, there is no need to

estimate Bh and the BCAF is simply equal to 1
N

PN
i=1 f

h
i;t, the sample average of all

forecasts. This is the ultimate level of parsimony. To test the null that Bh = 0, Issler
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and Lima developed a robust t-ratio test that takes into account the cross-sectional

dependence in khi .

4.1 Forecast Combination for Nested Models

The potential problem of nested models is that the innovations from nested models

can exhibit high cross-sectional dependence, preventing a weak law-of-large numbers

(WLLN) to hold. Issler and Lima (2009) introduce nested models by considering a

continuous set of models splitting the total number of models N into M classes (or

blocks), each of them containing m nested models, so that N = mM . In the index of

forecasts, i = 1; : : : ; N , we group nested models contiguously. Hence, models within

each class (block) are nested but models across classes (blocks) are non-nested.

The number of classes and the number of models within each class to be functions

of N , respectively as follows: M = N1�d and m = Nd, where 0 � d � 1. Notice

that this setup considers all the relevant cases: (i) d = 0 corresponds to the case in

which all models are non-nested; d = 1 corresponds to the case in which all models

are nested and; (iii) the intermediate case 0 < d < 1 gives rise to N1�d blocks of

nested models, all with size Nd.

Regarding the interaction across blocks of nested models, it is natural to impose

that the correlation structure of innovations across classes is such that it does not

prevent a weak law-of-large numbers (WLLN) to hold, although we expect it not

to hold within every block of nested models. Keeping some nested models poses

no problem, since the mixture of all models will still deliver the optimal forecast.

From a practical point of view, the choice of 0 � d < 1 seems to be superior and is
su¢ cient to guarantee optimality of forecasts combinations as before.
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5 Empirical analysis

5.1 Data and Empirical Implementation

We employed data of di¤erent frequencies and di¤erent sources building a very com-

prehensive dataset of metal prices and potential co-variates that can be used either

in building economics models and/or for forecasting. We have a library of data on

three di¤erent frequencies: monthly, quarterly and annual.

On a monthly basis, the metal-price data consists of commodity prices for a vari-

ety of metals (or derived products) �Aluminium, Copper, Lead, Nickel, Tin and Zinc

�extracted from the International Financial Statistics (IFS) of the IMF. Metal-price

data at this frequency is available from 1957:1 to 2012:3. Nominal price data were

de�ated using the consumer price index (CPI) for the U.S., which was extracted

from the FRED database of the St. Louis FED. We have also a measure of indus-

trial production in a monthly basis, constructed by J.P. Morgan, which is used in

building quasi-structural models. It includes Chinese and Indian industrial produc-

tion. Because of that, this series is available only from 1992:01 through 2012:09. In

forecasting, we used co-variates (predictors) which are potentially correlated to the

prices of these metals or derived products. These are mostly composed by �nancial

indices downloaded from the library kept by Welch and Goyal (2008) and by Hong

and Yogo (2012), available from 1965 to 2008. This list includes: global, U.S., and

Chinese industrial production, the primary metals coincident and leading indices,

provided by the United States Geological Service (USGS), and a few �nancial-sector

co-variates, such as: VIX �a volatility index, the U.S. real e¤ective exchange rate,

returns and excess returns on U.S. government bonds at di¤erent maturities, and the

return on the S&P500 index.

On a quarterly basis, we collect price data for the same metals (or derived prod-

ucts) listed for monthly frequency. They are available from 1957:1 through 2012:1,

and were extracted from IFS database. Nominal price data were de�ated using the

CPI for the U.S. We also employed the (relatively large) list of co-variates used in

Welch and Goyal (2008) and in Hong and Yogo (2012).
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On an annual basis, metal-price data were provided by the United States Geo-

logical Service (USGS), from 1900 through 2010. Annual prices were de�ated by the

U.S. CPI �a series put together by the St. Louis and Minneapolis Federal Reserve

Economic Database. Actual annual CPI data covers the period 1913-2010, whereas

the period 1900-13 uses FED estimates. We also employed the list of annual co-

variates used in Welch and Goyal (2008) and in Hong and Yogo (2012) and a list

of �nancial indices and real economic variables, such as Angus Maddison�s historical

GDP, and Shiller�s U.S. per capita real consumption.

Our analysis of common-cyclical features will focus on the GMM tests proposed

in Section 3, which is an appropriate testing strategy under unknown heterogeneity

and dependence of the moment restrictions in question. Cointegration analysis in-

vestigates the existence of long-run relationships among economic data. As is well

known, this requires the use of long-span data. Higher frequency is not a substitute

for the it. Thus, we put much more emphasis on cointegration tests using annual

data, given it has the longest span �110 years of data. Obviously, we still test for

cointegration at other frequencies, but we do not emphasize the results so much. In

addition to that, because monthly and quarterly data are only available since 1957

(55 years of data), cointegration results using annual, quarterly and monthly data

may not necessarily match. This may be simply a consequence of the fact that the

samples used in these analyses are di¤erent.

Regarding the forecasting exercise, the focus will be on monthly and annual

frequencies alone � the former being appropriate to short-term forecasts and the

latter to long-term forecasts.

5.2 Bivariate Analysis: Cointegration and Common Cycles

for Metal Prices

5.2.1 Monthly Frequency

Data for (log) prices of metals (or derived products) �Aluminium, Copper, Lead,

Nickel, Tin and Zinc �are available from 1957:01 through 2012:03, whereas data for

(log) Global Industrial Production (seasonally adjusted) is available from 1992:01
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through 2012:09. Data for U.S. industrial production is available from 1919:1 on-

wards. All these series show signs of containing a unit root, which is con�rmed for

all of them using Phillips and Perron (1989) test6.

First, we analyze the pairwise behavior of metal commodity prices alone, asking

whether they share common trends and/or common cycles. Results are presented in

Table 1. Regarding cointegration, we �nd overwhelming evidence of common trends

among pairwise prices (10 out of 15). Conditional on this evidence, we tested for

common cycles using the GMM approach (robust to heteroskedasticity and serial

correlation of unknown form), �nding no signs of pairwise common cycles for the

growth rates of metal-commodity prices �the only exception being the pair aluminum

and lead, albeit the evidence is faint.

Next, we investigate whether prices for metal commodities cointegrate and/or

share common cycles with global industrial production. The analysis is pairwise, one

commodity price at a time. Results are presented in Table 2 (panel A). Regarding

cointegration, with the exception of aluminium, we �nd no evidence of a long-run

relationship between metal prices and global industrial production for the last 20

years. On the other hand, results for common cycles are very di¤erent. Using

the GMM approach, at 5% signi�cance, we found evidence of strong-form common-

cyclical features between industrial production and the following metals: copper,

nickel, tin, and zinc. In addition to that, we also found evidence of weak-form

common-cyclical features between industrial production and aluminium.

To motivate the �ndings of common cycles between global industrial production

and the real price of copper, nickel, tin, and zinc, we detail here the results for

copper, a metal for which its price is known to be associated with economic activity

�the conventional wisdom of �nancial and business-cycle analysts for a long time7.

6A slight caveat involves (log) aluminium prices, which rejects the null of a unit root at 5%
signi�cance when a constant is included, but rejects when a constant and trend are included. It
also rejects Kwiatkowski et al. (1992) stationarity test. Thus, we chose to model it as a I (1)
process.

7There is a large group of webpages advertising the relationship between the Dow Jones In-
dex and copper prices (e.g., http://www.marketoracle.co.uk/Article27240.html) or between copper
prices and business cycles (e.g., http://www.marketwatch.com/story/is-dr-copper-about-to-make-
a-house-call-2013-01-07).
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In Figure 1 below, we plot the growth rates of copper prices �labelled � ln
�
PCot

�
�and the growth rates of global industrial production �labelled � ln

�
IPGt

�
, both

standardized (zero mean, unit variance).
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Copper Prices Growth Rates (std)
Global Ind. Prod. Growth Rates (std)

Figure 1: Standardized Growth Rates of Global Industrial Production

and Copper Prices

Notice that both � ln
�
PCot

�
and � ln

�
IPGt

�
show signs of serial correlation, as

is apparent from Figure 1 above. However, using the Ljung-Box test at 10% signif-

icance, our empirical results in Table 2 found that the following linear combination

is white noise (unpredictable):

� ln
�
PCot

�
� 7:523

(1:50)
�� ln

�
IPGt

�
+ 0:015

(0:006)
; (14)
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with robust standard errors in parenthesis. This shows that� ln
�
PCot

�
and� ln

�
IPGt

�
are synchronized and that ln

�
PCot

�
and ln

�
IPGt

�
share a common cycle. As we ar-

gued in Section 2, this is consistent with a standard theory of derived demand for

copper in producing industrial output for the global economy when the supply of

copper is held �xed in the short run.

