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Abstract 

This paper presents calculations of semiparametric efficiency bounds for quantile treat­

ment effects parameters when se1ection to treatment is based on observable characteristics. 

The paper also presents three estimation procedures forthese parameters, alI ofwhich have 

two steps: a nonparametric estimation and a computation ofthe difference between the so­

lutions of two distinct minimization problems. Root-N consistency, asymptotic normality, 

and the achievement ofthe semiparametric efficiency bound is shown for one ofthe three 

estimators. In the final part ofthe paper, an empirical application to a job training program 

reveals the importance of heterogeneous treatment effects, showing that for this program 

the effects are concentrated in the upper quantiles ofthe earnings distribution. 
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1 INTRODUCTION 

1.1 THE PROBLEM 

In program evaluation studies it is often important to learn not only about the average treatment 

effects, but about the distributional effects of a treatment. In particular, the policy-maker might 

be interested in the effect of the treatment on the dispersion of the outcome, or its effect on the 

lower tail of the outcome distribution. 

One way of capturing this effect in a setting with binary treatment and scalar outcomes is 

by computing the quantiles ofthe distribution ofthe treated and ofthe control outcomes. Us­

ing quantiles, discretized versions of the distribution functions of treated and controls can be 

calculated. AIso, quantiles are used in many inequality measurements as, for instance, quantile 

ratios, inter-quantile ranges, concentration functions, and the Gini coefficient. Finally, differ­

ences in quantiles are important as the effects of a treatment may be heterogeneous, varying 

along the outcome distribution. 

The parameter of interest in this paper, labeled the quantile treatment effect, is the differ­

ence between the treated and the control groups in quantiles of the marginal distribution of the 

outcome. As is the case for any treatment effect parameter, identification restrictions are nec­

essary for this parameter to be estimable. In this paper the relevant restriction is the assumption 

that selection to treatment is based on observable variables. 

It is common practice in calculations of average treatment effects to first compute a condi­

tional average treatment effect, and then to integrate over the distribution of covariates to re­

cover the unconditional average treatment effect. However, as the mean of the quantiles is not 

equal to the quantile of the mean, integrating a first-stage computation of the conditional quan­

tiles (of the treated and the control outcomes) will not yield the marginal quantiles. Instead, 

this paper demonstrates how to use the identification assumption that selection to treatment is 

based on observable variables to calculate the marginal quantiles for the treated and for the 

control outcomes without computing the corresponding conditional quantiles. 
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Quantile treatment effects have been indirectly computed for the case in which selection 

into the treatment group is based on observable characteristics. DiNardo, Fortin and Lemieux 

(1996) have suggested a way of estimating counterfactual densities of control groups in a binary 

treatment/scalar outcome setting. Apparently however, no further development, refinement, or 

derivations of large sample properties of this procedure have been proposed in the literature. 

I show in this paper how to estimate the quantile treatment effects in three different ways. 

All three proposed estimation techniques involve two steps. The first is nonparametric, and the 

estimators may differ by the number and type of estimated functionals. In the second step all 

estimators are differences of minimizers of the sums of check functions. This second step is 

typical of quantile estimation. I then focus on a two-step estimation technique that involves 

estimation of only one function in the first step: the propensity score. I show that this estimator 

is root-N consistent and asymptotically normal. I also calculate the semiparametric efficiency 

bound and show that the quantile treatment effects estimator achieves it. Finally, I provi de 

an empirical application, to illustrate the techniques and show its practicality. The estimates 

suggest that for several quantiles the treatment effect is quite different from the mean treatment 

effect. Thus, the application demonstrates how the techniques developed in this paper can 

provide evidence ofheterogeneity in the impact ofa treatment. 

1.2 QUANTILE TREATMENT EFFECTS 

In a binary treatmentlscalar outcome setting, one is often interested in learning the impact 

of the treatment on the outcome. We define the potential outcome of being treated, Y (1), as 

the outcome that an individual would have experienced (or perhaps did experience) had he 

been exposed to the treatment. Analogously, we define the potential outcome of not being 

treated, Y(O), as the (hypothetical or actual) outcome had the individual not been exposed to 

the treatment. For any given individual we observe only one potential outcome, the other one, 

sometimes called the counterfactual outcome, constitutes missing data. 
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The fact that potential outcomes are partially unobservable leads us to the use of some 

identification restrictions, a requirement that is common to the identification of any treatment 

effects parameter. A typical strategy to deal with this problem is to assume that given a set of 

observed covariates, individuaIs are randomly assigned either to the treatment group or to the 

control group. That assumption was termed by Rubin (1977) the unconfoundedness assumption 

and it characterizes the selection on observables branch of the program evaluation literature. 

Barnow, Cain and Goldberger (1980), Heckman, Ichimura, Smith and Todd (1998) and Dehejia 

and Wahba (1999) are important examples. Further discussion ofthese identifying assumptions 

will be provided in later sections. 

Several parameters can be defined in order to capture the effects of a treatment. In most 

cases, the focus is on the average treatment effect (ATE) defined as the difference in the means 

of the potential outcomes. One reason that many program evaluation studies focus on average 

treatment effects is that for the special case in which the treatment has a homogeneous effect, 

it is possible to interpret ATE as the effect of the treatment on a single observation. Note, 

however, that the average treatment effect does not depend on homogeneity assumptions to be 

well-defined. 

Indeed, treatment effects may be heterogeneous, varying greatly along the outcome distri­

bution. The presence of heterogeneity in treatment effects is very important when evaluating 

programs, as policy-makers are often interested in the distributional consequences ofthe treat­

ment. This is true, for example, for a wide range of social programs such as welfare, unemploy­

ment insurance, subsidized job training, the minimum wage, agrarian reform, and micro-credit 

provisiono 

A parameter of interest in the presence of heterogeneous treatment effects is the quantile 

treatment effect (QTE). As originally defined by Lehmann (1974) and Doksum (1974), the 

QTE corresponds, for any fixed percentile, to the horizontal distance between two cumulative 

distribution functions. In defining QTE as a treatment effect at the individual leveI, both Dok-
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sum (1974) and Lehmann (1974) implicitly argued that an observed individual would maintain 

his rank in the distribution regardless of his treatment status. This paper will refer to this type 

of assumption as a rank invariance assumption. 

Rank invariance assumptions are strong assumptions as they require that the relative value 

(rank) of the potential outcome for a given individual would be the same under treatment as 

under non-treatment. There are two ways to deal with cases in which rank invariance is an 

unreasonable assumption. The first one is due to Heckman, Smith, and Clements (1997), who 

suggested computing bounds for the QTE, allowing for several possibilities of re-orderings of 

the ranks. According to them, the outcome for the same individual may differ from one distri­

bution to another based on how observable and unobservable attributes impact each one of the 

potential outcomes. However, while the effect of observable characteristics can be measured, 

unobservable characteristics can interact with treatment status in many unknown ways, leaving 

open the possibility of a sharp reordering of ranks. Bounds for the QTE that capture these 

altematives were proposed by Heckman, Smith and Clements (1997). 

The second approach to dealing with failures of the rank invariance assumption argues that 

even without this assumption, one can still have a meaningful parameter for policy purposes. 

Consider the case in which all the policy-maker is interested is in learning about the marginal 

distributions of the potential outcomes. A good way to summarize interesting aspects of these 

distributions is by computing their quantiles. In this case, quantile treatment effects can be 

defined as simple differences between quantiles ofthe marginal distributions ofpotential out­

comes. As an example, suppose that one is interested in the difference in medians between two 

distributions, and not in the effects of treatment on a typical individual. In such a setting it is 

not necessary to have any knowledge about the joint distribution of outcomes for the treated 

and control groups, so the rank invariance assumption could be dropped. Note, however, that 

if rank invariance holds, then the simple differences in quantiles tum out to be the quantiles of 

the treatment. 1 

1 Note that there is no similar problem in estimation ofthe average treatment effect, as differences in means 

[4] 



This definition of quantile treatment effects, together with the selection on observables 

approach, allows identification of various QTE parameters that differ by the subpopulation they 

refer to. Following the approach ofHeckman and Robb (1986) and Hirano, Imbens and Ridder 

(2002), who suggest several parameters of interest for the mean case, two QTE parameters 

will be the object of study in this paper. They are labeled the quantile treatment e.ffect and 

the quantile treatment e.ffect on the treated, the former being the QTE parameter for the whole 

population under consideration and the latter the parameter for those individuaIs subject to 

treatment. Defining T as the indicator variable of treatment, these parameters can be expressed 

as: 

Quantile Treatment Effect: .ó.t = ql,t - qO,t, 

where qj,t is such that Pr[Y(j) S q] = 't, j = 0, 1. 

Quantile Treatment Effect on the Treated: .ó.tIT=1 = ql,tIT=1 - qO,tIT=b 

where qj,tIT=1 is such thatPr[Y(j) S qJ T = 1] = 't, j = 0, 1. 

The role that the observable covariates play in identification ofboth ATE and QTE is made 

clearer in the QTE case. This is because, as stated earlier, the computation of quantile treat­

ment effects does not use the conditional quantiles. Computation of conditional quantiles is 

unnecessary since the quantiles ofthe marginal distributions ofthe potential outcomes are the 

object of interest and the mean of the quantile is not the quantile of the mean. Hence, for QTE, 

the covariates serve only to remove the selection bias. 

Quantile treatment effects are also useful in describing the center of the distribution of the 

treatment. In particular the median treatment e.ffect (MTE), the QTE for the fifty percentile, 

is a central measure of the treatment effect, like ATE. However, MTE has an additional and 

desirable feature not present in ATE: its corresponding estimator is robust to the presence of 

data outliers. 

Despite the relevance of QTE, the program evaluation literature on this topic is not as 

always coincide with means of differences. 
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vast as that of its main competitor, ATE. Traditionally, expectations have received more atten­

tion in the literature than quantiles. Pioneer papers on quantile estimation, such as those by 

Koenker and Bassett (1978) and, in an instrumental variables setting, by Amemiya (1982) and 

Powell (1983) have helped to bridge this gap. In the treatment effects literature, some recent 

contributions have also been made to the study of the distributional effects of the treatment. 

Among them, Abadie, Angrist and Imbens (2002), and Chernozhukov and Hansen (2001) have 

proposed instrumental variables versions of the QTE. Imbens and Rubin (1997) and Abadie 

(2002) proposed methods to estimate some distributional features for a subset of the treated 

units, again in an instrumental variables setting. Distributional effects have also been stud­

ied empirically, as in the papers of Freeman (1980), Card (1996), and DiNardo, Fortin and 

Lemieux (1996). 

In this paper three different semiparametric ways of estimating each QTE parameter are 

presented. Each one corresponds to a particular way that the parameter can be identified from 

the observable data. These three ways will differ by the number and by the sort offunctionals of 

the observed data involved in estimating the parameter. I focus my attention on the estimation 

technique that requires estimation of only the propensity score. This estimator is the QTE 

analogue ofthe ATE estimator proposed by Hirano, Imbens, and Ridder (2002), and involves 

reweighting observations by the inverse of the propensity score. The estimator will be equal to 

the difference between two quantiles, which can be expressed as the solution to minimization 

problems, where the minimand, a sum of check functions, is a convex empirical processo Using 

the empirical process literature consistency and asymptotic normality results are derived. As 

the estimator has asymptotic variance equal to the semiparametric efficiency bound (which 

I compute using the techniques suggested in Newey (1990) and Bickel, Klassen, Ritov, and 

Wellner (1993», this is an efficient estimator for the QTE parameters. 

The remainder of this paper is divided as follows. The next section presents a simple 

model of quantile treatment effects. In the third section I demonstrate how the identification 
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assumptions alIow expressing the parameters of interest as functionals of the observed data. 

Semiparametric efficiency bounds for QTE parameters are presented in Section 4, while sec­

tion 5 presents the three estimation techniques (mentioned above) and large sample properties. 

Section 6 presents an empirical application for the estimator. Section 7 concludes. 

2 A SIMPLE MODEL OF QUANTILE TREATMENT EFFECTS 

I start by assuming that there is an available random sample of N individuaIs (units). For each 

unit i, let Xi be a random vector of observed covariates with compact support X C ~r. Define 

Yi( 1) as the potential outcome for individual i under treatment, and Yi(O) the potential outcome 

for the same individual without the treatment. Let the treatment assignment be defined as h 

which equals one if individual i is exposed to treatment and equals zero otherwise. As we 

only observe each unit at one treatment status, we say that the unobserved outcome is the 

counterfactual outcome. Thus, the observed outcome can be expressed as: 

Vi (1) 

To motivate, consider Yi as the observed earnings of individual i in a model of the impact 

of a job training program on worker earnings. In this example, Ti is the indicator for the receipt 

of training. 

