The set of equilibria of first-price auctions

Paulo Klinger Monteiro

Março de 2004
The set of equilibria of first-price auctions

Paulo Klinger Monteiro
FGV-EPGE
Praia de Botafogo 190 sala 1103
Rio de Janeiro RJ Brazil

March, 2004
Abstract

In this note I specify the class of functions that are equilibria of symmetric first-price auctions.
1 Introduction

Suppose we somehow obtained a bidding function $b(\cdot)$. It could, for example, be originated from some laboratory auction or be a linear interpolation of some auction data. Is this bidding function theoretically possible? If so, does it come from a model adequate to the situation at hand? In this paper I study this problem in a sealed bid first-price auction set up. To be more concrete we are in the independent private values model and suppose we have 3 bidders with signals in the interval $[0,1]$ and that our estimated bidding function is $b(x) = \frac{x^2}{2}$. If the distribution of signals is uniform with three bidders the equilibrium is $b^*(x) = \frac{2x}{3}$. With two bidders the equilibrium is exactly $b^*(x) = \frac{x}{2}$. Do we have a dummy bidder? Collusion? Here I focus on the distribution of signals. The uniform distribution that we supposed in this example is usually used more for convenience than for theoretical reasons. In this example if we change the distribution to $F(x) = \sqrt{x}$ we have that the equilibrium bidding function is exactly $b(x)$. I show in this paper that for any number of bidders and practically any strictly increasing function $b(\cdot)$ it is possible to find a strictly increasing continuous distribution function such that the equilibrium bidding function is exactly $b(\cdot)$. This result is similar in spirit to the Sonnenschein-Mantel-Debreu theorem on excess demand. I also analyze a second aspect of this problem. If we insist that the distribution of signals is given and vary the bidder valuation from $V_i = x_i$ to $V_i = u(x_i)$. The conditions to find an appropriate $u(\cdot)$ are however harder to be met.

2 The model

We consider first-price sealed bid auctions. There are n bidders with independent private values and each bidders’ signal are in the interval $[0, \bar{v}]$. We consider distribution of bidders signals in the set

$$\mathcal{F} = \{ F : [0, \bar{v}] \to [0,1] ; F \text{ is continuous strictly increasing and onto} \}.$$

Thus \mathcal{F} is the set of strictly increasing distributions with support $[0, \bar{v}]$. Let $F \in \mathcal{F}$ be the distribution of bidder $i \leq n$ signal x_i. If bidder i has signal x_i he valuates the object as $V_i = x_i$. Define $b_F(0) = 0$ and if $x \in (0, \bar{v}]$,

$$b_F(x) = x - \frac{\int_0^x F'(v) \, dv}{F'(x)}.$$

We first prove the

Lemma 1 b_F is continuous and strictly increasing.
Proof: The continuity of b_F for $x' > 0$ is immediate. At $x' = 0$ it follows from $b_F(x) < x$. Let us now prove that it is strictly increasing. Suppose that $0 \leq x < y \leq \bar{v}$. If $x = 0$ it is immediate from $\int_0^y F^{n-1}(v) \, dv < F^{n-1}(y)$ that $b_F(y) > 0 = b_F(x)$. If $x > 0$ then:

\[
 b_F(y) - b_F(x) = y - \int_0^y F^{n-1}(u) \, du - x + \int_0^x F^{n-1}(u) \, du = y - x - \int_x^y F^{n-1}(u) \, du + \left(\frac{1}{F^{n-1}(x)} - \frac{1}{F^{n-1}(y)} \right) \int_0^x F^{n-1}(u) \, du > 0.
\]

Note that $\int_x^y F^{n-1}(u) \, du \leq F^{n-1}(y)(y - x)$.

QED

We now show that b_F is an equilibrium bidding function.

Proposition 1 Let $F \in \mathcal{F}$. If there are n bidders with independent signals distributed accordingly to F then $b_F(\cdot)$ is a symmetric equilibrium of the first-price auction.