Next, still in Table 2 panel A, we investigate whether or not the growth rates of

metal-commodity prices are synchronized with U.S. industrial production. Since we

want to compare results with the previous tests using global industrial production,

we employ the same sample period in the analysis (1992:1-2012:3), noting that U.S.

industrial production is available from 1919:1 onwards. For the U.S., using the J-

statistic, we �nd clear evidence of synchronized growth rates for industrial production

and aluminium, tin, and zinc. Regarding lead and copper, the evidence is not so clear.

In any case, overall, the only statistically signi�cant combinations of growth rates

are the ones involving aluminium and tin, respectively. Thus, the evidence regarding

the U.S. economy is weaker than that of the global economy. If we apply the same

tests using the whole sample �1957:1-2012:3 �we �nd no evidence of common cycles

at all; see panel B in Table 2.

It is interesting to contrast the evidence of common cycles between metal-commodity

prices and global industrial production with that between the former and U.S. indus-

trial production. As is well known, there is a recent migration of industrial activity

from developed countries to emerging economies, especially China and India. Global

industrial production is highly in�uenced by the industrial production of these two

countries, which may explain why it is synchronized with metal-commodity prices.

On the other hand, developed countries such as the U.S., have witnessed a contin-

ued decline of their industrial sector, which may explain why we did not �nd strong

evidence of synchronicity of U.S. industrial production and metal-commodity prices.

5.2.2 Quarterly Frequency

On a quarterly frequency, data for (log) prices of metals (or derived products) �

Aluminium, Copper, Lead, Nickel, Tin and Zinc �are available from 1957:01 through
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2012:01. Table 3 presents results of pairwise cointegration between metal prices,

reporting overwhelming evidence of cointegration between prices of di¤erent metal

commodities. This is consistent with our previous �nding at the monthly frequency,

although our quarterly results are even stronger �14 out of 15 pairs versus 10 out of

15.

Regarding pairwise common cycles among commodity prices, we found limited

evidence that they share common-cyclical features. Using the GMM approach de-

scribed in Section 3, for all possible 15 pairwise cases, we found strong-form SCCF

for 6 of them �aluminium-copper, aluminium-lead, aluminium-nickel, copper-nickel,

lead-zinc, and nickel-tin. So, the growth rate of prices of aluminium and nickel are

synchronized with those of other metal commodities. Similar results are also obtained

for weak-form SCCF.

Next, using the sample 1992:1 through 2012:1, we investigate the existence of

pairwise common trends and common cycles between metal-commodity prices and

global and U.S. industrial production, respectively. Results are given in Table 4.
First, in panel A, we �nd no evidence of cointegration between metal prices and global

and U.S. industrial production. Second, regarding global industrial production, we

�nd strong evidence of common cycles for aluminium, copper, and tin. For zinc,

there is a common cycle at 5% signi�cance, but not at 10%. Third, regarding U.S.

industrial production, we �nd strong evidence of common cycles for aluminium only.

For copper, tin, and zinc, there is a common cycle at 5% signi�cance, but not at 10%.

Thus, we conclude that the evidence of common cycles is stronger regarding global

industrial production. This result is consistent with our �ndings for the monthly

frequency.

Finally, we investigate the existence of pairwise common trends and common

cycles between metal-commodity prices and U.S. industrial production, using the

complete sample from 1957:1 through 2012:1. Results are given in Table 4, panel B.

In strong-form SCCF tests, we �nd hard evidence of common cycles for aluminium

and nickel, and some evidence for lead and copper.
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5.2.3 Annual Frequency

On an annual basis, metal-price data were provided by the United States Geological

Service (USGS) from 1900 through 2010. Prices were de�ated by the U.S. CPI. Table

5 presents results of pairwise cointegration between metal prices. We found over-

whelming evidence of cointegration between prices of di¤erent metal commodities.

Given the longer span of this annual database vis-a-vis the monthly and quarterly

databases �more than twice as long �cointegrating evidence here should receive more

weight vis-a-vis previous evidence. From all possible 15 cases, we found cointegration

among 10 pairs of metal-commodity prices.

One interesting issue is the long-run behavior of real metal-commodity prices:

while three of them displayed an obvious increase in prices (copper, nickel, and zinc)

in 110 years �more than a twofold increase from 1900 to 2010 � the other three

displayed an obvious decrease over time (aluminium, lead, and tin) of about 70%-

90%. We conjecture here that the industrial processes of the beginning of the 20th

Century used aluminium, lead, and tin in larger quantities than what was used by

the end of the 20th Century. An inverse pattern being observed for copper, nickel,

and zinc.

As we stressed above, cointegration analysis requires the use of long-span data.

Higher frequency is not a substitute for span. Thus, our preferred results are the

ones obtained in cointegration tests when using annual data, given it has the longest

span �110 years of data �since monthly and quarterly data are only available since

1957 (55 years of data).

Conditional on cointegration results, we investigate next the existence of common

cycles for annual price data in pairwise analyses. Table 5 presents overwhelming

evidence of common cycles for commodity prices in testing. For all possible 15

pairwise cases, we found strong-form SCCF for 14 of them, the only exception being

the pair tin-zinc. Similar results are also obtained for weak-form SCCF. One point

to note is that annual data for metal-prices showed much more synchronization than

did quarterly and monthly data. This may be a sign that some high-frequency

�uctuations that are not synchronized tend to disappear with time aggregation.
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Another plausible explanation for synchronization is the fact that we are using a

longer sample period for the annual analysis.

Finally, we investigated whether there are cointegration and common cycles for

metal prices and (U.S. or global) industrial production. Unfortunately the instan-

taneous growth rates of U.S. and global industrial production showed no signs of

possessing a serial-correlation feature, which is a necessary condition to test for com-

mon cycles. Thus, we refrained here to go any further on that regard8.

5.3 Multivariate Analysis: Cointegration and Common Cy-

cles for Metal Prices

We condition on previous evidence of bivariate cointegration and common cycles

among metal prices and among metal prices and industrial production to build mul-

tivariate models for (log) metal prices (or derived products) �Aluminium, Copper,

Lead, Nickel, Tin and Zinc �and industrial production �either for the U.S. econ-

omy or at a global level. We expect these multivariate models to display common

cycles, so we construct two di¤erent sets of vector autoregressive (VAR) models to

serve as reduced forms: one for metal prices and global industrial production and

one for metal prices and U.S. industrial production �both with seven variables �

later investigating if they possess common trends using Johansen�s (1991) test and

common-cyclical-feature restrictions using the GMM approach of Section 3.

We focus on monthly data, since data at the highest frequency represent best

the short-run analysis which are the object of theoretical modelling of Section 2 and

the empirical evidence above. We were careful in selecting the lag order of the VAR

to avoid having �dynamically incomplete�models; see Vahid and Issler (2002) and

Athanasopoulos et al. (2011)9. For monthly data and global industrial production,

8This has some implications for the implementation of the optimal forecast methods discussed
above, the main one being that we would not be able to build restricted VECMs (with common-
cycle restrictions) to be later used in forecast combinations. Notice that, for the monthly frequency,
we can do just that, linking the understanding part of this paper with the forecast part.

9Indeed, these papers document that using standard information criteria underestimates lag
order in small samples for data where common-cyclical features are present.
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we selected a VAR with two lags in levels. There is no evidence of cointegration

when all metal prices and global industrial production are jointly modelled. We

selected �ve lags when U.S. industrial production was used instead, �nding again no

cointegration for the system.