Potential outcomes depend on both observed and unobserved individual characteristics. For 

each individual i, let cI,i and cO,i be functions, under the treatment and the control respectively, 

of vectors of unobservable attributes. In a job training program model for example, earnings 

of each individual are a function of their pre-program observable characteristics, such as past 

earnings, employment status, education, age, job experience, gender, and union status; they 

are also a function of unobservable attributes, such as ability, motivation and some possible 

idiosyncratic shock. 
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Specifying the impact of X and (t], to) on the potential outcomes: 

Yi( 1) = G] (Xi, El,i) 

Yi(O) = Go(Xi,Eo,i) 

(2) 

(3) 

I assume se1f-selection into treatment: individuaIs can decide whether or not to be treated. 

When an individual i faces the decision whether or not to join the job training program, he 

will weigh the gains and costs to him of both situations. Assume that an individual i predicts 

his expected eamings (given his vector Xi) and his costs for each of the altematives. In other 

words, the individual i chooses the state that yields the largest expected utility: 

where u(·) is utility function, C] (., .) and Co(·, .) are some costs associated respective1y with 

joining the training program and not joining it, and lli is a vector of variables that is unobserved 

to the econometrician but not to the individual. AIso, lli is assumed to be independent of 

(EI,i,tO,a. The effect of lli on the individual 's utility will depend on whether or not he enters 

the job programo For example, lli might be a reservation wage that enters as an argument 

to a foregone eamings function. Individual i will then choose to take part in the program if 

E[u(Y( 1)) IXi, lli]- C] (Xi, lli) ~ E[u(Y(O)) IXi, lld - Co (Xi, lli). That is:2 

T = n{E[u(Y(l)) -u(Y(O)) IXi,lld -:- (Cl (Xi, lli) -Co(Xi,lli)) ~ O} (5) 

Note how this model fits into the Roy model (1951) of income distribution.3 In the Roy 

model, an individual chooses the greater of the potential eamings given by two different occu-

pations. Here, the choice is based on the individual's expected eamings and on some individual 

2The indicator function n{A} is equal to one if Ais true and zero otherwise. 
3 See also Heckman and Honore (1990). 
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cost. Thus, after controlling for Xi, the choice of getting treatment will be independent ofthe 

individual potential earnings, whiCh depends only on Xi and (f!,i,fO,i). That will hold as long 

as lli and (fl,i,fO,i) are independent and the functional form of potential earnings is the one 

described in Equations (2) and (3). The independence result can be written as: 

(Yi( 1), Y;(O)) is jointly independent of 1i givenXj Vi (6) 

Equation (6) is the the unconfoundedness asswnption labeled by Rubin (1977) . This as-

sumption was derived here as a result, but we needed to put some structure on the form of 

the potential outcomes and on the form of the decision rule. We also needed to put stochastic 

restrictions on the unobserved variables. Note however, that unless there is a gain in insight to 

writing the model with the structure presented in Equations (2)-(5), Equation (6) could actually 

have been our starting point. 

I will maintain the structure of the above model for now. In this model, a rank invariance 

asswnption can be obtained by imposing two additional requirements: 

(i) Vx E X, GI (x, .) and Go(x,·) are either (a) strictly increasing functions or (b) strictly de-

creasing functions; 

(ii) Vi, fl,i and fO,i are perfectly positively correlated. 

These two asswnptions ensure that people do not change their position in the earnings ranks 

in each one ofthe possible two states. These are strong asswnptions, in particularpart (ii). This 

is the case when skills that are useful in one regime may not be as useful in another regime. 4 

However, note that if these two extra requirements hold, then for every individual i such 

that Pr[Y;(I) ~ ql,'t], it must be the case that Pr[Yi(O) ~ qO,'t].5 Therefore, calculations ofthe 

difference ql,'t - qO,'t for all 't in the interval [0,1] yield the distribution ofthe treatment effects. 

4In terms ofthe Roy model (1951), in a world with only two occupations, hunting and fishing, that assumption 

implies that the most able hunters are also the most able fishermen. 
5The same would be true for the quantiles of the distribution of potential outcomes given T = 1, that is, if 

Pr[Y;(I) ~ qI,TIT=d, then Pr[Y;(O) ~ qo,TIT=d· 
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As rank invariance is in many cases a too strong assumption, I also motivate the interest in 

the differences in quantiles in a different way. Assume that there is a social welfare function, 

V, such that V depends on the individual utility functions. For simplicity, assume that each 

individual utility depends on his earnings only. Therefore, we can write V as a function of 

the eamings distribution of the whole population. In order to simplify the argument, imagine 

that there are two possible scenarios: we either treat everyone or treat no one.6 Under the first 

scenario, the distribution of earnings is then equal to distribution of Y( 1), which has the cu­

mulative distribution function FI; while in the second scenario, the earnings distribution equals 

that of Y( O), whose cumulative distribution function is Fo. Ignoring social choice problems, as­

sume that the policy-maker has to choose between these two distributions in order to maximize 

the social welfare function: 

V* = maxV(F) 
Fl,Fo 

(7) 

In order to compare V(FI) with V(Fo) the policy-maker will need to calculate approximate 

distributions ofthe potential earnings, FI and Fo, and a good way to summarize a distribution 

is to compute its quantiles. If we compute a sufficient number of quantiles, we will end up 

having a discretized approximation of the distribution. 

Consider then that each distribution is approximated by the calculation of a number P of 

quantiles. When P is equal to 100, we say that each quantile corresponds to a percentile. Doing 

that for both distributions, we have: 

(8) 

(9) 

6 Altematives, as discussed in Manski (1997), include allowing individuais to choose their treatrnent status or 

assigning them to treatment based on observed characteristics. 
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The policy maker chooses between treatment and no treatment according to whether VI is 

greater than Vo. 

Say that both VI and Vo are linear in the quantiles, that is, say that: 

VI = V(ql l,qI2, ... ,qll) 
'P']5 , 

P 

= ~al,fql,f 
J=I 

(10) 

(11) 

where aj,f and ao,f' U = 1, ... ,P) are parameters ofthe social welfare function. 

Consider the case where for each 't E {~,~, ... ,1}, al,'t = ao,'t = a't. This is a fairly intuitive 

case: The weights on the social welfare function are the same whether or not the treatment is 

implemented. In this case, the decision to run a job training program would be consistent with 

the following inequality: 

(12) 

Equation (12) motivates the difference in quantiles as the main object of interest for the 

policy-maker. The decision to continue running the program depends crucially on the quantile 

treatment effects for all the quantiles of interest, that is, for alI 't such that a't ::f. 0.1 

A particular case ofEquation (12) would be when a't = O for all 't but for one 't'. This is the 

case, for example, when all the policy-maker is interested in is whether the training increases 

the earnings of those at the lower tail of the distribution. 

7Note how this differs from the case in which the policy-maker wants to maximize the average outcome. In 

this case, the parameter of interest would simply be the average treatment effect. 
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Other types of social welfare functions would lead to the calculation of other treatment 

effect parameters. For example, say that V1 = ql,O.25 and that Vo = QQO,O.25. This is the case in 
QI,O.75 0,0.75 

which the policy-maker aims to run ajob training program that decreases eamings inequality 

measured in a particular way. In this example, if V1 - Vo ~ 0, then the program reduces the gap 

between quartiles (.75 and .25), that is, reduces earnings inequality. 

3 IDENTIFICATION OF QUANTILE TREATMENT EFFECTS PA­

RAMETERS 

As potential outcomes are only partially observed, in order to identify from the observed data 

both L1, and ~ I T = 1, the quantile treatment effects and the quantile treatment effects on the 

treated, we need an identification restriction. Instead of writing that restriction in terms of 

unobserved components (as in the previous section), I will start from a more general setting, in 

which we do not need to know the functional form ofthe potential outcomes. Let the propensity 

score, Pr[T = llX = x], be written as p(x), and its expectation, E [P(X)], be written as p. Thus, 

the identification assumption used here, following Rosenbaum and Rubin (1983), is: 

ASSUMPTION 1 (Strong Ignorability - Rosenbaum and Rubin (1983)): For almost all values 

ofX: 

(i) Unconfoundedness: (Y(I),Y(O)) isjointlyindependentfrom T givenX; 

(ü) Common Support: c < p(x) < 1 - c, for some c > ° 
Although it is a strong assumption, many studies of the effect of treatments or programs 

make an assumption similar to that of part (i) of Assumption 1 as, for example, Heckman, 

Ichimura, Smith, and Todd (1998) and Dehejia and Wahba (1999). Altematives to this as-

sumption are the using instrumental variables (the selection on unobservables approach), and 

calculating bounds for the parameter of interest, as proposed by Manski (1997).8 Part (ü) states 

8For review and comparison of approaches see, for instance, Angrist and Krueger (1999) and Heckman, 

LaLonde and Smith (2000). 
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that for almost alI values of X both treatment assignment leveIs have a positive probability of 

occurring. 

Now consider that each one of the four types of quantiles defined previously, ql;r, qO;r, 

ql,'tl T=], and qO,'t1 T=l do exist and are uniquely deterrnined or, in other words, the distribu­

tion functions of the potential outcomes are continuous and not fiat at the t-percentile. These 

conditions appear in the folIowing asumption: 

ASSUMPTION 2 (Existence and Uniqueness ofQuantiles): For j = 0, 1, YO) is a continuous 

random variable with support in ]R. such that for t E [0,1]: 

(i) Existence: ~,j = {q E]R.I t = Pr[Y(j) ~ q]} and Q..,jIT=l = {q E]R.I t=Pr[Y(j) ~ ql T = 
1]} are non-empty. 

(ii)Uniqueness: Let Fj(q) = Pr[Y(j) ~ q] and FjlT=l (q) = Pr[Y(j) ~ ql T = 1]. 

'h a~(q)1 +() ° daFm=l(q)1 f ( ) ° r. en q _. =Jj qj,'t > an dq _ = jlT=l qj,'tIT=l > 
q-q},t q-qj,tIT=l 

Under Assumptions 1 and 2 both the overalI quantile treatment effect and the quantile 

treatment effect on the treated become estimable from the data on (Y, T,X). To show this, I 

first prove that the quantiles of the potential outcome distributions can be written as implicit 

functions ofthe observed data: 

LEMMA 1 (Identification ofQuantiles): Under Assumptions 1 and 2, thefollowingequalities 

hold: 

ql,'t : 

(Q1c) 

= E[Pr[Y ~ ql,'tIX, T = 1]] 

= [E[T n{Y ~ ql,dIXJ] 
E p(X) 

= E[Tn{y~ql,'t}] 
p(X) 
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Proof: See Appendix I 

Lemma 1 shows that there are multiple ways of expressing each quantile of the potential 

outcome distributions in terms ofthe observed data (Y, T,X).9 In fact, the lemma shows that 

there are at least three ways of identifying the quantiles using the observed data (Y, T,X). These 

are divided into three groups denoted by A, B and C (which are the indices for each expres­

sion in Lemma 1). Each group will differ according to the number and type of conditional 

expectations to be taken inside the expectation symbol. 

In the first identification group, indexed by A, the computation of a conditional probability 

function in the first step is required. This function is the probability of Y being less than or 

equal to q given that X = x and T = 1. Taking the expectation over alI x E X for the treated 

subset (T = 1) yields the desired result: ql,t will be the quantity that sets the expected value 

equal to 'to 

The equation indexed by B also requires computation of a conditional expectation in the first 

step. However, as this conditional expectation function is not restricted to the subset oftreated 

units, one needs to divide by the probability of being treated given X = x (the "propensity 

score"). Notice then, that the first step involves two conditional expectations computations. 