Proof: Define $b = b_F$ and $x = x_i$. Suppose bidder $j \neq i$ with signal x_j bids $b(x_j)$. We have to prove that for any $y \in [0, \bar{v}]$,

\[
 (x - b(x)) \Pr \left(b(x) \geq \max_{j \neq i} b(x_j) \right) \geq (x - b(y)) \Pr \left(b(y) \geq \max_{j \neq i} b(x_j) \right).
\]

Since b is strictly increasing and the signals are independent,

\[
 \Pr \left(b(x) \geq \max_{j \neq i} b(x_j) \right) = \prod_{j \neq i} \Pr (b(x) \geq b(x_j)) = \prod_{j \neq i} \Pr (x \geq x_j) = F^{n-1}(x).
\]

Therefore

\[
 (x - b(x)) \Pr \left(b(x) \geq \max_{j \neq i} b(x_j) \right) = \int_0^x F^{n-1}(v) \, dv.
\]

Thus we have to prove that for every $y \in [0, \bar{v}]$,

\[
 \int_0^x F^{n-1}(v) \, dv \geq (x - y) F^{n-1}(y) + \int_0^y F^{n-1}(v) \, dv.
\]

This is equivalent to

\[
 \int_y^x F^{n-1}(u) \, du \geq (x - y) F^{n-1}(y).
\]

Considering separately the cases $x > y$ and $y \geq x$ we see that this inequality is true.

QED
Remark 1 Note that I do not suppose the differentiability of the distribution. This is of essence. If the bidding function is piecewise linear the distribution cannot be differentiable. See also the example below.

Define
\[\mathcal{B} = \{ b_F (\cdot) : F \in \mathcal{F} \} . \]

We may now prove our main theorem.

Theorem 1 Suppose \(b : [0, \bar{v}] \to \mathbb{R} \). Then \(b \in \mathcal{B} \) if and only if:

1. \(b (\cdot) \) is strictly increasing;
2. \(b (0) = 0; \)
3. \(b (x) < x \) if \(x > 0; \)
4. \(\lim_{x \to 0^+} (x - b (x)) e^{\int_{x}^{\bar{v}} \frac{dy}{y - b(y)}} = \infty. \)

Proof: Suppose \(b \in \mathcal{B} \). It is clear that it satisfies (1), (2) and (3). To see that it also satisfy (4) let \(F \in \mathcal{F} \) be such that \(b = b_F \). Then
\[
\int_{x}^{\bar{v}} \frac{dy}{y - b(y)} = \int_{x}^{\bar{v}} \left(\log \left(\int_{0}^{y} F^{n-1} (v) \, dv \right) \right)' \, dy = \log \left(\frac{\int_{0}^{\bar{v}} F^{n-1} (y) \, dv}{\int_{x}^{\bar{v}} F^{n-1} (v) \, dv} \right).
\]

Therefore
\[
\int_{x}^{\bar{v}} \frac{dy}{y - b(y)} = \int_{x}^{\bar{v}} \left(\log \left(\int_{0}^{y} F^{n-1} (v) \, dv \right) \right)' \, dy = \log \left(\frac{\int_{0}^{\bar{v}} F^{n-1} (v) \, dv}{\int_{0}^{x} F^{n-1} (v) \, dv} \right)
\]

and
\[
(x - b (x)) e^{\int_{x}^{\bar{v}} \frac{dy}{y - b(y)}} = \int_{x}^{\bar{v}} \frac{\int_{0}^{x} F^{n-1} (v) \, dv}{F^{n-1} (x)} \frac{\int_{0}^{x} F^{n-1} (v) \, dv}{F^{n-1} (x)} = \int_{x}^{\bar{v}} F^{n-1} (v) \, dv.
\]

Thus \(b \) satisfy (4). Now suppose \(b (\cdot) \) satisfy (1), (2), (3) and (4). I show that \(b = b_G \) where \(G (0) = 0 \) and if \(x \in (0, \bar{v}] \),
\[
G (x) = e^{- \frac{1}{\bar{v}(\bar{v})} \int_{x}^{\bar{v}} \frac{dy}{y - b(x)}} \left(\frac{\bar{v} - b (\bar{v})}{x - b (x)} \right)^{\frac{1}{n-1}}.
\]