Next, we present GMM tests for common-cyclical-feature restrictions in the two

systems described above. Results are presented in Table 6. We conclude for the ex-

istence of six cofeature vectors in both cases. Thus, all metal prices share a common

cycle with industrial production (U.S. or global), given the form of the contempo-

raneous relationships in (6). This is consistent with our previous bivariate results,

although a bit stronger, since, for the former, it was not unanimous.

To get an idea of the parsimony entailed by imposing common-cyclical-feature

restrictions in a multivarite setting, note that the unrestricted VAR in di¤erences

with one lag, such as (6), for six metal prices and global industrial production, has

a total of 56 parameters. However, the same system where common-cyclical-feature

restrictions are imposed (equation (9)) �with the existence of 6 cofeature vectors

�has only 20 parameters. Testing whether it is valid to impose those restrictions

leads to a p-value of 0.7376, which validates the restricted model at usual signi�cance

levels10.

To see this explicitly, denote by �yt a vector stacking respectively the instanta-

neous growth rates of aluminium, copper, lead, nickel, tin zinc, and global industrial

production, as shown in the right-hand-side of equation (15) below. The estimated

10The parsimony of the four-lag is even more striking, owing to the higher number of lags.
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quasi-structural model took the form11:
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As theory and experience has taught us, the restricted VECM forecasts much

better than their unrestricted counterparts. In our previous experience, to give some

idea of how much better the restricted VECM forecasts, consider the following: Issler

and Vahid (2001) �nd a 25% reduction for the determinant of the mean-squared

forecast error matrix � jMSPEj �for U.S. macroeconomic aggregates, Vahid and
Issler (2002) �nd a reduction of 20% for jMSPEj when predicting U.S. coincident
series using the same statistic, and Athanasopoulos et al. (2011) �nd a reduction of

47% for jMSPEj when predicting di¤erent measures of Brazilian In�ation.
Finally, in constructing the models that will be used in the forecast-combination

analysis, we employed some reduced-rank models where common-cycle restrictions

are imposed. Thus, our combined forecasts will bene�t from what we have learned

in the empirical analysis regarding the synchronicity of cycles in metal-commodity

prices and between the former and di¤erent measures of industrial production.

11Disregarding constant terms.
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5.4 Forecasting Metal Prices using Forecast Combinations

We now implement the forecast theory discussed in Section 3 above, where forecast

accuracy is measured by the root of the mean-squared forecast error. Metal-price

data used here is the same one used in the cointegration and common-cycle analyses

of the previous section, although we only focused on results for monthly and annual

data alone. The former is appropriate to examine short-term forecast accuracy,

whereas the latter is appropriate to measure long-term accuracy.

Our target variables in forecasting are commodity prices for Aluminium, Copper,

Lead, Nickel, Tin and Zinc �made available from the London Mercantile Exchange

(extracted from the IFS) for monthly frequency and from the USGS at annual fre-

quency. For some of the estimated models, we used co-variates (predictors) which are

highly correlated to metal prices. Some are related to economic activity, such as: the

global industrial production, the U.S. industrial production, the Chinese industrial

production, the primary metals coincident index (USGS), a leading index of metals

price (USGS), and some other �nancial-sector co-variates, such as: VIX �a volatility

index, the U.S. real e¤ective exchange rate and the S&P500 index.

Our monthly data set covers the period from January 1965 through December

2008, comprising 528 observations (T = 528). Our annual data set covers data

from 1900 to 2010, comprising 111 observations (T = 111). Table 7 presents the

correlations between the predictors are metal price data. Since there is evidence

of a unit root for the metal prices and the co-variates used here, some series were

transformed to instantaneous growth rates prior to computing correlations.

In order to �t well the cross-sectional asymptotic requirement (large N) regard-

ing the WLLN, we need to have a large set of diversi�ed forecasts to eliminate

the combination of idiosyncratic errors. For this reason, we chose a few classes of

di¤erent econometric models: AR, VAR, VECM, restricted VECM (common-cycle

restrictions), all using distinct co-variates (predictors), and distinct functional forms

(levels, logs), and stationarity assumptions (stationarity vs. di¤erence-stationarity)

for the target variable and predictors. Considering that some of these models were

fairly similar, we discarded a few of those, ending up with N between 115 and 125,
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i.e., between 115 and 125 distinct models and distinct forecasts for each time horizon

(h). Obviously, some of them are nested within each other, and we also have classes

of nested models as well. As we argued before, this will not pose as long as we have

a large enough number of diverse classes.

For implementing the BCAF and other combining techniques discussed above, we

split the sample in three distinct parts, each with a speci�c purpose: the �rst one,

from 1 to T1, to estimate the coe¢ cients of each model; the second from T1+1 to T2,

to compute the bias; and the third from T2+1 to T , to implement truly out-of-sample

forecasting, and to assess the forecast accuracy of di¤erent forecast strategies and of

individual models using the root mean-squared error (RMSE) of forecasts.

To asses forecast accuracy, we constructed an algorithm which is appropriate for

the bias-corrected average forecast (BCAF). For alternative forecast combinations or

forecasting schemes, slight modi�cations are required. The algorithm runs as follows:

1. For each model (AR, VAR, VECM, restricted VECM with common-cycle re-

strictions, and a speci�c set of predictors), we estimate the coe¢ cients of the

regressors using the sub-sample from 1 to T1.

2. Forecast h-steps ahead the models estimated in step 1 (fhit) from T1 to T2. Each

model should be forecasted h-steps ahead T2 � T1 � h+ 1 times.

3. Calculate the bias associated with each h-step ahead forecasts and each model;

the bias is the average error between the h-steps ahead forecast and the ob-

served value of the target series (from T1 to T2).

4. Forecast h-steps ahead the same models estimated in step 1 for only T2 + h,

using the same coe¢ cients estimated in step 1.

5. Store the bias from step 3 and the forecast made in step 4, fhi;T2+h.

6. Update T1 = T1 + 1, T2 = T2 + 1.

7. Go to step 1 until T2 = T:
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8. Adjust the forecasts of each model (made from T2+1 to T ) by their respective

bias.

9. Combine all these adjusted forecasts using equal weights.

10. Compute the RMSE of the BCAF, considering the series of metals price index

as the target series.

For the monthly dataset, we took T1 = 200 and T2 = 378. Since T = 528, this

leaves 150 observations to evaluate out-of-sample performance of di¤erent models.

For the annual data set, we took T1 = 35 and T2 = 70. Since T = 111, this leaves

41 observations for out-of-sample evaluation. In both cases, we kept enough data to

estimate the models and two similar-size sub-samples to estimate their biases and to

perform out-of-sample forecasts.

The maximum horizon was set to 6 months for monthly data and to 5 years with

annual data. After computing the average bias for each forecast horizon (cBh), we
tested the null H0 : Bh = 0, using Issler and Lima�s t-ratio test. Tables 8 and 9

present the results, respectively with monthly and annual data.

From the results in Tables 8 and 9, we conclude that, for monthly data, none of

the mean biases were signi�cant using the t-ratio test in Issler and Lima. For annual

data, zinc is the only metal for which the mean bias is clearly non-zero. There is also

scattered evidence of non-zero mean bias for copper and nickel at higher horizons.

Recall from Section 4 that, when the mean bias is zero, the optimal forecast

collapses to the simple average across models 1
N

PN
i=1 f

h
i;t. In this case, it might not

be worth discarding a part of the sample to compute the bias. Then, the best strategy

is simply to merge the samples E and R into one (sample from t = 1 through t = T2),

where models are estimated.

5.4.1 Comparing forecast accuracy of di¤erent models

Given the theoretical results in Section 4 for optimality of combined forecasts, we

consider here several forecast-combination strategies: (i) the bias-corrected average

forecast (BCAF); (ii) the average forecast (AF); (iii) the weighted average forecast
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(WAF), where weights are based on the inverse of the mean-squared error for each

model, normalized to add up to unity; (iv) the simple average of the 5 best �tting

models (by Bayesian Information Criteria �BIC, using a previous sample period); (v)

the simple average of the 10 best �tting models (BIC); (vi) the median forecast12. We

computed the RMSE for these forecast strategies. Results are presented in Tables

10 and 11, respectively for monthly and annual data. We could not make most

forecast models for zinc to converge at the monthly frequency, and thus refrain from

presenting its forecast-evaluation results.