This is the price paid for not restricting computation to the subset of treated units. Also, as in 

expression A, in expression B ql,t wilI be the quantity that sets the expected value ofthe ratio 

of conditional functions equal to 'to 

Finally, expression C is the simplest of the three. The first step requires computation 

of just one conditional expectation function, namely, the propensity score. Notice, that ex­

pression A also requires just one conditional expectation computation in the first step. The 

main difference lies in the role that the quantile q plays. In A one first has to compute 

KI (x; q) = E[n{Y::; q}IX = x, T = 1]. This function does not simply depend on (y,t,x), be-

9 An analogous result for qO,t would follow from the same lines ofLemma 1. For example, for the group C we 

would have t - E [(I-T)I{y<QO,t}] 
- l-p(X) . 
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cause the quantile q enters as an argument, complicating computation. 10 This is different for 

expression C. In C, the p-score computation does not involve q; in fact, it does not involve 

the random variable Y nor any functional of its distribution. Finally, to get ql,'t, one needs to 

proceed as in the other steps and compute an unconditional expectation. 

As Lemma 1 does not directly yield a way to identify the quantiles ofthe potential outcomes 

for the actual treated units, it is necessary to postulate another set ofresults for that special case: 

LEMMA 2 (Identification of Quantiles for the Treated): Under Assumptions 1 and 2, the 

following two sets of equalities hold: 

(QT1B) 

(QT1c) 

(QTOB) 

(QTOc) 

Proof: See Appendix I 

= E[p(x)pr[y:::;ql;IT=lIX,T= ll] 
= E [E[T n{Y:::; !l,'tIT=l}IXl] 

E [T n{Y:::; ;l,'tIT=d] 

E [p(x)pr[Y:::; qO;IT=lIX, T = Ol] 

E [(1 !;~l))pE[(l- T)n{Y:::; qO,'tIT=dIXl] 

= E [(1 !;~l))p (1- T)n{Y:::; qO,'tIT=l}] 

lOHowever, as we will see in a later section, this does not have a real impact on the estimation procedure for q 1 ,t 

based on expression A. This is due to the fact that we are able to estimate a quantile by a minimization procedure 

that does not involve q in the first step. 
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In the proof in the Appendix I, one can see that Assumption 1 plays no role in the iden­

tification of ql;tl T=l· Heckman, Ichimura, and Todd (1997) have stressed such result when 

looking for identification conditions for the average treatment effects on the treated. 

Identification of the quantile treatment effect parameters parameters is a straightforward 

consequence of Lemmas 1 and 2, as stated in the next corolIary. 

COROLLARY 1 (Identification of quantile treatment effect parameters): Under Assumptions 

1 and 2, the quantile treatment effect, ~'t, and the quantile treatment effect on the treated, 

~IT=l' are identifiedfrom data on (1', T,X). 

Proof: Note that from Lemmas 1 and 2 the four parameters ql,'t, qo,'t, ql,'tIT=l> and qO,'tIT=l 

are functionals of the joint distribution of (Y, T,X). As ~'t equals the difference between ql,'t 

and qO,'t; and ~IT=l equals the difference between ql,'tIT=l and qO,'tIT=l, ~'t and ~IT=lare 

also functionals ofthe joint distribution of (Y, T,X). Therefore, ~'t and ~IT=b are identified 

from data on (Y, T,X). O 

For ~IT=b the method given by group A requires the computation ofthe p-score in ad­

dition to the computation of one conditional expectation given T = 1 and X for (QT1A), and 

another conditional expectation given T = O andX for (QTOA). The method in group B requires 

computing one conditional expectation givenX for (QT1B) and computing another conditional 

expectation as welI as the p-score for (QTOB). FinalIy, for group C alI that it is required is the 

p-score computation for (QTOc). Notice that the expectation ofthe p-score, p, is required for 

alI three groups. 

A comparison between Lemmas 1 and 2 reveals the presence of an interesting asymmetry 

in the former but not in the latter. Using procedures B and C, the computation of ql,'tIT=l 

requires fewer first step calculations of conditional functions than the computation of q O,'t I T= 1. 

This difference does not hold for ql,'t versus qO,'t, since the computation ofthese are symmetric 

and both computations involve the same number and sort offunctionals. 

[16] 



From an estimation point of view the classification of these three groups of methods is 

relevant not only for the QTE, but for mean-based measures, such as the ATE, as well. Using 

sample analogues, Hahn (1998) has suggested estimation of the ATE based on an identifying 

approach similar to that described by B. Dehejia and Wahba (1999) proposed (among other 

techniques) estimating the average treatment effect on the treated by reweighing the control 

sample using the estimated p-score; this is analogous to the identification set C. Hirano,lmbens 

and Ridder (2002), going into more detail, have also focused on the estimation of ATE using 

the analogue of the set C for identification. 

Estimation of the quantile treatment effect on the treatment based on the set C of identifying 

assumptions has been implicit in the applied literature. DiNardo, Fortin, and Lemieux (1996) 

proposed estimation of the counterfactual density of outcomes for the control group using a 

method similar to (QTOc). They argue in a footnote that, once the counterfactual density 

is estimated, it is possible to recover the counterfactual quantiles and therefore the difference 

between the quantiles ofthe treated group and the counterfactual quantiles ofthe control group. 

However, as is made clear by expression (QTOc), there is no need to first compute densities if 

the ultimate goal is the estimation of quantiles. 

In Section 5 of this paper I present the estimation counterparts of alI three sets of equations 

for both the overalI quantile treatment effect and the quantile treatment effect on the treated. 

4 SEMIPARAMETRIC EFFICIENCY BOUNDS 

As Lemmas 1 and 2 suggest, estimation of quantile treatment effects can be attempted using 

a two-step procedure, where the first step is a non-parametric estimation of a conditional ex­

pectation function. The preliminary step must be non-parametric since the joint distribution 

of (Y(O), Y(I)) is not parametricalIy specified. Semiparametric estimation for the ATE can be 

found in Hahn (1998), Heckman, Ichimura, Smith, and Todd (1998) and Hirano, Imbens and 

Ridder (2002). 

[17] 



A semiparametric analog of the Cramer-Rao lower bound was first introduced by Stein 

(1956) and further developed by Bickel, KIassen, Ritov, and Wellner (1993). The semipara-

metric efficiency bound concept was popularized in the econometric literature by a review 

article by Newey (1990). In general terms, the bound corresponds to the largest variance over 

all possible regular parametric specifications of the nonparametric component of the mode!. 

Such bound is indeed a (not necessarily achievable) lower bound for the asymptotic variance 

of distribution-free, root-N consistent estimators. 

More formally, consider a finite-dimensional parameter ç from some general statistical 

mode!. Say that this model contains a submodel that can be parameterized by a finite-dimensional 

parameter 8. Thus, for this submodel we write Ç(8). Ifthis parameter is differentiable in the 

sense described by Bickel, KJassen, Ritov, and Wellner (1993), then its derivative with respect 

to 8 can be written as E['Vs~], where 'V is the influence function of ç and se is the score of 

that submode!. The semiparametric efficiency bound Vç will be equa1 to E [%'Ve] , where 'Ve is 

equal to E['Vs'e](E[ses~])-l Se, the "projection" onto the space spanned by all scores. 

Hahn (1998) uses the setup described above to compute the semiparametric efficiency 

bounds for both the average treatment effect, ~, and the average treatment effect on the treated, 

y. For the quantile treatment effects setting, I also compute bounds for two parameters, namely, 

~t and ~IT=l. With Assumptions 1 and 2, the semiparametric efficiency bounds for ~t and 

~IT=l can be calculated: 

THEOREM 1 : (Boundsfor ~t and ~I T=l): Under Assumptions 1 and 2, the semiparametric 

efficiency boundsfor ~t and ~IT=l are respectively equal to: 

_ [V[gl,Llt(Y)IX, T = 1] V[gO,Llt(Y)IX, T = O] 
VLlt -E p(X) + 1 _ p(X) 

+ (E[gl,Llt(Y) IX, T = 1]-E[gO,Llt(Y)IX, T = 0])2] 
(13) 

and 
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wherefor j = 0,1: 

(15) 

and 

(16) 

Proof: See Appendix I 

Note that the bounds VÓt and V ~IT=I are similar to the bounds computed by Hahn (1998) 

for the mean case. For B and r the bounds, as computed by Hahn (1998), are respectively: 11 

[
V[YIX,T= 1] V[YIX,T=O] 2] 

V~=E p(X) + l-p(X) +((E[YIX,T=I]-BI)-(E[YIX,T=O]-Bo)) 

and 

v; =E [P(X)V[Y IX, T = 1] + ",-p(,-X"-7?...,.-'V[,--Y-,-IX..,.-' T--:-:=~O] 
Y p2 p2(I-p(X)) 

p(X)((E[Y IX, T = 1] - rI) - (E[Y IX, T = 0]-ro))2] 
+ 2 . 

P 

There are two reasons for the similarity between the semiparametric efficiency bounds of 

the QTE and the ATE parameters. First, both the QTE and the ATE are parameters from the 

11 UsingHahn's notation, let ~j = E[Y(j)] and Yj = E[Y(j) I T = 1] for j=O, 1. Thus, ~ = ~I - ~o and Y=YI -Yo. 
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same statistical model and, therefore, can be expressed as functionals of the same distribution 

of the data. But this is not enough for the similarity. In fact, the second reason is the im-

portant one: both the QTE and the ATE are written as differences in expectations of random 

variables (implicitly for the QTE case) over the same density. This can be seen in the following 

equations: 12 

d"C = arg zeroqE[ll{Y( I) ::; q} - 1]- arg zeroqE[ll{Y(O) ::; q} - 1] (17) 

and 

~ = E[Y(I)]-E[Y(O)] (18) 

Note that what ultimately determines the difference in the bounds is the distinction between 

the random variables gj,D., (Y(j)) and Y(j), respectively the influence functions of qj,"C and of 

~ j when Y is independent of X. 

The role of the propensity score in efficient estimation of ATE has received a great deal 

of attention in the recent literature. Examples include Heckman, Ichimura, Smith and Todd 

(1998), Hahn (1998) and Hirano, Imbens, and Ridder (2002). The latter provide intuition for 

Hahn's result that knowing the true propensity score does not lead to efficient estimation ofthe 

ATE. For the QTE parameters the same results apply since both cases share the same statistical 

model, and thus the propensity score plays the same role. Because ofthis similarity, this result 

will not be further explored in this paper. 

5 EFFICIENT ESTIMATION 

Once we know which parameters we want to estimate and we know the minimum attainable 

asymptotic variance of any semiparametric estimator, we can propose candidates for estima-

12Note that this argument could be very well be applied to the comparison between the "on the treated" param­

eters, ~I T= I and y. 
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tion. In this section I use the sample analogy principIe 13 to motivate the appropriateness of 

the usage of estimators of ~'t and ~I T=1 that are in fact solutions to minimization problems. 

Restricting then attention to one of the estimators, I present its large sample properties and 

also show that the asymptotic variance of the proposed estimator achieves the semiparametric 

efficiency bound. 

5.1 MINIMIZATION ApPROACH 

According to Lemmas 1 and 2 there are at least three ways of identifying the quantiles of the 

potential outcome distribution. From the sets A, B and C of identification expressions, it is pos-

sible to derive three different estimators for both the ~'t and ~ I T=1 parameters. The estimators 

will differ among themselves by the number and type of conditional expectations functions to 

be non-parametrically estimated in a first step. As a piece of notation, let the first step esti-

mators of functionals of (Y, T, X) be denoted by a "hat" on it. For example, the nonparametric 

estimator of the p-score will be p( x). In order to simplify the following argument, let me focus 

only on the three estimators of ~'t, which will be, for E E {A,B,C}: 

ÁE ~ ~ 
"'4 = '11,'t - '10,'t (19) 

where for j = 0, 1: 

N 

tJ7,'t = argmin L Ôl7,iP't(Ji - q) 
q i=1 

(20) 

and where the check function P't(') evaluated at }f - q is: 

P't(}f - q) = (}f - q)('t - n{}f - q S; O}) 

13 See for instance, Manski (1988) 
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The previous definitions of the estimators rely on the fact that sample quantiles can be 

found by minimizing a sum of check functions. 14 In our particular case, we have a weighted 

sum of check functions, which reflects the fact that as we do not observe the two potential 

outcomes for the same unit, a rescaling over the observed units is necessary. AIso note that for 

the definition to be complete, I need to determine what the weights roJ,i are. 

Once again for simplification, let us focus on the estimation technique C and concentrate 

on the sample quantile ofthe Y(I)'s distribution, qf't. This sample quantile is defined as the 

minimizer of a weighted sum, where the weight of each unit is given by: 

(21) 

To get some intuition on why qf't is actually consistent for ql,'t, notice that an approximate 

first derivative ofEquation (20) using the weight defined in Equation (21) and evaluated at qf't 

is equal to: 

~ f L(n{}f ~ qf,'t} --r) 
N i=1 p(~) 

(22) 

As qf't is the minimizer ofthe convex function expressed in Equation (20) using the weight , 

defined in Equation (21), Equation (22) will converge in probability to zero as N increases. 