First note that (4) imply that \(G \) is continuous at 0. And obviously \(G (\bar{v}) = 1 \). It is also clear that \(G \) is continuous if \(x > 0 \). We now show that \(G \) is strictly increasing. It is equivalent to prove that
\[
\phi (x) := \log G^{n-1} (x) = - \int_{x}^{\bar{v}} \frac{1}{y - b(y)} \, dy - \log (x - b (x))
\]
is strictly increasing. If $h > 0$ then
\[
\frac{\phi(x + h) - \phi(x)}{h} = \frac{1}{h} \int_x^{x+h} \frac{1}{y - b(y)} dy + \frac{1}{h} \log \left(\frac{x - b(x)}{x + h - b(x + h)} \right).
\]
If $\frac{x - b(x)}{x + h - b(x + h)} \geq 1$ then
\[
\frac{\phi(x + h) - \phi(x)}{h} \geq \frac{1}{h} \int_x^{x+h} \frac{1}{y - b(y)} dy.
\]
If $\frac{x + h - b(x + h)}{x - b(x)} > 1$, then
\[
\log \left(\frac{x + h - b(x + h)}{x - b(x)} \right) = \log \left(1 + \frac{h - b(x + h) + b(x)}{x - b(x)} \right) < \frac{h - b(x + h) + b(x)}{x - b(x)}
\]
and therefore
\[
\frac{\phi(x + h) - \phi(x)}{h} > \frac{1}{h} \int_x^{x+h} \frac{1}{y - b(y)} dy - \frac{1}{h} \frac{h - b(x + h) + b(x)}{x - b(x)} \geq \frac{1}{h} \int_x^{x+h} \frac{1}{y - b(y)} dy - \frac{1}{x - b(x)}.
\]
Thus
\[
\lim_{h \to 0^+} \frac{\phi(x + h) - \phi(x)}{h} \geq 0
\]
which implies that ϕ is increasing (see Saks, theorem 7.2 page 204). To show that it is strictly increasing suppose not. Then ϕ is constant in an interval (c, d) and therefore it is differentiable and hence $b(\cdot)$ is differentiable in (c, d) as well. Thus from
\[
\frac{d}{dx} \phi(x) = \frac{1}{x - b(x)} - \frac{1 - b'(x)}{b(x)} = \frac{b'(x)}{x - b(x)}, \quad x \in (c, d)
\]
we have that $b'(x) = 0$ if $x \in (c, d)$ and this contradicts that $b(\cdot)$ is strictly increasing. It remains only to check that
\[
b_G(x) = x - \frac{\int_0^x G'^{-1}(u) du}{G'^{-1}(x)}
\]
is equal to $b(x)$. Now note that
\[
\int_0^x G'^{-1}(u) du = \int_0^x e^{-f_u^\bar{v} \frac{1}{y - b(u)}} dy \left(\bar{v} - b(\bar{v}) \right) du = \left(\bar{v} - b(\bar{v}) \right) \left(e^{-f_{\bar{v}}^\bar{v} \frac{1}{y - b(\bar{v})}dy} \right) \bigg|_0^x = \left(\bar{v} - b(\bar{v}) \right) e^{-f_{\bar{v}}^\bar{v} \frac{1}{y - b(\bar{v})}dy}.
\]
Since
\[G^{n-1}(x) = e^{-\int_x^\infty \frac{1}{y-b\bar{y}}dy} \left(\bar{v} - b(\bar{v}) \right) = \frac{\int_x^\infty G^{n-1}(u) du}{x-b(x)} \]
we conclude that
\[b_G(x) = x - \int_0^x \frac{G^{n-1}(u) du}{G^{n-1}(x)} = x - (x-b(x)) = b(x). \]

QED

Example 1 Let us consider \(b(x) = x/2, x \in [0,1] \). Then if there are \(n \) bidders,
\[G(x) = e^{-\frac{1}{n-1} \int_x^\infty \frac{1}{y^{n-1}}dy} = x^{\frac{1}{n-1}}. \]
If \(n = 3 \) then \(G(x) = \sqrt{x} \).

3 The model with a more general valuation

Suppose now that the set of signals of bidder \(i \) is an abstract probability space \((X,T,P)\) and if bidder \(i \) has a signal \(x_i \in X \) his valuation is \(V_i = u(x_i) \) where \(u : X \to [0,\bar{v}] \). If the distribution \(F_u(l) = \Pr(u(x) \leq l), l \in [0,\bar{v}] \) belongs to \(\mathcal{F} \) then we can easily see that
\[b_u(x) = b_{F_u}(u(x)) \]
is a symmetric equilibrium bidding function.

Is it possible to fix a distribution \(F \) and vary the valuation \(u(\cdot) \) to obtain a pre-specified bidding function \(b(\cdot) \)? Suppose the set of signals is \(X = [0,\bar{v}] \) with distribution \(F(x) \) with a continuous density \(f(x) > 0 \). Then we have the

Theorem 2 Suppose \(b : [0,\bar{v}] \to \mathbb{R} \) is continuously differentiable, strictly increasing such that \(b(0) = 0 \) and
\[u(x) = b(x) + \frac{b'(x)F^{n-1}(x)}{(F^{n-1})'(x)} = \frac{(b(x)F^{n-1}(x))'}{(F^{n-1})'(x)} \]
is increasing.