For monthly data, for 1- through 6-steps ahead and across all metal prices, the

best performance (by far) in terms of RMSE was achieved by the Average Forecast

(AF), followed by the best model and then followed closely by the weighted average

forecast (WAF). For 3 out of 5 metal prices, the Average Forecast (AF) was the

best forecast strategy out of sample. This is exactly what one should expect from

econometric theory (Section 4), given our evidence above that the average bias was

statistically zero, i.e., that we could not reject the null H0 : Bh = 0, using Issler

and Lima�s t-ratio test in Table 8. Moreover, for 4 out of 5 metal prices, forecast

combinations were superior to choosing �a best model.�

In Tables 10 and 11, we also present out-of-sample R2 statistics (percentage)

comparing forecast strategies with the random-walk model with and without drift,

which are important benchmarks to be beaten in the �nance literature. R2-statistics

were computed for one-step ahead forecasts only to save space. For metal price zt,

we have:

R2 = 100�

26666641�
TX

t=T2+1

�
zt � bztjt�1 �2

TX
t=T2+1

�
zt � bzBMK

tjt�1

�2
3777775 ;

where bztjt�1 is the one-step-ahead forecast of any given strategy and bzBMK
tjt�1 is the

one-step-ahead forecast of the benchmark �random-walk with and without drift.

12For the median forecast, we have no theoretical optimality result. For the 5-best and 10-best
models, optimality can be justi�ed as the number of best models increases with N , e.g., as a �xed
quantile of models.
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For monthly data �Table 10 � aluminium, copper and tin, our best strategy

overall was the average forecast. It has R2 = 2:75% for aluminium, R2 = 14:30% for

copper, and R2 = 14:98% for tin, vis-a-vis the random walk with drift13. Table 10

also includes Clark and West�s (2007) tests for equal predictive accuracy applicable

to nested models14. With the exception of nickel and tin, for all other models we

cannot reject the null of equal forecast accuracy between any forecast strategy and

the random-walk models.

For annual data �Table 11 � the best forecast strategy in terms of the RMSE

is to employ the bias-corrected average forecast (BCAF) �for aluminium, lead and

zinc, followed by average forecast (AF) �best for tin. Thus, for 4 out of 6 metal

prices, forecast combinations were the best forecast strategy out of sample; see Table

11. In terms of out-of-sample R2 statistics, these best models outperformed the

random walk with and without drift: R2 = 8:59% for aluminium, R2 = 15:90% for

lead, R2 = 8:98% for tin, and R2 = 23:8% for zinc. Here, contrary to the evidence

for monthly frequency, the best forecasts strategies are signi�cantly di¤erent (better)

than the random walk using Clark and West�s test.

5.4.2 Best Predictors and Models used in Forecast Combinations

Tables 12 and 13 report, respectively, the best models and predictors for monthly

and annual forecasts, considering out-of-sample results across all horizons. For each

out-of-sample observation, and each forecast horizon, we compared models using

squared forecast errors. The model with the smallest squared error is considered the

best. Tables 12 and 13 report the percentage which each model type is considered

best across all horizons and out-of-sample observations. Regarding predictors, notice

that the models being combined are all autoregressive, so the lags of metal prices

are used as predictors in them. The category no extra predictors includes only the

these lags. For some models, we use extra predictors as well, which are also reported

13Notice that, even when the average forecast was not the best strategy, it has beaten the random
walk.
14Alquist, Kilian, and Vigfusson (2012) criticize Clark and West�s test, arguing that it rejects the

null of equal out of sample accuracy too often in favor of the nested model.
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separately.

For monthly frequency, Table 12, the multivariate models � restricted vector

error-correction models (VECM) described in Section 5.3 �with all metal prices and

industrial production (U.S.), have the best forecasting performance overall. This

connects �understanding�and �forecasting,�both in the title of this paper. More-

over, it serves as empirical validation of the theoretical model discussed in Section 2

above, where demand for metals commodities are modelled as a derived demand in

producing industrial output and the supply of metal commodities are supposed to

be �xed in the short run, due to the long maturity of metal-commodity projects and

to their high capital intensity. The unrestricted VECMs also perform well, but not

nearly as well as their restricted counterparts. Restricted and unrestricted VECMs

highlight the importance of investigating short- and long-run relationships as done

above.

The best predictors in monthly frequency are the lagged dependent-variables.

This is expected, since most time-series models used here predict the future using the

past and present. What is really informative is to look which extra predictors did well

out of sample. For monthly frequency, U.S. industrial production overwhelmingly

outperforms all other predictors, with the S&P 500 and measures of realized volatility

coming a far second for di¤erent metals.

For the annual frequency, we did not did not forecast using restricted common-

cycle models (restricted VECMs), since U.S. industrial production has no serial cor-

relation at that frequency. We were left with AR, VAR, and VECMs for forecasting

metal prices. In this context, AR models were the best for aluminium and copper,

VARs were best for lead and zinc, and VECMs were best for nickel and tin. For

predictors, the best are lagged dependent-variables, as expected. In the class of ex-

tra predictors, U.S. industrial production and volatility measures performed well for

di¤erent metals.
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6 Conclusion and Further Research

The objective of this paper was to study (understand and forecast) spot metal price

levels and changes at monthly, quarterly, and annual horizons. The data used consist

of metal-commodity prices at a monthly and quarterly frequencies, from 1957 to 2012,

extracted from the IFS, and USGS annual data from 1900 through 2010. We also

employed the (relatively large) list of co-variates used in Welch and Goyal (2008)

and in Hong and Yogo (2009) , which are available for download.

Regarding the understanding part of the paper, we were able to show theoret-

ically that there must be a positive correlation between metal-price variation and

industrial-production variation if metal supply is held �xed in the short run when

its demand is optimally chosen taking into account optimal production for the in-

dustrial sector. This is simply a consequence of the derived-demand model for cost-

minimizing �rms, which is paramount in microeconomics (Section 2). Our empirical

evidence (monthly and quarterly data) fully supports this theoretical result. Indeed,

we have shown overwhelming evidence that cycles in metal prices are synchronized

to those in industrial production. This evidence is stronger regarding the global

economy but holds as well for the U.S. economy to a lesser degree. As far as we

know, we were the �rst authors to investigate and �nd common cycles in this way,

accounting for theory and empirics, and not just describing a stylized fact. This is

one of the main contributions of this paper.

The second objective of the paper was to forecast metal prices in short horizons

(monthly data) and in long horizons (annual data). We propose a novel technique

which views the optimal forecast in the MSE sense as a common feature (latent vari-

able), which can be identi�ed by using a cross-sectional average of a diverse group

of forecasts, once we estimate a mean-bias term. There are several ways to combine

forecasts optimally, but these combinations usually beat individual models in this

context. This was indeed our �nding, where combinations have beaten not only indi-

vidual models most of the time but also the random walk model in several instances

�which is usually not true for individual models. In predicting metal prices we con-

nected the forecasting and understanding parts of this paper by using several forecast
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models that imposed common-cycle restrictions found in the understanding part15.

We combined a variety of models (linear and non-linear, single equation and multi-

variate) and a variety of co-variates to forecast the returns and prices of six metal

commodities. We found that the best performances in terms of RMSE were achieved

by the average forecast (AF), the bias-corrected average forecast (BCAF), and the

weighted average forecast (WAF). These are all forecast-combination schemes, which

achieve optimality by eliminating individual-model forecast errors by the use of a

weak law of large numbers. These empirical results are true for most metal prices,

frequencies, and horizons, although some individual models performed well on occa-

sion.