Therefore, Equation (22) is the sample analog ofthe identifying expression (Qf) in Lemma l. 

Note that this intuition works also for the other two estimators of ql,'t: tl1,'t and qf,'t" For a 

more detailed discussion on how to find weights for the cases A and B, see the Appendix 11. 

The same line of reasoning could have been applied to estimation of Li'tl T=I. Each esti­

mator will be defined as the difference between the solutions of two minimizations of sums of 

weighted check functions. For E E {A,B, C}: 

14See, for instance, Koenker and Bassett (1978). 
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In particular, for the estimation procedure indexed by C, the weights are equal to: 

and (24) 

This result will be used later in the paper. Before that, however, let us turn our attention on 

the computation of the weights used in this subsection. In particular, let us concentrate on the 

calculation of rof,i. 

5.2 FEASIBLE ESTIMATION 

For the remainder of the paper, I shall restrict the discussion to estimators that use the set C of 

identifying equations. As argued before, these are the simplest estimators. I will also focus on 

qf. t only since extensions for q~ t and for ~~I T = 1 follow immediately. 

The estimator qf,t is a two-step .estimator. In the fust step, we estimate the p-score non­

parametrically. In the second stage, we minimize: 

(25) 

Equation (25) is a weighted sum of check functions. Following Koenker and Bassett (1978), 

I find sample quantiles as minirnizers of sums of check functions. However, I have a weighted 

sum of check function, as the weights are the way used here to correct for the selection. 

My specific methods were as follows: To estimate the p-score, I used a logistic power 

series approximation, i.e., the log odds ratio of the p-score was approximated by a series of 

functions. 15 These functions were chosen to be polynomials of x and the coefficients corre­

sponding to those functions were estimated by maximum likelihood. 

15The log odds ratio of p(x) is equal to ln(p(x)) -ln(l- p(x)). 
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Start by defining HK(X) = [HK,j(X)] (j = 1, ... ,K), a vector of length K of polynomial 

functions of x E X satisfying the following properties: 

(i) HK: X --+ ~K; 

(ii)(Constant included) HK,I (x) = 1 

Ifwe wantHK(x) to include polynomials ofx up to the order n, then it is sufficient to choose 

K such that K ~ (n + 1 y. In what follows, I will assume that K is a function of the sample size 

N and grows without bounds as N grows without bounds, that is, K = K(N) --+ 00 as N --+ 00. 

Next, the propensity score is estimated. Let jJ(x) be: 

jJ(x) = L(HK(X)'it) (26) 

where L: IR --+ ~, L(z) = (1 + exp( -z))- 1 

and 

it = argm:x ~ ~ {1iln(L(HK(~)'1t)) + (l-1i)ln(l-L(HK(~)'1t))} (27) 

Thus, after estimating the p-score, I minimize GN( q, jJ) with respect to q, obtaining tiL. , 

5.3 LARGE SAMPLE PROPERTIES 

In this subsection I will prove that qY,'t is (i) root-N consistent for ql,'t; (U) asyrnptotically 

normal; and (Ui) has asymptotic variance equal to the expected square of the efficient infiuence 

function of ql,'t. 16 

This subsection is divided into several parts, each one corresponds to a step in the proof: 

16Thus, as ÓT = ql,T - qO,T and as it can be shown by analogy that qÕ,T equally satisfies the properties (i), (ii) and 

a properIy modified version of (iii), the effi.cient infiuence function of ó T will be equal to the difference between 

the effi.cient infiuence function of ql,T and qO,T. 
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1. I state the assumptions and the results derived in Hirano, 1mbens and Ridder (2002) for 

the asymptotics properties ofthe non-parametric estimation ofthe p-score in the first step 

by means of a power series approximation. 

2. I use a tranformation from q to t = q - qI,"t and define QN(t,p), which is minimized by 

~ ~C 

t = qI,"t - qI,"t· 

3. I use another transformation, u = VNt, and show that N(QN(U/VN,p) - QN(u/VN)) 

is op(l) for fixed u, where QN(u/VN), which does not depend on p(x), is a quadratic 

random function. 

4. I show that ü, the argument that minimizes the random quadratic NQN(U/VN), is: (i) 

Op(l); and (U) ü ~ N(O, VI), where VI is the semiparametric efficiency bound of ql,"t. 

5. I show that the term ú = VNr is just op(l) from ü, or written in terms of q, that ti?,"t is 

asymptotically equiva1ent to ilI,"t = ü/ VN + qI,"t, which establishes the desired result. 

5.3.1 ASYMPTOTIC PROPERTIES OF THE FIRST STEP 

The suggested approach to estimating the p-score guarantees, under certain regularity condi­

tions, that p(x), the estimator ofthe p-score, is uniform1y consistent for the true p(x). To assure 

that this holds, I make the following assumptions: 

ASSUMPTION 3 (First Step): 

(i) X is a compact subset of~ r; 

(ii) the density ofX, f(x), satisfies 0< infxEXf(x) :::; sUPxEXf(x) < 00 

(iii) p( x) is s-times continuously difJerentiable, where s 2': 7 r and r is the dimension of X; 

(iv) the order ofHK(X), K, is oftheform K = CN(J. where C is a constant and a E (4(~~I)'~) 

Newey (1995, 1997) has established that for orthogonal polynomials HK(X) and compact 

X: 
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Ç(K) = sup IIHK(X)II ~ CK (28) 
xEX 

where C is a generic constant. Note then that because ofpart (iv) of Assumption 3 ç will be a 

function of N since K is assumed to be a function of N. 

With part (ii) of Assumption 1 (Common Support) and Assumption 3 in hand we can invoke 

some of the results derived by Hirano, 1mbens and Ridder (2002) in a format of a lemma: 

LEMMA 3 (First Step): Under Assumptions 1 and 3 the following results hold: 

(1) sUPXEX Ip(x) - PK(X) I ~ CÇ(K)K-sjr ~ cçl-sjr ~ CN(1-sjr)a. = 0(1); where: 

and: 

nK = argm;xE {P(X) In(L(HK(X)'n)) + (1- p(X)) In(l -L(HK(X)'n))}; 

(II)Ellit-nKI12 ~ Cçr:;) ~ CNa.-l = 0(1); 

(III) There is 8 > O: limN-+ooPr[8 < infxExp(X) ~ sUPXEXP(X) < 1- 8] = l. 

Proof: See Hirano, 1mbens and Ridder (2002). 

(29) 

(30) 

Note the importance of result (III) in simplifying the whole process of estimating ql,'t by 

qf,'t. As p(x) is bounded inprobability from O and 1, there is no need to use a trimming function 

in order to avoid dividing a number by zero. 

5.3.2 CHANGE OF VARIABLES: t AND QN 

First notice that: 
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ti?,'t = argmin ~ f ~(~.) (Ji -q)(t - ll{Yi ~ q}) 
q i==1 P 1 

1 N Ti [ ] = argmin N ~ ~(~.) (fi - q)(t - ll{Yi ~ q}) - (Yi - ql,'t)(t - ll{Ji ~ ql,'t}) 
q 1==1 P 1 

1 N Ti [ ] = argmin N ~ ~(~.) (ll{Ji ~ ql,'t} - t)(q - ql,'t) + (fi - q)(ll{Ji ::; ql,'t} - ll{Ji ::; q}) 
q 1==1 P 1 

Now, define: 

t = q-ql,'t 

~ ~C 

t = ql,'t - ql,'t 

D(Ji) = ll{Ji ::; ql,'t} - t 

R(Ji, t) = (Ji - (ql,'t + t))( ll{Ji ::; ql,'t} - ll{Ji ::; ql,'t + t}) 

A(Ji,t) = D(Yi)t+R(Ji,t) 

( ~) 1 ~ Ti ( ) QN t,p = N ~ ~(X)A Ji,t 
1==1 P 1 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

A comment about some ofthe quantities above: The variable D(Yi) is the approximate first 

derivative ofthe check function P(Yi - q) with respect to q. It is approximate in the sense that 

p( Ji - q) is not differentiable for all q, as it involves indicator functions of whether q is less 

than or equal to some values in the data. R(Yi, q - ql,'t) can be interpreted as the remainderterm 

from a linear expansion about ql,'t that uses D(Yi) as an approximated derivative. 

Next, note that as i = ti?,'t - ql,'t, then by Equation (31) it is also equal: 
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i = arg~in~ f ~(~o) [(1I{Y;:::; ql;r} -'t)t+ (Y;- (ql;r+ t))(lI{Yi :::; ql,,:} -lI{Yi :::; ql;r+ t})] 
1=IP I 

= argmin~ f ~(I;) [D(Y;)t+R(Yi,t)] 
t Ni=IP Xi 

1 N r; 
= argmin

N 
L ~(Xl o)A(y;,t) 

t i=IP I 

= argminQN(t,p) 
t 

5.3.3 A QUADRATIC ApPROXIMATlON TO THE OBJECTlVE FUNCTION 

(38) 

(39) 

(40) 

(41) 

I begin by defining some useful expressions: First, consider the function QN(t), which will be 

shown to be a quadratic approximation to QN(t,p), which, however, does not depend on the 

first step p(X): 

Now, define: 

(43) 

and 

u= VNt (44) 

The next lemma shows that NêN(U/VN) goes to zero in probability for each u, which 

means that the objective function is asymptotically equivalent to a quadratic random function. 

Before stating the lemma, let me first assume that the next regularity condition holds: 

ASSUMPTION 4 (Lipschitz condition): For j = O, 1 and every t, the conditional density of 

Y(j) given X = x, Jj(·Jx), satisfies thefollowing inequality, where E[M(X)] < 00, and À> O: 
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(45) 

LEMMA 4 (Bounding the difJerences in the Objective Functions): Under Assumptions }, 2, 

3 and 4,for each u: 

(46) 

Proof: See Appendix I 

5.3.4 ASYMPTOTIC PROPERTIES OF ii 

We have used Assumption 2 previously both for identification of quantiles of the potential 

outcomes and for an appropriate definition of the efficiency bounds. The same assumption is 

plays another role in this subsection; it guarantees that a, the argument that minimizes N QN( u) 

is unique. From Equation (42) we have: 

Then under Assumption 2, N QN( U / -IN) has a unique minimum at: 
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(47) 

= _ 1 f (TiD(Y;) -E[D(Y)IXz',T= 1JTi-p(Xz-)) (48) 
v'N fI (ql;r) i=1 p(J4) p(Xi) 

1 N 
= hrN L 'V1,i (50) 

VIV 1=1 

where the function gl ,t1
t 

was defined by Equation (15) and: 

Let me now write the main result of this subsection as a lemma: 

LEMMA 5 (Asymptotic Properties oJíl): Let íl = argminuNQN(u/v'N). Then, under As-

sumptions 1, 2 and 3: 

(i) íl = Op(l); 

(ii) íl Et N(O,E['VL)); 

(iii) E['VI,J = VI, the semiparametric efficiency boundfor ql;r· 

Proof: See Appendix I 

5.3.5 NEARNESS OF ARGMINS 

Defining u = v'Nt, I show the desiredresult that u- íl = op( 1), which will implythat ..;N(qf 1:-, 

ql,1:) is (i) Op(l), (U) and asymptotical1y normal (Ui) and has an asymptotic variance that is 
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equal to the semiparametric efficiency bound for ql,'t. Before I do that, let me state and prove 

an intermediate lemma. 

We have already seen that Lemma 5 holds. To get results about íi and consequently about 

qÍ,'t I will use a result in Hjort and Pollard (1993) on the nearness of minimizers of convex 

random functions. 