Then \(b(\cdot) \) is the symmetric equilibrium of the first-price auction if bidders have valuation \(V_i(x) = u(x) \) and the distribution of signals is \(F \).
Proof: First note that \(F_u(u(x)) = F(x) \) and therefore using (2) that

\[
b_u(x) = u(x) - \frac{\int_0^{u(x)} F_{u}^{n-1}(l) \, dl}{F_{u}^{n-1}(u(x))} = \\
= u(x) - \frac{\int_0^x F_{u}^{n-1}(l) u'(l) \, dl}{F_{u}^{n-1}(x)} = \frac{\int_0^x u(l) \left(F_{u}^{n-1}(l) \right)' \, dl}{F_{u}^{n-1}(x)} = \\
= \int_0^x b(l) \left(F_{u}^{n-1}(l) \right)' \, dl = b(x).
\]

References

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Month</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>487</td>
<td>USING IRREGULARLY SPACED RETURNS TO ESTIMATE MULTI-FACTOR MODELS: APPLICATION TO BRAZILIAN EQUITY DATA</td>
<td>Álvaro Veiga; Leonardo Rocha Souza</td>
<td>Junho</td>
<td>26 págs</td>
</tr>
<tr>
<td>488</td>
<td>BOUNDS FOR THE PROBABILITY DISTRIBUTION FUNCTION OF THE LINEAR ACD PROCESS</td>
<td>Marcelo Fernandes</td>
<td>Julho</td>
<td>10 págs</td>
</tr>
<tr>
<td>489</td>
<td>CONVEX COMBINATIONS OF LONG MEMORY ESTIMATES FROM DIFFERENT SAMPLING RATES</td>
<td>Leonardo R. Souza; Jeremy Smith; Reinaldo C. Souza</td>
<td>Julho</td>
<td>20 págs</td>
</tr>
<tr>
<td>490</td>
<td>IDADE, INCAPACIDADE E A INFLAÇÃO DO NÚMERO DE PESSOAS COM DEFICIÊNCIA</td>
<td>Marcelo Neri; Wagner Soares</td>
<td>Julho</td>
<td>54 págs</td>
</tr>
<tr>
<td>491</td>
<td>FORECASTING ELECTRICITY LOAD DEMAND: ANALYSIS OF THE 2001 RATIONING PERIOD IN BRAZIL</td>
<td>Leonardo Rocha Souza; Lacir Jorge Soares</td>
<td>Julho</td>
<td>27 págs</td>
</tr>
<tr>
<td>492</td>
<td>THE MISSING LINK: USING THE NBER RECESSION INDICATOR TO CONSTRUCT COINCIDENT AND LEADING INDICES OF ECONOMIC ACTIVITY</td>
<td>João Victor Issler; Farshid Vahid</td>
<td>Agosto</td>
<td>26 págs</td>
</tr>
<tr>
<td>493</td>
<td>REAL EXCHANGE RATE MISALIGNMENTS</td>
<td>Maria Cristina T. Terra; Frederico Estrella Carneiro Valladares</td>
<td>Agosto</td>
<td>26 págs</td>
</tr>
<tr>
<td>494</td>
<td>ELASTICITY OF SUBSTITUTION BETWEEN CAPITAL AND LABOR: A PANEL DATA APPROACH</td>
<td>Samuel de Abreu Pessoa; Silvia Matos Pessoa; Rafael Rob</td>
<td>Agosto</td>
<td>30 págs</td>
</tr>
<tr>
<td>495</td>
<td>A EXPERIÊNCIA DE CRESCIMENTO DAS ECONOMIAS DE MERCADO NOS ÚLTIMOS 40 ANOS</td>
<td>Samuel de Abreu Pessoa</td>
<td>Agosto</td>
<td>22 págs</td>
</tr>
<tr>
<td>496</td>
<td>NORMALITY UNDER UNCERTAINTY</td>
<td>Carlos Eugênio E. da Costa</td>
<td>Setembro</td>
<td>08 págs</td>
</tr>
<tr>
<td>497</td>
<td>RISK SHARING AND THE HOUSEHOLD COLLECTIVE MODEL</td>
<td>Carlos Eugênio E. da Costa</td>
<td>Setembro</td>
<td>15 págs</td>
</tr>
<tr>
<td>498</td>
<td>REDISTRIBUTION WITH UNOBSERVED ‘EX-ANTE’ CHOICES</td>
<td>Carlos Eugênio E. da Costa</td>
<td>Setembro</td>
<td>30 págs</td>
</tr>
<tr>
<td>499</td>
<td>OPTIMAL TAXATION WITH GRADUAL LEARNING OF TYPES</td>
<td>Carlos Eugênio E. da Costa</td>
<td>Setembro</td>
<td>26 págs</td>
</tr>
<tr>
<td>500</td>
<td>AVALIANDO PESQUISADORES E DEPARTAMENTOS DE ECONOMIA NO BRASIL A PARTIR DE CITAÇÕES INTERNACIONAIS</td>
<td>João Victor Issler; Rachel Couto Ferreira</td>
<td>Setembro</td>
<td>29 págs</td>
</tr>
<tr>
<td>501</td>
<td>A FAMILY OF AUTOREGRESSIVE CONDITIONAL DURATION MODELS</td>
<td>Marcelo Fernandes; Joachim Grammig</td>
<td>Setembro</td>
<td>37 págs</td>
</tr>
<tr>
<td>502</td>
<td>NONPARAMETRIC SPECIFICATION TESTS FOR CONDITIONAL DURATION MODELS</td>
<td>Marcelo Fernandes; Joachim Grammig</td>
<td>Setembro</td>
<td>42 págs</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIME SERIES”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IMPERFECT CREDIBILITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>TESTING PRODUCTION FUNCTIONS USED IN EMPIRICAL GROWTH STUDIES</td>
<td>Pedro Cavalcanti Ferreira; João Victor Issler; Samuel de Abreu Pessoa – Outubro de 2003 –</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 págs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>OUTPUT CONVERGENCE IN MERCOSUR: MULTIVARIATE TIME SERIES EVIDENCE</td>
<td>Mariam Camarero; Renato G. Flôres Jr; Cecílio Tamarit – Outubro de 2003 – 36 págs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>ENDOGENOUS COLLATERAL</td>
<td>Aloísio Araújo; José Fajardo Barbachan; Mario R. Páscoa – Novembro de 2003 – 37 págs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>SPECULATIVE ATTACKS ON DEBTS AND OPTIMUM CURRENCY AREA: A WELFARE</td>
<td>Aloísio Araújo; Márcia Leon – Novembro de 2003 – 50 págs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANALYSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>519</td>
<td>DESENHO DE UM SISTEMA DE METAS SOCIAIS</td>
<td>Marcelo Côrtes Néri; Marcelo Xerez - Dezembro de 2003 – 24 págs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>A NEW INCIDENCE ANALYSIS OF BRAZILIAN SOCIAL POLICIES USING MULTIPLE</td>
<td>Marcelo Côrtes Néri - Dezembro de 2003 – 55 págs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DATA SOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