Finally, we were able to identify which models and predictors had the best fore-

cast performance for di¤erent metal prices. For monthly frequency, the multivariate

models �restricted vector error-correction models (VECM) �with all metal prices

and industrial production (U.S.), have the best forecasting performance overall. Best

predictors are the U.S. industrial production, followed by the S&P 500 and measures

of realized volatility coming a far second. For the annual frequency, the AR model,

the VAR and the VECM performed well for di¤erent metal prices. The best predic-

tors were the U.S. industrial production and volatility measures.
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Table 1: Common-Cycle Tests - Metal Prices (Monthly)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic

Aluminum Lead -0.193� 0.0118 - - -
(0.106) [0.05]

Copper Aluminum -1.15��� 0.0353 - - -
(0.029) [0.000]

Aluminum Tin -0.168 0.0130 - - -
(0.146) [0.035]

Nickel Aluminum -0.735��� 0.1407 - - -
(0.186) [0.000]

Zinc Aluminum -0.283 0.0344 (1,-0.463) -0.295 0.0344
(0.188) [0.012] (0.19) [0.007]

Lead Copper -0.241�� 0.0275 (1,-0.99) -0.274��� 0.0262
(0.097) [0.001] (0.096) [0.001]

Tin Lead -0.38��� 0.0320 (1,-1.625) -0.411��� 0.0303
(0.094) [0.000] (0.097) [0.000]

Nickel Lead -0.23 0.0265 (1,-0.673) -0.32 0.0257
(0.189) [0.000] (0.194) [0.000]

Zinc Lead -0.383��� 0.0255 (1,-0.488) -0.467��� 0.0256
(0.146)��� [0.000] (0.156) [0.000]

Copper Tin -0.841��� 0.0403 - - -
(0.238) [0.000]

Copper Nickel -0.319�� 0.0358 (1,-1.67) -0.365��� 0.0355
(0.128) [0.000] (0.133) [0.000]

Zinc Copper -0.442��� 0.0479 (1,-0.281) -0.418��� 0.0431
(0.094) [0.000] (0.093) [0.000]

Tin Nickel -0.122� 0.0361 (1,-5.198) -0.165�� 0.0379
(0.07) [0.001] (0.077) [0.000]

Tin Zinc -0.284��� 0.0377 (1,-4.035) 0.0362
(0.095) [0.006] [0.005]

Zinc Nickel -0.287��� 0.0233 (1,-0.922) -0.278��� 0.0238
(0.092) [0.000] (0.086) [0.000]

Notes: GMM estimation using equation (9) for Strong-form SCCF and the analogue equation for

Weak-form SCCF.

Robust Standard Errors (HAC) are in parentheses and p-values are in brackets.
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Table 2: Common-Cycle Tests - Metal Prices and Industrial Production (Monthly)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic
Panel A - Sample: 1992M1-2012M3

Aluminum Global Industrial Production -5.316��� 0.0427 (1,-0.201) -3.784��� 0.0275
(0.969) [0.036] (0.949) [0.085]

Lead Global Industrial Production -4.052� 0.0331 - - -
(2.101) [0.047]

Copper Global Industrial Production -7.523��� 0.0310 - - -
(1.504) [0.189]

Nickel Global Industrial Production -5.23��� 0.0096 - - -
(1.603) [0.512]

Tin Global Industrial Production -6.034��� 0.0292 - - -
(1.728) [0.219]

Zinc Global Industrial Production -5.827��� 0.0337 - - -
(1.601) [0.329]

Aluminum US Industrial Production -2.683��� 0.0558 - - -
(0.897) [0.434]

Lead US Industrial Production 0.839 0.0577 - - -
(1.799) [0.056]

Copper US Industrial Production -3.033 0.0513 - - -
(2.018) [0.094]

Nickel US Industrial Production -2.622 0.0650 - - -
(1.683) [0.03]

Tin US Industrial Production -2.524� 0.0429 - - -
(1.301) [0.176]

Zinc US Industrial Production -1.923 0.0619 - - -
(1.357) [0.484]

Panel B - Sample: 1957M1-2012M3

Aluminum US Industrial Production 0.833 0.0310 (1,0.537) 0.679 0.0270
(0.603) [0.000] (0.658) [0.000]

Lead US Industrial Production -0.993 0.0400 - - -
(0.743) [0.000]

Copper US Industrial Production -1.782�� 0.0390 - - -
(0.878) [0.000]

Nickel US Industrial Production -0.257 0.0270 - - -
(0.995) [0.000]

Tin US Industrial Production -1.277� 0.0320 - - -
(0.658) [0.000]

Zinc US Industrial Production -2.301��� 0.0300 (1,0.24) -2.053�� 0.0260
(0.774) [0.012] (0.811) [0.016]

Notes: GMM estimation using equation (9) for Strong-form SCCF and the analogue equation for

Weak-form SCCF.

Robust Standard Errors (HAC) are in parentheses and p-values are in brackets.
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Table 3: Common-Cycle Tests - Metal Prices (Quarterly)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic

Aluminum Lead 0.241�� 0.0604 (1,-0.278) 0.144 0.0543
(0.114) [0.225] (0.123) [0.232]

Copper Aluminum 0.433��� 0.0647 (1,-0.134) 0.355��� 0.0658
(0.128) [0.177] (0.136) [0.117]

Aluminum Tin 0.377 0.0473 (1,-0.203) 0.429� 0.0430
(0.241) [0.004] (0.244) [0.002]

Aluminum Nickel 0.391��� 0.0326 (1,9.784) 0.366��� 0.0319
(0.091) [0.314] (0.108) [0.227]

Zinc Aluminum 0.67�� 0.0356 (1,-0.836) 0.467 0.0313
(0.275) [0.02] (0.317) [0.009]

Lead Copper 0.562��� 0.0447 (1,-1.013) 0.7��� 0.0364
(0.169) [0.007] (0.214) [0.005]

Lead Tin 0.701��� 0.0583 (1,-0.548) 0.904��� 0.0456
(0.137) [0.049] (0.16) [0.079]

Nickel Lead -0.126 0.0594 (1,-0.677) 0.078 0.0542
(0.176) [0.045] (0.186) [0.038]

Zinc Lead 0.477��� 0.0528 (1,-2.593) 0.497��� 0.0573
(0.136) [0.076] (0.141) [0.029]

Copper Tin 0.782��� 0.0520 - - -
(0.199) [0.01]

Copper Nickel 0.681��� 0.0525 (1,-0.412) 0.618��� 0.0408
(0.247) [0.077] (0.237) [0.115]

Zinc Copper 0.904��� 0.0517 (1,-0.269) 0.732��� 0.0435
(0.142) [0.024] (0.161) [0.023]

Tin Nickel 0.604��� 0.0573 (1,-0.192) 0.962��� 0.0451
(0.189) [0.053] (0.246) [0.081]

Zinc Tin 0.479�� 0.0505 (1,-0.249) 0.714�� 0.0459
(0.232) [0.004] (0.292) [0.002]

Zinc Nickel 0.604��� 0.0303 (1,-0.517) 0.552��� 0.0234
(0.18) [0.036] (0.186) [0.024]

Notes: GMM estimation using equation (9) for Strong-form SCCF and the analogue equation for

Weak-form SCCF.

Robust Standard Errors (HAC) are in parentheses and p-values are in brackets.
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Table 4: Common-Cycle Tests - Metal Prices and Industrial Production (Quarterly)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic
Panel A - Sample: 1992Q1-2012Q1

Aluminum Global Industrial Production -4.328��� 0.0211 - - -
(0.46) [0.65]

Lead Global Industrial Production -3.088�� 0.0762 - - -
(1.22) [0.014]

Copper Global Industrial Production -3.735��� 0.1223 - - -
(0.729) [0.232]

Nickel Global Industrial Production -4.792�� 0.0623 - - -
(1.886) [0.027]

Tin Global Industrial Production -3.407� 0.0628 - - -
(0.697) [0.18]

Zinc Global Industrial Production -2.213 0.0448 - - -
(1.571) [0.06]

Aluminum US Industrial Production -2.557��� 0.0943 - - -
(0.912) [0.161]

Lead US Industrial Production -2.457 0.0717 - - -
(1.863) [0.014]

Copper US Industrial Production -4.226�� 0.0422 - - -
(1.705) [0.06]

Nickel US Industrial Production -3.576� 0.0638 - - -
(2.156) [0.021]

Tin US Industrial Production -2.178� 0.0843 - - -
(1.23) [0.069]

Zinc US Industrial Production -2.299 0.0396 - - -
(1.675) [0.067]

Panel B - Sample: 1957Q1-2012Q1

Aluminum US Industrial Production -0.896� 0.0653 (1,0.675) -0.635 0.0633
(0.515) [0.117] (0.496) [0.089]

Lead US Industrial Production -2.083��� 0.0745 (1,1.573) -2.149��� 0.0747
(0.676) [0.063] (0.717) [0.04]

Copper US Industrial Production -1.918��� 0.0567 - - -
(0.667) [0.091]

Nickel US Industrial Production -0.416 0.0552 (1,0.346) -0.334 0.0524
(0.74) [0.214] (0.692) [0.182]

Tin US Industrial Production -1.606��� 0.0459 - - -
(0.582) [0.018]

Zinc US Industrial Production -2.39��� 0.0625 (1,0.22) -1.441� 0.0362
(0.677) [0.018] (0.737) [0.094]

Notes: GMM estimation using equation (9) for Strong-form SCCF and the analogue equation for

Weak-form SCCF.