I apply Hjort and Pollard's Lemma 2 directly to my case: 

LEMMA 6 : (Nearness of Argmins (Hjort and Pollard (1993)) Under Assumptions 1, 2, 3 

and 4 we have the following probabilistic bound on how far íi can be from u: For each Õ > O: 

Moreover: 

Proof: See Appendix I 

Stating the final results: 

(52) 

(53) 

T 2 /" . P . ,./.'C I L 'c - . I .... N JL(i'i )( HEOREM : lf:1symptotlc ropertles oJ Iql,v et ql,'t - argInlnq N ":"i=1 p(Xi) i - q 't-

ll{Yj::; q}) where p(x) is computed as described in subsection 5.2. Under Assumptions 1, 2, 3 

and 4: 

(i) VN(qÍ,'t - ql,'t) = Op(l) 

(ii) VN(qÍ,'t -ql,'t) = JNL~I \jfl,i+op(l) 

I N D ( ) where JN Li=1 \jfl,i -+ N O, VI ; 

(iii)VI = E[\jfTl = E [V[gl!"'~~~rT=ll +E2[gl,~(Y)IX, T = 11] 
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Proof: Defining iÍl,"C = u/ VN + ql,"C, by Lemma 6 we have: 

vNlqf,t - 'lI,tl =lvN(qf,t - ql,t) - VN(qf,t - ql,t)1 

:Slu-ul 

=op( 1) 

(54) 

That is, qf,t is asymptotically equivalent to (JI,t and Theorem 2 follows immediately by 

Lemma 5. O 

The same result obtained for ql,t could have been obtained analogously for qO,t. In partic­

ular, with the same set of assumptions used in Theorem 2, it is possible to derive an asymptotic 

linear influence function for q5,t' "'0, which is analogous to "'I· In fact, "'O,i = 12 ;[k) (gO,llt (lí) -

E[gO,llt(Y) IXi , T = O]) +E[gO,llt(Y) IXi , T = O]. 

A consequence of Theorem 2 is that ~, which is equal to the difference between qf, t and 

q5,t: (i) will also be consistent, (ii) will have an asymptotically linear influence function and, 

(iii) will be asymptotically normal: 

THEOREM 3 : (Asymptotic Properties 01 ~): Under Assumptions 1,2,3 and 4: 

'c p (i) 11'i - Ôt -+ O 

(ii) VN(~ -Ôt ) = J;vIf:1 "'i+ Op(1) 

(iii) VN(~ - Ôt ) ~ N(O, Vt ) 

where "'i = "'I,i - "'O,i and 

V = E [V[gI,ót(Y)IX,T=I] + v[go,L'>t(Y)IX,T=O] + (E[g (Y)IX T = l]-E[go (Y)IX T = 0])2] 
llt p(X) l-p(X) I,llt' ,llt' 

Proof: Omitted. 

Theorem 3 shows that besides ~ being root-N consistent and asymptotically linear, it is 

efficient, as it achieves the semiparametric lower bound for ô t . 

Estimation ofthe quantile treatment effect on the treated, Ôtl T=I, will yield a similar result, 

[32] 



which could have been obtained using analogous steps to those used for the overall quantile 

treatment effect, .ó."C, to get results similar to Theorem 3. 

6 EMPIRICAL ApPLICATION 

In this section I consider one empirical application for the QTE estimators proposed in the 

previous sections. This application uses the job training program data set first analyzed by 

LaLonde (1986) and later by many others, including Heckman and Hotz (1989), Dehejia and 

Wahba (1999), Smith and Todd (2001) and Abadie and Imbens (2002). 

The original data set from the "National Supported Work Program" (NSW) is well de­

scribed in LaLonde (1986). The program was designed as an experiment as applicants were 

randomly assigned into treatment. The treatment was work experience in a wide range of pos­

sible activities, like leaming to operating a restaurant or a child care center, for a period not 

exceeding twelve months. Eligible participants were targeted from recipients of AFDC, former 

addicts, former offenders and young school dropouts. The NSW data set consists of informa­

tion on eamings and employment (outcome variables); whether treated or not; and background 

characteristics, such as education, ethnicity, age, and employment variables before treatment. 

LaLonde uses this experimental data set as a benchmark for comparisons with the case in 

which control samples come from non-experimental data sets, as for example, control samples 

based on Panel Study of Income Dynamics (PSID) and on Westat's Matched Current Popu­

lation Survey-Social Security Administration File (CPS-SSA). I use on1y a subsample from 

the PSID, which corresponds the subsample termed "PSID-1"by Dehejia and Wahba (1999). 

Summary statistics for the two data sets are presented in Table 1. As this table reveals, the 

non-experimental control group is essentially different from the treated group, which leads us 

to tum the attention to the parameters of the treatment effect on the treated. In what follows 

here, the outcome variable is eamings in 1978.17 As in Dehejia and Wahba (1999) I consider 

17Earnings are measured in 1982 US Dollars. 
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male workers only. 

LaLonde finds that non-experimental control samples are poor substitutes for experimental 

data. Some reasons for those findings are described in the survey paper by Heckman, LaLonde 

and Smith (2000) and explored subsequently by Smith and Todd (2001). Three reasons that 

do not depend on the estimating procedures but on the data quality of the non-experimental 

data set are the following. A first reason relies on the fact that the non-experimental data set is 

not ofthe same type ofthe NSW, which implies that same variables are obtained from distinct 

questions and questionnaires. A second reason is the fact that comparisons groups obtained 

from surveys that do not cover only the original local labor market where the program took 

place should not be used to assess the impact of the program on that specific labor market. 

A third reason is that both data sets must have a sufficient number of relevant variables that 

explain the participation decision, which might not necessarily be the case for the NSW data 

set. 

The choice ofthe estimation procedure also contributed for LaLonde's findings on the per­

formance of comparisons using non-experimental samples. Dehejia and Wahba (1999) used 

the same data set as LaLonde (1986) and reached a different conclusion than LaLonde did. A 

first reason for the difference in conclusions come from the choice ofwhich pre-program vari­

ables to include. 18 Another important difference relies on the parametric nature ofLaLonde's 

analysis using non-experimental control groups. While LaLonde estimates parametric wage 

regressions for treatment and control groups which are intrinsically different from each other, 

Dehejia and Wahba use a more fiexible methodology. Their methods involve considering dif­

ferentiallythe control units based on some closeness measure oftheir observable characteristics 

to characteristics ofthe treatment group. 

In Dehejia and Wahba's estimation ofthe ATE on the treated, they estimate the propensity 

score in a first step using logistic regressions and propose several ways of using it to control 

18Dehejia and Wahba included information on previous two years eamings, what reduced the treated sample in 

about 40%. See Dehejia and Wahba (1999) and Smith and Todd (2001). 

[34] 



for the selection problem. One of these methods, reweighing using the estimated p-score, uses 

exactly the weights described by Equation (24), CÔf,I"IT=1 and cô~iIT=I' 

One data set Dehejia and Wahba use is a subset of 185 treated units and 2490 control ob­

servations from the PSID. 19 Dehejia and Wahba estimate the p-score using logistic regression. 

The specification ofthe logit model is an issue in theirpaper, and it varies for each control sam­

pIe, because they are trying to find a specification that best "balances" each covariate between 

treated and control groups. Next, they compute the average treatrnent effect on the treated, 

which is equal to 2:7=1 (côf,il T=1 - cô~iIT=I)r;·· For these specific treatrnent and control groups 

they find an average treatment effect on the treated ofUS$ 1129.20 This is lower than the un­

adjusted experimental treatment effect of $1749, but larger than the initial nurnbers LaLonde 

cbmputed using the non-experimental data. 21 

Using the same data, I analyze the treatrnent and control subsets to generate estimates ofthe 

quantile treatrnent effect on the treated for each percentile. I also perforrn an "experimental" 

QTE estimation, which is just the difference between the quantiles of the treated and the ex­

perimental controls, without any weighting. My results are presented in Table 2 and in Figures 

I to 5.22 I find that using experimental controls, treatment effects tend to be more homogenous 

than in the observational setting. With a non-experimental control sample, treatrnent effects 

seem to be above the median until almost the upper end of the distribution. At the extreme 

upper quantiles, the very high earnings of the control sample induce a negative effect. Despite 

the fact that the counterfactual c.d.f. ofthe control group introduces a heterogeneity in effects 

not seen by using the experimental control, the difference between the two lies around zero, as 

it is shown by Figure 5. 

An important feature of the estimated counterfactual distribution is that there are some 

19 As mentioned earlier this corresponds to the control sample labeIled by LaLonde (1986) and Dehejia and 

Wahba (1999) as PSID-I, as they constructed more than one control group based on PSID. 
2°1 replicated their calculations using the same p-score specification and got a slightIy different number, $1120. 
21 The unadjusted for covariates treatment effect was computed using the experimental control sample of size 

260. It is a simple difference in means between treated and control groups. 
22In Table 2 and in Figures 3 and 5, the standard errors were computed by 100 bootstrap replications. 

[35] 



discrete jumps in the c.d.f., as some points had probability mass. A closer Iook at the data 

reveaIs that these points correspond to the observations from the non-experimentaI controI 

sample that have the Iargest values ofthe estimated propensity-score and, therefore, the highest 

weight values. These "Ieverage points" are important in the sense that their Iarge weights 

compensate the greater nurnber of comparable treated individuaIs. For example, there is only 

one individual in the non-experimentaI controI group that reported earnings of $2305 but his 

estimated p-score is Iarger than .98, what Ieads to a weight (.41) more than 600 times Iarger 

than the average weight (.0006) ofthe controI group. 

To assess the importance of the weights in the described method of finding the counter­

factuaI distributions, consider a very simple example, in which we have just two data points, 

the first one with an outcome equaIs to I and a weight equaIs to 10; and a second point with 

10 as outcome and 1 as weight. For this simple example, the function to be minimized is 

10(1- q)('t - n{ q 2: I}) + (10 - q)('t- n{q 2: lO}). We can check that the value ofthe func­

tion at q = 1 is smaller than its value at q = 10 for all 't < 90/99. This example, although very 

simplified, helps explaining the presence ofjumps in the estimated counterfactuaI distribution. 

Another interesting result is that the value I find for the median treatrnent effect using the 

non-experimentaI data is $1927, which is relatively close to the estimated experimental mean 

effect of $1749. 

7 CONCLUSION 

In this paper I motivated interest in the quantile treatrnent effects by constructing a simple 

modeI where (i) the individual decision to be in the treatment group depends on a vector of 

observable covariates, and (ii) the policy-maker aims to learn features ofthe marginal distribu­

tions of potentiaI outcomes. 

This paper has also shown how to estimate the quantile treatrnent effects in three different 

ways, using a two-step procedure. The estimator that (in the first step) involves on1y estimation 
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of the propensity score is shown to be root-N consistent and asymptotically normal. I also 

calculated the semiparametric efficiency bound and proved that this quantile treatment effects 

estimator achieves it. 

The empirical application was designed to show how to apply the estimator and how it 

differs from the usual average treatment effects estimator. In this particular example, estimation 

ofthe quantiles ofthe potential outcomes revealed the presence ofheterogenous impacts ofthe 

treatment. This heterogeneity could never be captured by the estimator of average treatment 

effects. 

A natural extension to this paper would be the computation and estimation of inequality 

measures for the potential outcomes ofbeing treated and not being treated. Several relevant in­

equality measures are of interest in the applied literature. The framework developed here could 

be extended to estimate and predict the response of such inequality measures to a treatment. 
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APPENDIXI 

Proof of Lemma 1: 

Starting fram the definition of the 1:-quantile of Y (1) I show how to express q l;t in terms of 

the observed data (Y, T,X): 

1: = Pr[Y(I) :::; ql;tl 

= E[Pr[Y(I):::; ql;tIX]] 

= E[Pr[Y(I):::; ql,'tIX,T= lJJ 

= E[Pr[Y:::; ql,'tIX, T = 1]] 

= E[E[TH{Y:::;Ql,'t}IX,T = 1]] 

(QIB) = E [E[TH{Y:::; Ql,'t}IXJ] 
p(X) 

(Q1c) E [T H{Y:::; Ql,'t}] 
p(X) 

The first equality follows fram the definition of Ql,'t and from Assumption 2. The sec­

ond is an application of the law of iterated expectations. The third equality follows from 

the ignorability assumption (Assumption 1). The fourth results from the definition of Y, 

Y = TY(I) + (1- T)Y(O). The fifth equality comes fromE[H{A}J = Pr[AJ (whereA is some 

event) and from the fact that the expectation is conditional on T = 1. The sixth is a consequence 

fromE[ZIXJ = p(X)E[ZIX,T = lJ + (1-p(X))E[ZIX, T = 1], whereZis some random vari-

able. Finally, the last equality is a backward application ofthe law ofiterated expectations. 