527. Indicadores coincidentes de atividade econômica e uma cronologia de recessões para o Brasil - Angelo J. Mont’alverne Duarte; João Victor Issler; Andrei Spacov - Fevereiro de 2004 – 41 págs.

528. TESTING UNIT ROOT BASED ON PARTIALLY ADAPTIVE ESTIMATION - Zhijie Xiao; Luiz Renato Lima – Março de 2004 – 27 págs.

531. TRADE LIBERALIZATION AND INDUSTRIAL CONCENTRATION: EVIDENCE FROM BRAZIL - Pedro Cavalcanti Ferreira; Giovanni Facchini – Março de 2004 - 25 págs.

532. REGIONAL OR EDUCATIONAL DISPARITIES? A COUNTERFACTUAL EXERCISE - Angelo José Mont’Alverne; Pedro Cavalcanti Ferreira; Márcio Antônio Salvato – Março de 2004 – 25 págs.

535. DEBT COMPOSITION AND EXCHANGE RATE BALANCE SHEET EFFECTS IN BRAZIL: A FIRM LEVEL ANALYSIS - Marco Bonomo; Betina Martins ; Rodrigo Pinto – Março de 2004 – 39 págs.

537. OPTIMAL AUCTIONS WITH MULTIDIMENSIONAL TYPES AND THE DESIRABILITY OF EXCLUSION - Paulo Klinger Monteiro ; Benar Fux Svaiter; Frank H. Page Jr – Março de 2004 – 8 págs.