Robust Standard Errors (HAC) are in parentheses and p-values are in brackets.
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Table 5: Common-Cycle Tests - Metal Prices (Annual)

Strong-form SCCF Weak-form SCCF

�y1;t �y2;t ~�� J-statistic Cointegration ~�� J-statistic

Aluminum Lead -0.621��� 0.0112 (1,3.63) -0.601�� 0.0111
(0.116) [0.876] (0.239) [0.752]

Aluminum Copper 0.552��� 0.0515 - - -
(0.21) [0.135]

Aluminum Tin -0.02�� 0.0454 (1,0.122) -0.012 0.0301
(0.008) [0.778] (0.008) [0.867]

Aluminum Nickel 0.54��� 0.0638 (1,-0.399) -0.043 0.0394
(0.188) [0.142] (0.251) [0.235]

Aluminum Zinc 0.264� 0.0730 (1,-0.298) -0.121 0.0429
(0.151) [0.096] (0.132) [0.201]

Copper Lead 0.286�� 0.0116 (1,2.557) 0.241 0.0115
(0.117) [0.533] (0.363) [0.262]

Tin Lead - - - - -
- - - -

Lead Nickel 0.618��� 0.0836 (1,0.311) -0.134 0.0283
(0.167) [0.06] (0.177) [0.382]

Lead Zinc 0.095 0.0297 - - -
(0.1) [0.36] - -

Copper Tin 0.033 0.0579 (1,2.818) 0.095 0.0535
(0.075) [0.402] (0.132) [0.334]

Copper Nickel -0.223� 0.0367 - - -
(0.134) [0.265] - -

Copper Zinc -0.009 0.0408 (1,-0.973) -0.193 0.0260
(0.077) [0.354] (0.132) [0.422]

Nickel Tin 0.564��� 0.0569 (1,2.95) 0.634�� 0.0548
(0.099) [0.189] (0.248) [0.116]

Tin Zinc 0.758��� 0.0901 (1,0.372) 0.465��� 0.0301
(0.111) [0.045] (0.118) [0.355]

Nickel Zinc -0.498��� 0.0561 - - -
(0.084) [0.116] - -

Notes: GMM estimation using equation (9) for Strong-form SCCF and the analogue equation for

Weak-form SCCF.

Robust Standard Errors (HAC) are in parentheses and p-values are in brackets.
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Table 6: Multivariate Common-Cycle Test - Metal Prices and Industrial Production

Industrial Production/Sample starts Global / 1992 USA / 1992 USA / 1957
Null Hypotheses: Number of cofeature vectors (s) J-test J-test J-test

s = 1 0.278 18.85 19.722
[0.598] [0.016] [0.183]

s = 2 7.386 19.404 34.854
[0.117] [0.054] [0.091]

s = 3 14.221 18.894 46.301
[0.115] [0.274] [0.141]

s = 4 20.57 16.848 54.368
[0.196] [0.817] [0.347]

s = 5 27.165 27.745 63.214
[0.348] [0.682] [0.609]

s = 6 30.288 30.769 82.73
[0.737] [0.919] [0.549]

Notes: The p-values are in brackets.

Table 7: Correlations Between the Metal Prices and Co-variates

Aluminum Copper Lead Nickel Tin Zinc BASISM ISRETM LRETB10 LTY RV SP500 TBL USIP VSRETM
Aluminum 1 0.427 0.671 0.605 0.420 0.110 -0.080 0.026 -0.041 -0.216 -0.193 -0.461 -0.095 -0.540 -0.210
Copper - 1 0.561 0.217 0.249 0.302 0.257 0.043 -0.079 0.135 -0.062 -0.508 0.257 -0.548 -0.084
Lead - - 1 0.333 0.672 0.310 -0.091 0.028 -0.045 0.157 -0.128 -0.518 0.209 -0.540 -0.105
Nickel - - - 1 0.165 0.378 -0.117 -0.007 -0.050 0.007 -0.024 -0.073 0.021 -0.087 -0.068
Tin - - - - 1 0.130 -0.052 -0.022 0.026 0.427 -0.157 -0.585 0.303 -0.498 -0.039
Zinc - - - - - 1 -0.165 -0.051 0.032 0.238 0.001 0.019 0.231 0.000 0.041

BASISM - - - - - - 1 0.142 -0.141 0.015 0.075 -0.033 0.166 -0.009 0.116
ISRETM - - - - - - - 1 -0.090 -0.086 -0.156 0.025 -0.074 0.010 0.113
LRETB10 - - - - - - - - 1 -0.053 0.126 0.034 -0.065 0.059 0.022
LTY - - - - - - - - - 1 -0.071 -0.505 0.838 -0.354 0.131
RV - - - - - - - - - - 1 0.295 -0.096 0.320 0.164

S&P500 - - - - - - - - - - - 1 -0.505 0.955 0.121
TBL - - - - - - - - - - - - 1 -0.435 0.089
USIP - - - - - - - - - - - - - 1 0.173

VSRETM - - - - - - - - - - - - - - 1

Notes: BASISM - Metals Prices Index Basis; ISRETM - 1 month excess spot returns of Metal Prices Index; LRETB10 - 10 years Treasury bond: 1 month excess returns;

LTY - Long term yield; RV - Realized volatility on S&P 500; TBL - Treasury-bill rates 3 months; USIP - Industrial Production (USA); VSRETM - Volatility of 1 month

excess spot returns of Metal Prices Index; SP500 - return on the SP 500 index.
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Table 8: Mean Bias Signi�cance Test (Monthly)

Aluminum Copper
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead 0.012 0.048 0.481 1 step-ahead 0.341 0.285 0.388
2 step-ahead 0.041 0.081 0.468 2 step-ahead 0.808 0.297 0.383
3 step-ahead 0.070 0.091 0.464 3 step-ahead 1.299 0.304 0.380
4 step-ahead 0.111 0.108 0.457 4 step-ahead 1.818 0.319 0.375
5 step-ahead 0.156 0.122 0.451 5 step-ahead 2.299 0.329 0.371
6 step-ahead 0.200 0.131 0.448 6 step-ahead 2.742 0.338 0.368

Lead Nickel
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead -0.088 -0.424 0.336 1 step-ahead 0.257 0.387 0.350
2 step-ahead -0.184 -0.401 0.344 2 step-ahead 0.648 0.432 0.333
3 step-ahead -0.278 -0.387 0.349 3 step-ahead 1.040 0.439 0.330
4 step-ahead -0.355 -0.365 0.358 4 step-ahead 1.628 0.506 0.306
5 step-ahead -0.424 -0.346 0.365 5 step-ahead 2.244 0.562 0.287
6 step-ahead -0.486 -0.329 0.371 6 step-ahead 2.838 0.605 0.273

Tin
Bias t-statistic p-value

1 step-ahead -1.254 -0.471 0.319
2 step-ahead -2.641 -0.466 0.321
3 step-ahead -4.059 -0.466 0.320
4 step-ahead -5.276 -0.451 0.326
5 step-ahead -6.406 -0.439 0.330
6 step-ahead -7.367 -0.423 0.336
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Table 9: Mean Bias Signi�cance Test (Annual)