An analogous result for Qo,'t could have been derived following essentially the same steps 

as above. D 

Proof ofLemma 2: 
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't = Pr[Y(l)::; ql,'t!T=Ii T = 1] 
Pr[Y(1)::; ql,'t!T=l, T = 1] 

p 

E[pr[Y(l) ::;ql;r~T=l' T= 1 IX]] 

= E [pr[Y::; ql,'t!;l, T = 1 IX]] 

__ E [P(X)Pr[Y::; qlp,'t!T=lIX, T = 1]] 
(QT1 A ) 

E [P(X)E[T ll{Y::; q;,'t!T=l}IX, T = 1]] 

E [
E[Tll{Y ::;pql,'t!T=l}IX]] 

(QT1B) 

E [
T ll{Y :S;pql,'t!T=d] (QT1e) 

The first equality follows from the definition of ql,'t!T=l and from Assumption 2. The 

second is an application of the Bayes' role. The third equality follows froro an application of 

the law ofiterated expectations. The fourth results from Y = T Y(l) + (1 - T)Y(O). The fifth 

equality comes from another application of the Bayes' role. Sixth equality is a consequence 

from the fact that the expectation is conditional on T = 1. Seventh uses the relation E[ZIX] = 

p(X)E[ZIX, T = 1] + (1- p(X))E[ZIX, T = 1], where Z is some random variab1e. Finally, the 

last equality is a backward application of the law of iterated expectations. 
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'r Pr[Y(O) ~qO,'tIT=lIT= II 
Pr[Y(O) ~ qO,'tIT=l, T = II 

= 
P 

E [pr[Y(O) ~ qO,~T=l' T = 11Xl] 

E [p(X)pr[Y(O) ~ ~,'tIT=lIX,T = ll] 
= E [p(X)pr[Y(O) ~ ~,'tIT=lIX, T = Ol] 

E [
p(X)pr[Y ~ qOp,'t IT=lI X , T = Ol] 

(QTOA) 

E [P(X)E[(l- T)n{Y ~ qO,'tIT=dIX , T = Ol] 

(QTOB) E [(1 !;~l))pE[(l- T)n{Y ~ qO,'tIT=dIXl] 

(QTOc) = E[(1!;~l))p(1-T)n{y~qO,'tIT=d] 
Equa1ities 1 to 3 hold by the same reasons equalities 1-3 hold for the ql,'tIT=l case. The 

fourth equality comes from an application of the Bayes' mIe. The fifth equality follows from 

Assumption 1. Sixthresults from Y = T Y( 1) + (1- T)Y(O). Seventh equality is a consequence 

from the fact that the expectation is conditional on T = O. Eigth and ninth equalities hold by 

the same reasons the last two equalities for the ql,'tIT=l case hold. O 

Proof of Theorem 1: 

This proof is an extension to the quantile case of the proofs by Hahn (1998) and by Hirano, 

1mbens and Ridder (2002) for the quantile case. Both references use the machinery presented 

by Bickel, Klassen, Ritov, and Wellner (1993), Newey (1990) and Newey (1994). Start defining 

the densities, with respect to some cr-finite measure, of (Y(l), Y(O), T,X) and ofthe observed 

data (Y, T,X). Under Assumption 1, both densities represent the same statistica1 mode1 and are, 

therefore, equivalent. These densities can be written as: 
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<p(y(I),y(O),t,x) =f(y(I),y(O) Ix)p(x)t(1- p(x))I-tf(x). 

and 

<j>(y,t,x) = [fi (Ylx)p(x)Y[fo(Ylx)(I- p(x))] I-tf(x) , 

where fI (y Ix) = f f(y,zlx)dz and fo(Y Ix) = f f(z,ylx)dz. 

Working with the density of observed data, consider the regular parametric submodel in-

dexed by 9, a finite dimensional vector: 

<I>(y, t,x I 9) = [fI (y Ix; 9)p(x I 9)Y[fo(y Ix; 9)(1 - p(x I 9))]I-tf(x I 9), 

By a normalization argument, let <I>(y, t, x) = <I>(y, t, x I (0). 

The score of a parametric submodel indexed by 9 is given by: 

t-p(xI9) , 
s(y,t,x 19) = tSI (Ylx; 9) + (1 -t)so(y Ix; 9) + p(xl 9)(1 _ p(x I 9))P (xl 9) +sx(xl 9) 

where, for j = 0, 1: 

a 
sj(Ylx; 9) = a9Iogjj(Ylx; 9) 

p'(xI9) = ;9P(xI9) 

and 
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a 
sx(x I e) = ae logf(x I e). 

Again I normalize: s(y, t, x) = s(y, t, x I eo). 

In order to find the efficient influence functions of the parameters of interest, Ll,;(e) and 

Ll-r I T = I (e), I need first to define the tangent space of this s~atistical model. This will be the set 

5 of all possible score functions, and it is defined as: 

5 ={ S:]R x {O, 1} x X ~ ]R I S(y,t,x) = tSI(Y Ix) + (1 - t)so(Ylx) +a(x)(t - p(x)) +sx(x); 

and E[sj(Y IX) IX = x, T = j] = E [sx(X)] = 0, Vx and j = 0,1 } 

where a(x) is some square-integrable measurable function of x. 

Next I show that both Ll,;(e) and Ll-rl T=I (e) are pathwise differentiable, that is, I show 

that for each one the derivative with respect to e evaluated at eo is equal to the expectation 

ofthe product of the score s(Y, T,X) and the respective influence functions 'I'~t(Y' T,X) and 

'I'~IT=1 (Y, T,X) respectively. 

After I show pathwise differentiability, I find the proj ection of the influence function on the 

set of scores. That projection is often called the efficient influence function. If an influence 

function belongs to the set 5, then its projection onto 5 is the original influence function itself. 

Therefore, the goal is to find an influence function which already belongs to the set of scores. 

A function that is in the set ofthe scores must be written as: 

'I' = TCI (Y,X) + (1 - T)co(Y,X) + a(X)(T - p(X)) + Cx(X) , 

where E[cj(Y, X) IX = x, T = i] = E[cx(X)] = 0, Vx and j = 0, 1. 

Starting with qI,,;, the first part ofthe parameter Ll,;. For the pararnetric submodel indexed 

by e, we have for all 9: 
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--

(55) 

Thus, using the normalization ql,'t = ql,'t(90), and by an application of Leibniz's role we 

have: 

o =fl (ql,'t) aql~~90) + ff (ll{y ~ ql,'t} -'t)SI (Ylx)fl (y Ix)f(x)dydx 

+ ff (ll{y ~ ql,'t} - 't)Sx(X)fl (Ylx)J(x)dydx 

Note that: 

f f SI (y I X)JI (y I x)f(x)dydx = O 

ff SAX)/I (y Ix)f(x)dydx = f sAx)f(x)dx = O 

Hence the derivative of ql,'t(9) evaluated at 90 is equal to: 

(56) 

(57) 

(58) 

(59) 

After similar calculations for qo,'t, we can express the derivative of ~'t(9) evaluated at 90 

as: 

a~'t(90) = _ II ll{y:::; ql,'t}SI (y IX)/l (y Ix)f(x)dydx + II ll{y ~ qO,'t}so(Ylx)/o(y Ix)f(x)dydx 
a9 fi (ql,'t) fo(qo,'t) 

_ II ll{y ~ ql ,'t}sx (X)/l (ylx)f(x)dydx + II ll{y ~ qO,'t}sx(x)Jo(y Ix)f(x)dydx 
fI (ql,'t) fo(qo,'t) 

(60) 

The next goal is to find a function of (Y, T,X) such that the expectation of the product ofthat 

function times the score is equal to Equation (60). A solution to this problem is the following: 
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(1 - T)(gO,6t (Y) - E[gO,6t (Y) IX, T = O]) 
1- p(X) 

(61) 

where the function gj,6t was defined in Equation (15). 

Note however that this influence function belongs to the set of the scores. In order to check 

that, we need only to verify that the following three equalities hold: 

E [g],6 t (Y) -E[g],6t (Y) IX, T = 1J\x T = 1] = O 
p(X) , (62) 

E [gO,6t (Y) - E[gO,6t (Y) IX, T = OJlx T = O] = O 
1- p(X) , (63) 

E [E[g],~(y) IX, T = 1J-E[go,~(Y) IX, T = OJ] = O (64) 

Equations (62) and (63) hold by inspection. By the definition of gj,6t , E[gj,6t (Y) IX, T = 

jJ = O, so Equation (64) also holds. Hence, \jf6t is the efficient influence function and has 

expected value equal to zero, since it is in the set of scores. Thus its variance is equal to 

E[ \jfi
t 
(Y, T,X)], which is the semiparametric efficiency bound for Ll't, V6t • 

Now we do the same for Ll'tl T=]. For a parametric submodel indexed by a, we have: 

rr p(xla) . 0=11 f p(x I a)f(x I a)d)ll{y ~ q],'tIT=] (a)} - 't)f] (ylx, a)f(x I a)dydx (65) 

Again I normalize: q],'tIT=] = q],'tIT=] (ao). The derivative evaluated at ao is equal to: 

aq]'tIT-](aO) 1 (rr ' ae = - fi ( ) 11 ll{y ~ q],'tIT=I1P(X)S] (Ylx)f] (Ylx)f(x)dydx 
]IT=] q],'tIT=] 

+ ! (E[ll{y ::; q],'tl T=I1 IX = xJ- 't)P' (x)f] (y Ix)f(x)dydx 

+ ! (E[ll{y ~ q],'tIT=]} IX = xJ- 't)p(x)sx(x)f] (y IX)f(x)dYdx) 

(66) 
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-

As the same sort of calculations are true for qO;t! T=J, we can express the derivative of 

Ll.r!T=1(8) evaluated at 80 as being: 

aLl.r! T=l (80) ff n{y ~ ql;t! T=l }P(X)Sl (y Ix)fl(y Ix)f(x)dydx 
= a8 fl!T=l(ql;t!T=l) 

ff n{y ~ %;t! T=dp(x)so(y Ix)fo(y I x)f(x)dydx 
+--------~--~----~--------

fOi T=l (qo;t! T=l) 

f(E[n{y ~ ql,'t!T=d IX = xJ - 't)p'(x)fi (Ylx)f(x)dydx 

fl!T=l (ql,'t!T=d 
f(E[n{y ~ qo,'t!T=d IX = x]- 't)p'(x)fo(ylx)f(x)dydx 

+----~--~------~~~~--~~~--
fO!T=l(qO,'t!T=d 

f(E[n{y ~ ql,'t!T=d IX = xl - 't)p(x)sx(x)fi (Ylx)f(x)dydx 

fi !T=l(ql,'t!T=l) 
f(E[n{y ~ qO,'t!T=d IX = x]- 't)p(x)sx(x)fo(Ylx)f(x)dydx 

+--------~--~~~~--~~----~~--
fO!T=l (qO,'t!T=l) 

The efficient influence function for this case is equal: 

T(gl'~IT=l (Y) - E[gl'~IT=l (Y) IX, T = 1]) 
\jf~IT-l (Y, T,X) =----'-------'---------- P 

(1 - T)p(X)(gO,~IT=l (Y) - E[gO'~IT=l (Y) IX, T = O]) 

(67) 

(T-p(X)) 
p(l- p(X)) (68) 

+ P (E[gl'~IT=l (Y) IX, T = 11-E[gO'~IT=1 (Y) IX, T = O]) 

p(X) 
+ p(E[gl'~IT=l (Y) IX, T = 1J -E[gO'~IT=l (Y) IX, T = O]) 

where the functiongj'~IT=l was deftned by Equation (16). 

As this influence function is in the set of scores, its expected value is zero and its variance is 

equal to E[\jfiIT=l (Y, T,X)], which is the semiparametric efficiency bound for Ll.r!T=J, V~IT=l. 

O 

Proof of Lemma 4: 
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In order to prove Lemma 4, I will need first to decompose €N(t) = QN(t,ft) - QN(t) into 

three parts: 

(69) 

We saw that A (Y, t) can be decomposed into two parts, D( Y) t and R( Y, t). Notice however, 

that we will be interested here in an approximation of ~ I,f::l T;~~it by an expression that does 

not depend on ft( X). An approximation that is analogous to fust part of the sum of Equation 

(42) but that uses R(Y, t) in the place of D(Y) tis defined by RN(t) and written as: 

RN(t) = ~ :f [1I R("Yi, t) - E[R(Y, t) IXi, T = 1]11 - P(Xi)] 
N i=l p(Xi) p(Xi) 

(70) 

To proceed, I first show that Equation (69) actually holds. Then I show that N times each 

one ofthe three parts ofEquation (69) evaluated at ui vN will converge in probability to zero 

for each u. 