Aluminum Copper
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead -276.842 -0.525 0.300 1 step-ahead -233.249 -1.114 0.133
2 step-ahead -444.360 -0.524 0.300 2 step-ahead -400.706 -1.114 0.133
3 step-ahead -486.603 -0.474 0.318 3 step-ahead -525.299 -1.212 0.113
4 step-ahead -487.179 -0.417 0.338 4 step-ahead -619.110 -1.309 0.095
5 step-ahead -450.445 -0.355 0.361 5 step-ahead -689.353 -1.349 0.089

Lead Nickel
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead 263.951 0.435 0.332 1 step-ahead -1140.074 -1.073 0.142
2 step-ahead 602.373 0.454 0.325 2 step-ahead -1834.030 -1.220 0.111
3 step-ahead 783.477 0.458 0.323 3 step-ahead -2542.124 -1.500 0.067
4 step-ahead 744.257 0.434 0.332 4 step-ahead -3141.645 -1.793 0.037
5 step-ahead 666.113 0.384 0.351 5 step-ahead -3495.002 -1.909 0.028

Tin Zinc
Bias t-statistic p-value Bias t-statistic p-value

1 step-ahead 16049.680 0.845 0.199 1 step-ahead -276.644 -1.277 0.101
2 step-ahead 37310.520 0.751 0.226 2 step-ahead -458.376 -1.662 0.048
3 step-ahead 55645.350 0.743 0.229 3 step-ahead -586.994 -2.044 0.021
4 step-ahead 53266.960 0.818 0.207 4 step-ahead -702.797 -2.652 0.004
5 step-ahead 42927.230 0.983 0.163 5 step-ahead -749.982 -2.879 0.002
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Table 10: Forecast Root-Mean-Squared-Error (Monthly)

BCAF Weighted Average Median Best Model 5 Best 10 Best
Aluminium Average (MSE) Forecast (BIC) Models Models
1 step-ahead 0.4898 0.5912 0.4858 0.4816 0.4711 0.4764 0.4838
2 step-ahead 0.7681 1.2979 0.7580 0.7555 0.7568 0.7567 0.7690
3 step-ahead 0.9963 2.2290 0.9747 0.9755 0.9932 0.9845 0.9919
4 step-ahead 1.1491 3.1522 1.1313 1.1362 1.1651 1.1475 1.1540
5 step-ahead 1.2666 4.3410 1.259 1.2652 1.2639 1.2725 1.2844
6 step-ahead 1.3415 5.4414 1.3449 1.3499 1.3853 1.3742 1.3721
R2 with drift1 1.137% -44.013% 2.751% 4.43% 8.535% 6.477% 3.561%
R2 without drift2 1.022% -44.182% 2.637% 4.318% -3417.154% -5957.989% -4542.11%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Lead Average (MSE) Forecast (BIC) Models Models

1 step-ahead 0.6239 1.0408 0.6245 0.6266 0.6198 0.6189 0.6209
2 step-ahead 1.0730 2.6032 1.0721 1.0810 1.0506 1.0524 1.0551
3 step-ahead 1.3457 4.3603 1.3259 1.3408 1.278 1.2782 1.2838
4 step-ahead 1.5483 6.1930 1.5137 1.5311 1.4504 1.4516 1.4604
5 step-ahead 1.7696 8.0726 1.7201 1.7417 1.6056 1.6702 1.6683
6 step-ahead 1.9877 9.9262 1.9242 1.9516 1.7911 1.8775 1.8617
R2 with drift1 11.149% -147.265% 10.983% 10.39% 12.32% 12.571% 11.998%
R2 without drift2 10.952% -147.813% 10.785% 10.192% -690.959% -667.622% -759.259%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Copper Average (MSE) Forecast (BIC) Models Models

1 step-ahead 1.6483 2.8374 1.6276 1.6355 1.6820 1.6489 1.6532
2 step-ahead 2.8148 6.9168 2.7387 2.7431 2.9217 2.8337 2.8182
3 step-ahead 3.7865 11.7815 3.6352 3.6507 4.0372 3.8192 3.7823
4 step-ahead 4.5263 16.9421 4.2829 4.3012 4.8954 4.5132 4.4303
5 step-ahead 5.1093 22.0737 4.7402 4.7686 5.3125 4.9581 4.8823
6 step-ahead 5.6178 26.9173 5.1021 5.1250 5.4809 5.2830 5.2055
R2 with drift1 12.099% -160.474% 14.295% 13.462% 8.469% 12.041% 11.58%
R2 without drift2 11.866% -161.166% 14.067% 13.232% -514.624% -591.317% -634.495%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Nickel Average (MSE) Forecast (BIC) Models Models

1 step-ahead 8.0858 8.0375 8.1756 8.0614 8.0352 8.1274 8.1199
2 step-ahead 14.3789 14.1544 14.7694 14.5915 14.7195 14.7049 14.6288
3 step-ahead 19.6148 19.1494 20.4887 20.2466 20.4566 20.3554 20.3190
4 step-ahead 23.2824 22.552 24.5965 24.2389 24.4405 24.4277 24.3303
5 step-ahead 26.2060 25.1953 27.8735 27.4466 27.8046 27.9348 27.7182
6 step-ahead 29.0008 27.7018 31.0609 30.5918 31.2149 31.3089 30.9118
R2 with drift1 18.847%�� 19.812%�� 17.035%�� 19.335%�� 19.859%�� 18.01%�� 18.161%��

R2 without drift2 18.685%�� 19.652%�� 16.869%�� 19.174%�� -386.86% -402.051% -424.178%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Tin Average (MSE) Forecast (BIC) Models Models

1 step-ahead 3.0223 10.8160 2.9422 2.9463 3.0542 3.0009 2.9936
2 step-ahead 4.8095 23.9791 4.5809 4.6004 4.7888 4.7871 4.7493
3 step-ahead 7.1636 37.6754 6.7924 6.8712 6.7907 7.0074 6.9465
4 step-ahead 8.7257 51.4525 8.194 8.3404 8.4795 8.3109 8.3409
5 step-ahead 10.2284 65.4156 9.5326 9.7679 9.7563 9.7035 9.6948
6 step-ahead 10.9799 79.2277 9.982 10.3178 10.5761 10.0995 10.1324
R2 with drift1 10.283%�� -1049.052%�� 14.976%�� 14.74%�� 8.378%�� 11.546%�� 11.976%��

R2 without drift2 9.672%�� -1056.874%� 14.397%�� 14.16%�� -776.537% -780.975% -926.804%

T = 528(2008M12), T1 = 204(1981M12), T2 = 312(1990M12)

BCAF: Bias-Corrected Average Forecast; MSE: Mean Squared Error; The best model, the 5 best models,

and 10 best models were chosen using the in-sample BIC criterium.

1 - The Benchmark Model is a Random Walk with drift.

2 - The Benchmark Model is a Random Walk without drift. � and �� mean 10% and 5% of signi�cance respectively.
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Table 11: Forecast Root-Mean-Squarred-Error (Annual)

BCAF Weighted Average Median Best Model 5 Best 10 Best
Aluminum Average (MSE) Forecast (BIC) Models Models
1 step-ahead 37.206 40.657 38.358 40.861 37.900 36.715 36.116
2 step-ahead 59.374 70.052 63.762 66.324 67.485 65.130 63.431
3 step-ahead 65.961 82.476 70.684 75.429 77.922 74.876 72.269
4 step-ahead 69.016 93.859 75.082 81.393 83.052 79.635 76.129
5 step-ahead 69.13 99.694 75.681 84.285 87.665 83.348 79.164
R2 with drift1 8.589%�� 0.11%�� 5.759%�� -0.39%�� 6.884%�� 9.795%�� 11.267%��

R2 without drift2 1.022% -44.182% 2.637% 4.318% -3417.154% -5957.989% -4542.11%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Lead Average (MSE) Forecast (BIC) Models Models

1 step-ahead 87.215 88.310 95.419 102.963 98.490 96.390 96.919
2 step-ahead 164.499 161.849 182.150 199.458 188.621 180.429 180.717
3 step-ahead 194.459 199.206 231.145 247.535 225.020 218.144 219.826
4 step-ahead 197.945 217.125 261.908 280.107 231.141 228.625 232.594
5 step-ahead 204.004 223.123 274.640 288.786 226.445 230.735 237.098
R2 with drift1 15.895%�� 14.838%�� 7.982%�� 0.708%�� 5.021%�� 7.046%�� 6.536%��

R2 without drift2 13.59%�� 12.505%�� 5.461%�� -2.013%�� -184.711% -336.515% -322.209%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Copper Average (MSE) Forecast (BIC) Models Models

1 step-ahead 17.665 17.128 13.821 12.165 12.414 15.894 15.021
2 step-ahead 44.467 46.675 35.102 34.609 31.649 32.732 32.260
3 step-ahead 75.580 83.605 59.676 62.879 55.337 55.212 55.486
4 step-ahead 106.519 121.296 100.515 100.425 81.601 82.790 84.118
5 step-ahead 128.250 150.484 128.840 128.84 100.425 102.647 105.021
R2 with drift1 -25.879% -22.051% 1.512%�� 13.311%�� 11.54%�� -13.257%�� -7.04%��

R2 without drift2 -18.152% -14.559% 7.557%�� 18.632%�� -644.108% -569.998% -698.1%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Nickel Average (MSE) Forecast (BIC) Models Models

1 step-ahead 780.106 791.635 784.654 760.113 728.444 739.280 747.302
2 step-ahead 1727.239 1840.379 1825.805 1898.553 1475.888 1421.853 1441.278
3 step-ahead 1967.854 2148.107 2060.348 2160.290 1696.273 1587.752 1607.805
4 step-ahead 2263.931 2663.476 2317.876 2342.069 2065.623 1971.324 2000.096
5 step-ahead 2678.195 3306.581 2872.925 2839.961 2335.586 2306.738 2352.873
R2 with drift1 7.105%�� 5.733%�� 6.564%�� 9.486%�� 13.257%�� 11.967%�� 11.012%��

R2 without drift2 6.85%�� 5.473%�� 6.307%�� 9.237%�� -836.53% -1776.489% -2341.942%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Tin Average (MSE) Forecast (BIC) Models Models

1 step-ahead 64.457 72.979 64.111 67.698 74.204 72.228 72.420
2 step-ahead 159.763 168.255 141.708 147.906 161.558 148.089 148.736
3 step-ahead 221.401 216.056 176.578 183.942 192.313 179.855 179.121
4 step-ahead 203.960 258.841 204.587 210.945 201.923 199.095 197.25
5 step-ahead 201.165 313.839 226.033 229.935 204.341 214.522 211.547
R2 with drift1 8.486%�� -3.614%�� 8.978%�� 3.884%�� -5.353%�� -2.548%�� -2.82%��

R2 without drift2 7.432%�� -4.808%�� 7.929%�� 2.776%�� -83.473%�� -200.372% -177.335%

BCAF Weighted Average Median Best Model 5 Best 10 Best
Zinc Average (MSE) Forecast (BIC) Models Models

1 step-ahead 141.114 143.832 195.797 161.538 150.502 149.399 153.070
2 step-ahead 244.172 251.799 479.166 292.524 254.273 255.094 267.004
3 step-ahead 245.351 266.658 875.957 291.309 247.958 248.965 260.206
4 step-ahead 242.105 279.292 250.617 253.082 233.096 236.309 241.427
5 step-ahead 250.851 301.163 264.693 269.355 235.248 242.127 248.668
R2 with drift1 23.813%�� 22.346%�� -5.711%�� 12.786%�� 18.744%�� 19.34%�� 17.358%��

R2 without drift2 23.123%�� 21.643%�� -6.667%�� 11.997%�� -1223.213% -1638.582% -2269.327%

Notes: T = 111(2011), T1 = 35(1935), T2 = 70(1970)

BCAF: Bias-Corrected Average Forecast; MSE: Mean Squared Error; The best model, the 5 best models,

10 best models were chosen using the in-sample BIC criterium.

1 - The Benchmark Model is a Random Walk with drift.

2 - The Benchmark Model is a Random Walk without drift. � and �� mean 10% and 5% of signi�cance respectively.
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Table 12: Best Models and Predictors (Monthly)
Aluminum

Best Models Best Predictor
AR 0.79% RV 0.00% S&P 500 TBL 0.23%
VAR 2.03% SP500 0.45% RV SP500 TBL 0.00%
VECM 0.23% TBL 0.00% USIP 15.03%
VECM Restricted (Common-Cycles) 96.95% RV SP500 0.00% No Extra Predictors 84.29%

RV TBL 0.00%
Lead

Best Models Best Predictor
AR 0.34% RV 0.11% SP500 TBL 0.00%
VAR 3.05% SP500 0.00% RV SP500 TBL 0.00%
VECM 18.42% TBL 0.00% USIP 24.75%
VECM Restricted (Common-Cycles) 78.19% RV SP500 0.11% No Extra Predictors 75.03%

RV TBL 0.00%
Copper

Best Models Best Predictor
AR 9.27% RV 2.82% SP500 TBL 0.00%
VAR 0.23% SP500 0.00% RV SP500 TBL 0.00%
VECM 13.33% TBL 1.24% USIP 3.28%
VECM Restricted (Common-Cycles) 77.18% RV SP500 2.49% No Extra Predictors 87.80%

RV TBL 2.37%
Nickel

Best Models Best Predictor
AR 7.80% RV 0.00% SP500 TBL 0.00%
VAR 4.86% SP500 0.00% RV SP500 TBL 0.00%
VECM 19.10% TBL 0.00% USIP 33.90%
VECM Restricted (Common-Cycles) 68.25% RV SP500 0.00% No Extra Predictors 66.10%

RV TBL 0.00%
Tin

Best Models Best Predictor
AR 2.03% RV 0.11% SP500 TBL 0.11%
VAR 1.92% SP500 0.90% RV SP500 TBL 0.45%
VECM 17.85% TBL 0.11% USIP 60.34%
VECM Restricted (Common-Cycles) 78.19% RV SP500 0.00% No Extra Predictors 37.63%

RV TBL 0.00%

RV - Realized volatility on S&P 500; TBL - Treasury-bill rates 3 months; USIP - Industrial Production (USA);

SP500 - return on the SP 500 index.
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Table 13: Best Models and Predictors (Annual)
Aluminum

Best Models Best Predictor
AR 63.11% SP500 0.00% SVAR USIP 4.44%
VAR 11.56% SVAR 0.00% SP500 SVAR 0.00%
VECM 25.33% USIP 11.56% No Extra Predictors 84.00%
Lead

Best Models Best Predictor
AR 44.44% SP500 0.00% SVAR USIP 0.00%
VAR 46.67% SVAR 27.11% SP500 SVAR 0.00%
VECM 8.89% USIP 6.22% No Extra Predictors 66.67%
Copper

Best Models Best Predictor
AR 55.56% SP500 2.22% SVAR USIP 0.00%
VAR 28.44% SVAR 29.78% SP500 USIP 0.00%
VECM 16.00% USIP 8.00% No Extra Predictors 62.22%
Nickel

Best Models Best Predictor
AR 12.89% SVAR 8.00% No Extra Predictors 84.44%
VAR 35.11% USIP 3.11%
VECM 52.00% SVAR USIP 4.44%
Tin

Best Models Best Predictor
AR 10.22% SVAR 6.67% SP500 SVAR 0.00%
VAR 40.44% USIP 18.22% No Extra Predictors 73.33%
VECM 49.33% SVAR USIP 1.78%
Zinc

Best Models Best Predictor
AR 12.44% SP500 0.00% SVAR USIP 0.00%
VAR 87.11% SVAR 0.00% SP500 SVAR 0.00%
VECM 0.44% USIP 0.89% No Extra Predictors 99.11%

Notes: SVAR: Stock Variance - average squared daily returns on the

S&P 500; USIP - Industrial Production (USA); SP500 - return on the SP 500 index.
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