I start by summing and subtracting several terms from QN(t,ft). 
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Q ( ') = ~ ~ (liA(}j,t) _ liA(}j,t) 7;oA(}j,t) ( '(Xi) _ ( o))) 
N t,p N ~ '(Xi) (Xi) + 2 (Xi) P 1 P Xz 1=1 P 1 P 1 P 1 

(71) 

where: 

- ~i~ (T~~i:;\8(Xi)-P(Xz))) +E [E[A(Y,;(~,T= I](p(X)_P(X))] 

(72) 

_ E [E[A(Y, t) IX, T = 1] (p(X) _ P(X))] _ ~ f Õ(Xi, t) 1; - PK(Xi) 
p(X) N i=l y'PK(Xi)(I- PK(Xi)) 

(73) 

1 ~(Õ(X t) Õ (X t)) li - pK(Xi) (74) 
+ li i~ i, - K i, y'PK(Xi)(I - PK(Xi)) 

+2- f (1; Ai(t) -E[A(t)IXi,T= I]li-P(Xi)) (76) 
N i=1 p(Xi) p(Xi) 

õK(Xi,t) = -E [E[A(Y,;(~,T = 1] L'(HK(X)'1tK)HK(X)']LK\/L'(HK(Xi)'1tK)HK(Xi) 

(78) 

õ(Xi,t) = -E[A(Y,t) IXi,T = 1] Jp(Xi~~~J p(Xi)) (79) 
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f. = ~ fHK(~)HK(~)IL'(HK(~)/fc) 
i=I 

Thus, by Equations (36) and (42): 

QN(t,p) =.!-. f (TiD(}j) -E[D(Y) I~,T = 1] Ti - p(~)) 
N i=I p(~) p(~) 

where EI,N(t) is equal to the sum ofEquations (71) to (75). 

(80) 

(81) 

(82) 

(83) 

In order to decompose QN(t,p) into the sum of QN(t) and EN(t), from Equation (82) I show 

that E[RN(t)] = E[R(Y(I),t)] = ~fI(qI,t) +0(t2 ). I will do more than that. In fact, let me 

compute the first two conditional moments of A (Y ( 1 ), t) given X and its first two unconditional 

moments. 

Starting with the conditonal and the unconditional first moments of A(Y( 1 ),t), respectively 

E[A(Y(l), t) IX] = E[D(Y(1)) IX] t+E[R(Y(I),t) IX] andE[A(Y(I), t)] = E[D(Y(I))] t 

+E[R(Y(I),t)], where: 

E[D(Y(I)) IX] = E[n{Y(I) ~ qI,t} -'tIX] 

and 

[52] 
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E[D(Y( 1))] =E[E[ll{Y(l) ~ ql,,;} - 't IX]] 

=E[ll{ Y(1) ~ ql ;r} - 't] 

=0 

(85) 

In order to compute E [R( Y ( 1 ), t) I X = x], I will need to do integration by parts and use the 

Mean Value Theorem: 

E[R(Y( 1), t) IX = x] =E[(Y(1) - (ql;r + t))(ll{Y(l) ~ ql;r} - ll{Y( 1) ~ ql,'t + t} )IX = x] 

l
ql 't 

= (y-(ql,'t+t))Ji(ylx)dy 
ql,t+t 

I
ql't lql t+t 

=(y- (ql,'t+t))Fl(ylx) + ' Fl(Ylx)dy 
ql,t+t ql,t 

= -Fl(ql,'t Ix)t+Fl(ql,'t Ix)t+ ~fl(ql.'t+ t*(x, t) Ix)t2 

=~fl (ql,'t + t*(x, t) Ix)t2 

(86) 

where t*(x, t) is some real number between O and t. 

Under Assumption 4, the unconditional expectation of R(Y(l), t) can be found by noticing 

the following: 23 

IE[R(Y(l), t)]- ~fl (ql,'t) t2
1 ~E [IE[R(Y( 1), t)IX]- ~fl (ql,'t IX)t2 IJ 

=E [I~fl (ql,'t + t*(X, t) IX)t2 - ~fl (ql,'t IX)t2 IJ 
2 

~~ E[M(X)]ltI À 

=0(t2
) 

(87) 

23Let me be cIear about the notation. There are two ways that the remainder terms ofthe above Taylor approx­

imation go to zero. The first and natural one is to say that 0(t2) -+ O as t -+ O. But the remainder term might go to 

zero even for fixed t. This is the case when there is sequence aN = o( 1) and the remainder term is in fact equal to 

t2aN. 
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Thus: 

Finally, we have: 

and 

Now I compute the conditional second moment of A(Y(l ),t): 

E[A2(Y(1),t) IX = xl =t2 E[d(Y(l)) IX = xl +2tE[D(Y(1)),R(Y(1),t) IX =xl 

+ E[R2(y( 1), t) IX = xl 

where: 

(88) 

(90) 

(91) 

(92) 

The conditional expectation E[R2(Y(1), t) IX = xl is computed using similar steps to those 

used for the computation ofthe first conditional moment of R(Y( 1), t): 

Consider the case in which t > 0:24 

24The t < O case yields the same result times (-I). 
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(94) 

where where t**(x, t) is some real number between O and t. 

The cross-termE[D(Y(1))R(Y(1),t) IX = x] equals to: 

E[D(Y(1))R(Y(1),t) IX = x] = rl,t (y- (ql;t + t))(n{y:; ql"J -'t)fi (y Ix)dy (95) 
lql,t+t 

For t > O: 

rql,t+t 
E[D(Y(l))R(Y(l),t) IX =x] ='t 10 (y- (ql;r +t))/I (Ylx)dy 

ql,t (96) 

=-'tE[R(Y(l),t) IX=x] 

while for t < O: 

E[D(Y(1))R(Y(1),t) IX = x] = (1- 't)E[R(Y(1),t) IX = x] (97) 

Therefore: 

1 
E[D(Y(1 ))R(Y(1), t) IX = x] = "2/1 (ql;r + t*(x, t) Ix)t2(n{t < O} - 't) (98) 

Calculations similar to those used to find Equation (88), which are based on Assumption 4 

guarantee that: 
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t 3 

E[R2(y( 1), t)] = E[E[R2(Y(1), t) IX]] = "3 fI (ql,'t) + 0(t3
) = 0(t3

) (99) 

E[D(Y(l))R(Y(l),t)] = E[E[D(Y(1))R(Y(l),t) IX]] = 0(t2) (100) 

Also, we know that 

E[D(Y(1))2] = 't(1-'t) (l01) 

Therefore, 

E[A2(Y(1),t) IX] = E[D2(Y(1)) IX]t2+2tE[D(Y(1))R(Y(1),t) IX] +E[R2(Y(1),t) IX] 
(102) 

and 

E[A2(Y(1), t)] = E[D2(Y(1 ))) t2 + 2tE[D(Y(1 ))R(Y(l), t)) +E[R2(Y(1), t)) (l03) 

= 't(1- 't)t2 + 0(t2) + 0(t3
) = 0(t2) (104) 

Finally, note that 

E[RN(t)] =E[~ i (1i
R

(}j,t) -E[R(Y,t)IXi,T = l]1i-P(Xi))] 
N i=1 p(Xi) p(Xi) 

= E [T R(Y,t) -E[R(Y t) IX T = 1] T - p(X)] 
p(X) " p(X) 

= E [E[T R(Y,t) IX, T = l]p(X) 
p(X) 

-E[R(Y t) IX T= 1) ((1- p(X))p(X) _ (p(X)(l- P(X)))] 
" p(X) p(X) 

= E[E[R(Y(l),t) IX]] 

= E[R(Y(l),t)] 

1 2 2 
= "2fl (ql,'t)t +o(t ) (105) 

[56] 



Hence Equation (69) holds by Equations (42), (82) and (lOS). Therefore NEN(uj JN) is a 

sum ofthree components: 

I now show that each one ofthese components goes to zero in probability for each u. 

Start with the last term, N o( u2 j N). This is goes to zero for each u by definition. 

Now the first part ofthe sum: N(RN(ujJN) -E[RN(ujJN)]). This is mean zero and its 

variance can be computed by first calculating E[R~(t)]: 

E[R2(t)] = ~E[(TR(y,t) -E[R(Y t)IX T= I]T-P(Xi))2] 
N N p(X) " p(X) 

= 2-E [T
2
R

2
(y,t) E2[R(Y )IX T= 1] (T-P(X))2 

N p2(X) + ,t, p(X) 

_ 2 (T R(Y,t)(T - p(X))E[R(Y,t) IX, T = 11)] 
p2(X) 

= 2-E [E[R
2
(Y(I),t) IX] +E2[R(Y(I) t) IXl (1- p(X)) 

N p(X) 'p(X) 

-2E2[R(Y(I),t) IX] C~~~))] 
= ~E [V[R(Y(I),t) IX] +E2[R(Y(I) t) IX]] 

N p(X) , 

= 2-E [E[R
2
(Y(I),t) IX]_ 1-p(X) E2[R(Y(I),t) IX1] (106) 

N p(X) p(X) 

Hence, the expected RN(t) squared is equal to the sum of two terms, ~E [E[R2(;g),t) IX] ] 

and ~E [p~l) 1 E2 [R(Y( 1), t) IX]] . The first one is equal to: 

~E[E[R2(Y(I),t)IX]] =~E[_I_(~fi(q +t**(t X)IX)t3)] 
N p(X) N p(X) 3 1 l;t , 

~c~O(t3) (107) 

=O(t3 jN) 
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whereas the second terrn is bounded by: 

lC~C IE[E2[R(Y( 1), t) IX]]- ~E[jf(ql;t ,X)]t41 

C [11 2 * 4 1 2 41] S NE 4E[j1 (ql;t + t (X, t) IX)]t - 4E[fi (ql;t IX)]t 

C t
4 

2 * 2 = N4E[lfi (ql;t+t (X, t) IX) - fI (ql,'tIX)I] 

Ct4 

S 4N E[lfl (ql,'t +t*(X, t) IX) - fI (ql,'t IX)112 fl(ql,'t IX) + fI (ql,'t+ t*(X, t) IX) - fI (ql,'t IX)I] 

S ~~ (E[M2(X)]ltI2Ã. + 2fl (ql,'t)E[M(X)]ltIÃ. 

(108) 

for some positive constants c and C. Thus, tE[E2[R(Y(I),t) IX]] = 0(t4IN), and finally: 

E[R~(t)] = 0(t3 IN) 

Therefore for each u: 

Var (N(RN(uIVN) -E[RN(uIVN)])) = N2 0(lu13 IN5
/
2

) 

= 0(luI3/v'N) 

= 0(luI 3o(I)) 

= o(luI 3
) 

(109) 

(110) 

Then we can finally conclude that for each u, N(RN(ul -IN) -E[RN(ul VN)]) goes to zero 

in probability. 

The missing part to prove Lemma 4 is to prove that for each u, N ê I ,N( u I VN) goes to zero 

in probability. 

Hirano, Imbens and Ridder (2002) have computed their first step in the exact same way I do. 

Also, in their Theorem 1 they have a remainder terrn to bound very similar to Nêl,N(uIVN). 
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The main difference is that their terms do not depend on u, as instead of A (Y, ui vN) they have 

Y IvN, where E[y2] is assumed to be finite. However, it is possible to bound NE1,N(ulvN) 

using exactly the same arguments they used, being just aware that we will have an extra term 

which will reflect the dependence on u. 

I will show how the analogy between NE1,N(ulvN) and the remainder term in Hirano, 

1mbens and Ridder can be drawn. Consider for instance N times the absolute value ofEquation 

(71) evaluated at ui vN: 

1 

f T;A(~,ulvN) _ T;A(lí,ulvN) + T;A(~,ulvN) (p(~) - p(~))1 
i=1 p(~) p(~) P (~) 

(111) 

< ~1T;A(Yi,ulv'N)(A(x)_ (X))21 
- ~ 2(X) A(X) P 1 P 1 

1=1 P 1 P 1 

(112) 

= ~ 1 T;A(lí, ui v'N) ( A(X) _ (X))21 
~ 2(X) A(X) P 1 PK 1 
1=1 P 1 P 1 

(113) 

~11iA(lí,ulv'N)( (X)- (X))21 + ~ 2(X) A(X) PK 1 P 1 
1=1 P 1 P 1 

(114) 

~1T;A(lí,Ulv'N)(A() ())( () ())I + 2 ~ 2(X) A(X) P ~ - PK Xi PK ~ - P ~ 
1=1 P 1 P 1 

(115) 

(116) 

Let me start working with Equation (113): 
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~ 1 T;A(Yi,u/v'N) (~() ())21 ~ 1 T;A("Yi,u/v'N) ( , ,- , ~ )21 
~ 2(X) ~(X) P J4 - PK J4 = ~ 2(X) ~(X) L (HK(J4) n)HK(J4) (n -nK) 
1= 1 P 1 P 1 1= 1 P 1 P 1 

:::; (inf p(x) )-2( inf p(x)r 1 f IT;A("Yi, u/ vÍN) (L' (HK(J4)'ft)HK(J4)' (fc -nK) )21 
xEX xEX i=1 

:::; (inf p(X))-2( inf p(X))-1 ~6 Ç2(N) IIfc-nK112 f IA("Yi(l),u/vÍN)1 
xEX xEX 1 i=l' 

= 0(1) Op(1) 0(K2) Op(K/N) Op(lul) 

= Op (K;U 1

) 

= Op (N3a-1Iul) 

=Op(o(I)lul) 

= op(lul) (117) 

In the first line of the above expression I used the Mean Value Theorem.25 . In the third line 

I used a property ofthe logistic function and Newey's result presented in Equation (28). In the 

fourth line I used the common support assumption, results (lI) and (IlI) of Lemma 3 and the 

Markov inequality with the previous result on the order of E [A 2 (Y (1), t) l. Finally, in the sixth 

line I used Assumption 3. 

The same logic could have been applied to Equations (114) and (115) yielding respectively: 

fi T;~~~,;!(::) (PK(J4) - p(J4))21 = 0(1) Op(l) Op(lul) O(K2-2~) 
1=1 p 1 P 1 

= Op(luIN(2-2na) 

= op(lul) (118) 

and 

25Note that forii: E [ft, 1tK], L'(HK(x)'ii:) > o whereL'(z) = d;~) = L(z)(I-L(z)), yieldingthen that supzL' (z) = 

1/4. Also note thatL"(z) =L'(z)(1-2L(z)). 
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{, I1iA(~,u/v'N) ~ I 
2 k.. 2(X) ~(X) (p(Xi) - PK(Xi))(PK(Xi) - p(Xi)) 

1=1 P I P I 

= 0(1) Op(l) Op(lul) O(KI-~) Op(K~ /JN) 

( 
K(5/2-Slr)a) 

=Op lul v'N 

= op(lul) (119) 

Now note that these bounds are similar to those computed by Rirano, Imbens and Ridder 

(2002) for the same sort of approximation. The on1y difference is that here we have the extra 

term lul. However, for a fixed u, the rate of convergence remains the same one they computed, 

Computation ofbounds for Equations (72)-(75) follows again the same lines as in Hirano, 

Imbens and Ridder (2002). Therefore, and for reasons of space, a detailed proof that shows 

that each one of those equations times N, evaluated at u / VN, is o p( 1) for fixed u is omitted. 

Note only however, that in the process of finding bounds for all of those four equations, we 

will face expressions depending either on L~ I 11i A (~, u / VN) I or on E [A (Y (1), u / v'N) I Xl· 

For the former I have already computed a probabilistic bound. But the latter, by the Markov 

inequality, is a random variable such that: 

(120) 

Hence, as claimed earlier, the proof that Nêl,N(U/VN) = op(lul), will follow the same 

steps as in the proof by Hirano, Imbens and Ridder (2002). This happens because when they 
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have I.~,I}j(I)/v'N1 = Op(I), I have I.~,IA(}j(I),u/v'N)1 = Op(luj); and when they have 

I I.f:, E[Y(I)/v'NIXiJI = Op(I), I have 1I.f:,E[A(Y(I),U/v'N)IXiJI = Op(luj). Thus, the 

only difference from their approach to mine is the lul termo 

Finally, we conclude that for each fixed u, N EN( u/ v'N) goes to zero in probability.D 

Proof of Lemma 5: 

From Equation (50), for result (i) I need to show that JN I.f:, \jI1,i is Op( 1). This will 

follow by the Markov inequality: 

[
IN ] E[\jI2 .J Pr -~\jII· >M < __ 1,_1 
'N ~ ,I Af2 

v 1V 1=1 
(121) 

Choosing M to satisfy ~ < Õ, where Õ is a small enough positive constant, there will 

exist a sample size Nõ such that for all N > Nõ, Equation (121) will be satisfied. 

Result (U) follows by a Central Limit Theorem; while (Ui) follows by noting that "'I is 

the efficient infiuence function of ql,'t, and therefore, its expected square is E[\jIn = VI, the 

semiparametric efficiency bound for ql,"t.26 O 

Proof ofLemma 6: 

First notice that GN( q, fi) = ~ I.f:1 p(~) P"t(}j- q) is convex in q with probability approach­

ing one, as it is a sum of zeros and convex functions in q. As a result, the transformed objective 

function, QN(t, fi) will be convex in t and the following random functionmust be convex in u: 

N u (TiD. Ti - p(X)) 
BN(U,fi) =NQN(U/vN,fi)- L /li (IX.I) -E[DIXi,T= lJ I (X) I 

1=1 v N P I P I 

1 2 /li = 2fl (ql,"t)u +NEN(U/vN) (122) 

Let me call B(u) the quadratic tJi (ql,"t)U2. 

Now, by convexity of BN( u, fi) for any u such that lu - ül = a > Õ: 

26See the proof of the semiparametric efficiency bound in this appendix. 
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By Equation (122), this can be rewritten as: 

~(BN(U, fi) -BN(ii, fi)) ~B(ii + õ) + NêN(ii/VN + õ) - (B(ii) + NêN(ii/VN) ) 

~ -2 sup INêN(U/VN) I + inf IB(u) -B(ii)1 
lu-ül::;ô lu-ül=ô 

Now, note that 

Thus, for all U outside the õ-interval around ii, if: 

(123) 

(124) 

(125) 

(126) 

then u, the minimizer of N QN(U/ v'iJ,fi) , will be inside the Õ-interval around ii. Hence, I need 

to show that with probability approaching one, Equation (126) holds. 

By the HjortandPollard's (1993)version ofthe Convexity Lemma, supuExINêN(U/v'iJ) I = 
o p (1) for each compact subset :J( of~. Define: 

1Cõ = {u E ~; lu - ui :::; õ} 

Because 1Cõ is a bounded and closed subset of~, it is compact. Therefore: 

sup INêN(U/VN) I = op(l) 
uE~ 
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Thus, for each Õ > O: 

(129) 

Hence with probability approaching one, for each Õ > 0, Equation (126) ho1ds, which 

means that u, the minimizer of NQN(U/JN,p), will be inside the õ-interval around fi with 

probability approaching one: 

(130) 

o 
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APPENDIXIl 

For the set A, it is neeessary to estimate in the first step the eonditional expeetation m1 (x I q) = 

E[ll{Y :::; q} - 't IX = x, T = 1] by m1(xl q) = Ê[ll{Y:::; q} - 't IX = x, T = 1]. This estimation 

problem ean be written as: 

m1(xlq) =Ê[ll{Y:::;q}-'tIX=x,T= 1] 

=Ê[Tll{Y:::;q}-'tIX=x,T= 1] 
N 

= L, 0(x)(ll{}j:::; q} - 't) 
i=1 

where v1 is a weight that is ehosen aeeording to the ehoice of non-parametrie estimation teeh­

nique. For example, suppose that for the non-parametrie estimation we use a smoothing fune­

tion Khe), whieh is equa1 to h-kK(-j h) and where K(·) is a kernel funetion and h is a band­

width. Then: 

V1 = NKh (J4 -x)T; 
I LI=1 Kh(~ -x)T; 

The uneonditional expeetation funetion, E[m1 (X I q)], ean be estimated by ~ LJ=1 m1(Xj I q). 

But this expression ean be rewritten as: 

1 N 1 N N 
- L, m1(Xjlq)=- L,L,v1(Xj)(ll{Yi:::;q}-'t) 
N j=1 N j=l i=1 

1 N N 
=- L,L, v1(Xj)(ll{}j:::;q}-'t) 

N i=lj=1 

Now, define &t,i as being equal to ~ LJ=1 v1(Xj). Then: 
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And: 

Thus, finally: 

N 

tTt,t = argmin L &l,iPt(ií - q) 
q i=l 

(131) 

In the identification condition given by B, the weight associated with ijf t' &f i' is equal to , , 

~ í.1= 1 vf (Xj ). For the example where the conditional expectation is estimated by a kernel K 

with bandwidth h: 

As an interesting by-product, note that ifthe kernel function and the bandwidth are exactly 

the same for the cases A and B, then the weights &1,i and &f,i must be equal. Also note that 

these weights, &1,i and côf,i' sum to 1 over i, regardless of whether they are estimated using 

kernel smoothing or using some other non-parametric estimation technique. 
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TABLE 1: LaLonde/Dehejia and Wahba Data Set - Summary Statistics 

Summary Statistics 

Treatment Group 

(Sample size = 185) 

Earnings Age Education Dropout B1ack Hispanic Married Earnings Earnings Unemployed Unemployed 

(1978) (1974) (1975) (1974) (1975) 

Mean 6349.1 25.8 10.3 71% 84% 6% 19% 2095.6 1532.1 71% 60% 

(7867.4) (7.2) (2.0) (4886.6) (3219.3) 

Min O 17 4 O O 

Max 60307.9 48 16 35040.1 25142.2 

......, Experimental Control Group 
0\ 

(Sample size = 260) ~ 

Earnings Age Education Dropout Black Hispanic Married Earnings Earnings Unemployed Unemployed 

(1978) (1974) (1975) (1974) (1975) 

Mean 4554.8 25.1 10.1 83% 83% 11% 15% 2107.0 1266.9 75% 68% 

(5483.8) (7.1) (1.6) (5687.9) (3103.0) 

Min O 17 3 O O 

Max 39483.5 55 14 39570.7 23032 

Non-Experimental Control Group 

(Sample size = 2490) 

Earnings Age Education Dropout Black Hispanic Married Earnings Earnings Unemployed Unemployed 

(1978) (1974) (1975) (1974) (1975) 

Mean 21553.9 34.9 12.1 31% 25% 3% 87% 19428.8 19063.3 9% 10% 

(15555.3) (10.4) (3.1) (13406.9) (13596.9) 

Min O 18 O O O 

Max 121174 55 17 137149 156653 



TABLE 2: LaLonde/Dehejia and Wahba Data Set - Quantiles ofPotential Earnings 

QTE and Quantiles of Potentials Earnings (1978) 

't 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

d t lT=l O O 711 21 1927 3879 4517 6027 5503 
(126) (538) (1052) (1357) (1132) (1275) (1461) (1853) (3398) 

dt,exp O O 930 1163 1081 1446 1797 2246 2919 
-c 
ql,tIT=l O O 930 2326 4232 6184 8174 10756 14582 
-c 
QO,tIT=l O O 219 2305 2305 2305 3657 4729 9079 

Quantiles ofNon-Experimental Control Group (qo) O 8866 13299 17733 20688 24315 27347 31623 38421 
Quantiles ofExperimental ControI Group (qO,exp) O O O 1163 3151 4738 6377 8510 11663 

-c -Qo,tIT=l -qo,exp O O 219 1142 -846 -2433 -2720 -3781 2584 

~ 
(126) (515) (893) (1312) (1289) (1173) (1263) (1835) (3207) 

00 .......... 



Cumulative Distribution Functions: Treatment and Control 
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FIGURE 1: LaLonde/Dehejia and Wahba Experimental Data Set (Treatment: solid line; Con­

trol: dashed line) 

[69] 

40000 



Cumulative Distribution Functions: Treatment, Actual Contro I and Counterfactual Control 
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FIGURE 2: LaLonde/Dehejia and Wahba Non-Experimental Data Set (Treatment: solid line; 

Counterfactual Control: dashed line; Actual Control: dotted line) 
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Quantile Treatment Effect on tbe Treated by Percentile (wit bin 2 s.e. range) 
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FIGURE 3: LaLonde/Dehejia and Wahba Non-Experimental Data Set 
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Difference in Quantiles: Counterfactual and Experimental Co ntrols (within 2 s.e. range) 
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FIGURE 5: LaLonde/Dehejia and Wahba Data Set Non-experimental and Experimental Con­
trols 
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